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Abstract: In this paper, a Nonstandard Finite Difference Scheme (NSFDS) is constructed for a water-related disease mathematical

model. The properties of the resulting discrete models are analysed and compared with its corresponding deterministic model.

Furthermore, we compare the numerical solutions of NSDFS, Euler method and MATLAB’s ode45. It is shown that the resulting discrete

model preserves essential properties of the continous model such as positivity and stability. The results are confirmed numerically.

Furthermore, numerical simulations using NSFDS, Euler method and MATLAB’s ode45 give similar results.
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1 Introduction

A mathematical model has been widely used to
understand the complex phenomena such as population
dynamics [1–3], disease transmission [4–11] and
others [12–14] . A mathematical model is then solved and
analysed to understand the dynamics of the studied
phenomena. However, the exact solutions of the model
cannot be easily derived and hence a numerical approach
is used.

A number of numerical methods has been developed
and largely used to solve mathematical model. However,
the available methods such as Runge-Kutta and Euler
sometimes fail to generate the main properties of the
model such as stability, oscillation, and
positivity [15–19]. This can lead to the incorrect
interpretation of studied phenomena. The Nonstandard
Finite Difference Scheme (NSFDS) is the nonstandard
numerical scheme that can be used to simulate the
solutions of mathematical model. The NSFDS has been
used in simulations of biological
phenomena [17, 18, 20, 21]. A review of the approach is
given in [22]. It is generally found that the NSFDS
overcomes the weaknesses of the traditional numerical
schemes such as Runge-Kutta and Euler methods. The
NSFDS is different to the standard numerical scheme

where it depends on the two main rules. First, the
denominator function should be replaced by
0 < φ(h) < 1, where φ(h) = h + O(h2) [15, 16, 23].
Second, the nonlinear terms are approximated in a
nonlocal way [16, 24, 25]. For example, the term x2 can
be approximated using xnxn+1. This scheme is relatively
more consistent than the other traditional
methods [16, 26, 27]. In this paper, we formulate a
nonstandard numerical scheme for the mathematical
model of the effects of the hard water consumption on
kidney function.

In developing world, water quality remains the main
problem in particular water with higher concentration of
calcium and magnesium salts which is known as hard
water. Long-term consumption of hard water can cause
kidney dysfunction which may lead to various diseases
such as cerebrovascular disease, diabetes and many
others [28, 29]. A deterministic mathematical model for
analysing the effect of hard water consumption on kidney
function has been formulated by Tambaru et al. [30]. The
model is based on the standard SIR model where the
human population is divided into susceptible (S), infected
(I) and recovered (R) classes and including the water
compartment (W ) which accounts for the level of calcium
and magnesium ions in the water. The model can be
extended to include other kidney-related diseases by
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adding other compartments. The model can be extended
to examine the effects of water transport in the kidney on
human health. However, in this paper, we focus on
developing a nonstandard finite difference scheme for a
mathematical model developed by Tambaru et al. [30].
Furthermore, although this is a simple model, the
analytical solutions cannot be determined and hence a
numerical approach is needed. In this paper, we present a
Nonstandard Finite Difference Scheme (NSFDS) for the
deterministic model proposed by Tambaru et al. which
results in a discrete model. The properties of the discrete
model are then analysed. We then compare the NSFDS,
Euler method, and MATLAB’s ode45 [31]. To the best of
our knowledge, there is no such numerical scheme that is
constructed to simulate the model of the effects of hard
water consumption on kidney function.

The remainder of the paper is organised as follows.
Section 2 overviews the mathematical model proposed by
Tambaru et al. and its basic properties. Section 3 presents
the nonstandard finite difference scheme for the model.
Section 4 presents an analysis of the scheme properties.
Finally, conclusion is presented.

2 Mathematical model

In this section, we recall the deterministic mathematical
model proposed by Tambaru et al. [30] and several basic
properties of the model.The model is based on the
standard SIR model but adding water compartment to
account for the level of calcium and magnesium ions in
the water. The model is developed for analysing the effect
of hardwater consumption on kidney function. The model
comprises human and water compartments. The human
population is divided into susceptible (S), infected (I),
recovered (R), where the total population is N = S+ I+R.
Only one compartment is for water. Furthermore, we
assume a constant population. A susceptible human
becomes infected after consuming hard water with a rate
β λ (W ). They recover at a rate γ . The human dies at a rate
µ . The concentration of calcium and magnesium ions in
the water increases at a rate b and their growth is limited
by carrying capacity K. The concentration reduces at a
rate c. The model is then governed by the following
system of differential equations.

dS

dt
= A−β λ (W)S− µS

dI

dt
= β λ (W )S− γI− µI,

dR

dt
= γI − µR,

dW

dt
= bW

(

1−
W

K

)

− cW,

(1)

where the parameter β is the rate of ingesting calcium
and magnesium from water and λ (W ) is the probability

that consumptions cause kidney dysfunction. Hence, the
value of λ (W ) ranges from 0 to 1. The probability that
individuals have attracted kidney dysfunction is
influenced by the concentration of calcium and
magnesium ions in the water. Therefore, we set the
equations for λ (W ) that is dependent on the concentration
of calcium and magnesium ions, which is

λ (W ) =
W

K +W
. (2)

where K is the maximum concentration of calcium and
magnesium ions representing the maximum solubility of
each compound in the water [32]. This implies that
W > K does not happen.

Theorem 1.Model (1) has two steady states: kidney

dysfunction-free (E1) and endemic steady states (E2).

E1 = (A/µ ,0,0,0) and E2 = (S∗, I∗,R∗,W ∗)

with

S∗ =
A(2b− c)

b(β + 2µ)− c(β + µ)
,

I∗ =
Aβ (b− c)

µ(γ + µ)(b(β + 2µ)− c(β + µ))
,

R∗ =
Aβ γ(b− c)

µ(γ + µ)(b(β + 2µ)− c(β + µ))
,

W ∗ =
K(b− c)

b
,

(3)

which is physically realistic when b > c.

Proof.The proof is done by setting the right-hand side of
Equations (1) to zero, doing algebraic manipulation and
rearranging it.

Theorem 2.The kidney dysfunction-free steady state E1 is

locally stable if b < c and the endemic steady state E2 is

locally stable if b > c.

Proof.We prove the local stability of E1. First, we
construct the Jacobian matrix of Model (1), and then find
the characteristic equation. We then use the
Routh-Hurwitz criteria to determine its stability. Details
of the proof can be found in Tambaru et al. [30].

3 Nonstandard finite difference scheme

In this section, we present a NSFDS for Model (1). We
discretise the time variable to tn = nh for n = 0,1,2, ... and
a constant h, where h > 0. As stated in the introduction,
there are two main rules in construction the NSFDS (see
[16, 33]): (i) modification of the denominator function, (ii)
discretise linear and nonlinear term in the right-hand side
in a non-local way.
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Applying the nonstandard finite difference scheme, we
obtain the following discrete model for Model (1).

Sn+1 − Sn

φ(h)
= A−

βWnSn+1

K +Wn

− µSn+1,

In+1 − In

φ(h)
=

βWnSn+1

K +Wn

− γIn+1 − µIn+1,

Rn+1 −Rn

φ(h)
= γIn+1 − µRn+1,

Wn+1 −Wn

φ(h)
= bWn −

bWnWn+1

K
− cWn+1.

(4)

Rearranging Equation (4), we obtain

Sn+1 =
Sn +φ(h)A

1+φ(h)
(

βWn

K+Wn
+ µ

) ,

In+1 =
In +φ(h)(βWnSn+1/(K +Wn))

1+φ(h)(γ + µ)
,

Rn+1 =
Rn +φ(h)γIn+1

1+φ(h)µ
,

Wn+1 =
Wn(1+φ(h)b)

1+φ(h)(bWn/K + c)
.

(5)

The Equation (5) should be computed in sequence because
the value of Sn+1 is used for calculating the value of In+1,
which is then used to calculate the value of Rn+1 and then
Wn+1. This process continues until the end time of interest.
We choose denominator function as

φ(h) =
exp µh− 1

µ
. (6)

4 Properties of the scheme

4.1 Non-negativity of the solution

The model focuses on the human population and
concentration of magnesium and calcium in the water.
Therefore, it should be guaranteed that the proposed
numerical scheme cannot produce negative values. It can
be seen that the proposed numerical scheme produces
non-negative values. For the time-step h > 0, and
Sn, In,Rn,Wn > 0, numerators and denominators are
positive and hence Sn+1, In+1,Rn+1,Wn+1 > 0.

4.2 The equilibrium points of the numerical

scheme

We determine the equilibrium points of the numerical
scheme by setting Sn+1 = Sn, In+1 = In, Rn+1 = Rn,
Wn+1 =Wn.

Sn =
Sn +φ(h)A

1+φ(h)
(

βWn

K+Wn
+ µ

) ,

In =
In +φ(h)(βWNSn+1/(K +Wn))

1+φ(h)(γ + µ)
,

Rn =
Rn +φ(h)γIn+1

1+φ(h)µ
,

Wn =
Wn(1+φ(h)b)

1+φ(h)(bWn/K + c)

(7)

Doing algebraic manipulation, we obtain two equilibrium
points which are

P1 = (A/µ ,0,0,0) and P2 = (S∗n, I
∗
n ,R

∗
n,W

∗
n )

with

S∗n =
A(2b− c)

b(β + 2µ)− c(β + µ)
,

I∗n =
Aβ (b− c)

µ(γ + µ)(b(β + 2µ)− c(β + µ))
,

R∗
n =

Aβ γ(b− c)

µ(γ + µ)(b(β + 2µ)− c(β + µ))

W ∗
n =

K(b− c)

b

(8)

where P1 and P2 are disease-free and endemic
equilibriums respectively. Note that the equilibrium
points of the discrete model are the same as that of
continous model (Model (1)) and independent of φ(h). In
the next section, we conducted stability analysis for the
equilibrium points.

4.3 Stability of the Equilibrium

We have used the concept of Jacobian matrix to analyse
the stability of the fixed points. For the sake of simplicity,
we define the following function.

F1(S, I,R,W ) =
Sn +φ(h)A

1+φ(h)
(

βWn

K+Wn
+ µ

) ,

F2(S, I,R,W ) =
In +φ(h)(βWNF1(S, I,R,W )/(K +Wn))

1+φ(h)(γ + µ)
,

F3(S, I,R,W ) =
Rn +φ(h)γF2(S, I,R,W)

1+φ(h)µ
,

F4(S, I,R,W ) =
Wn(1+φ(h)b)

1+φ(h)(bWn/K + c)
.

(9)
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We construct the Jacobian matrix

J =







J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44






(10)

where

J11 =
∂F1(S, I,R,W )

∂S

=
1

1+φ(h)(βWn/(K +Wn)+ µ)
,

J12 =
∂F1(S, I,R,W )

∂ I
= 0,J13 =

∂F1(S, I,R,W )

∂R
= 0,

J14 =
∂F1(S, I,R,W )

∂W
=−

O1

O2

with

O1 = (Aφ(h)+ Sn)φ(h)

(β/(K +Wn)−βWn/(K +Wn)
2)

O2 = (1+φ(h)(βWn/(K +Wn)+ µ))2,

J21 =
∂F2(S, I,R,W )

∂S
=

φ(h)βWn

O3

,

with

O3 = (1+φ(h)(βWn/(K +Wn)+ µ))×

(K +Wn)(1+φ(h)(γ + µ)),

J22 =
∂F2(S, I,R,W )

∂ I
=

1

(1+φ(h)(γ + µ))
,

J23 =
∂F2(S, I,R,W )

∂R
= 0,

J24 =
∂F2(S, I,R,W )

∂W
=

P1 −P2 −P3

1+φ(h)(γ + µ)
,

with

P1 =

φ(h)β (φ(h)A+ Sn)

(1+φ(h)(βWn/(K +Wn)+ µ))(K +Wn)
,

P2 =

φ(h)2βWn(Aφ(h)+ Sn)
(

β
(K+Wn)

− βWn

(K+Wn)2

)

(1+φ(h)(βWn/(K +Wn)+ µ))2(K +Wn)
,

P3 =

φ(h)βWn(Aφ(h)+ Sn)

(1+φ(h)(βWn/(K +Wn)+ µ))(K +Wn)2
,

J31 =
∂F3(S, I,R,W )

∂S
=

φ(h)2βWnγ

Z
,

with

Z = (1+φ(h)(βWn/(K +Wn)+ µ))(K +Wn)×

(1+φ(h)(γ + µ))(φ(h)µ + 1),

J32 =
∂F3(S, I,R,W )

∂ I

=
φ(h)γ

((1+φ(h)(γ + µ))(φ(h)µ + 1))
,

J33 =
∂F3(S, I,R,W )

∂R
=

1

(φ(h)µ + 1)
,

J34 =
∂F3(S, I,R,W )

∂W

=
γφ(h)

(

Q1

(R1R2)
− Q2

(R2
1R2)

− Q3

(R1R2
2)

)

(1+φ(h)(γ + µ))(1+φ(h)µ)
,

with

Q1 = φ(h)β (Aφ(h)+ Sn),

Q2 =

φ(h)2βWn(Aφ(h)+ Sn)

(

β

K + µ
−

βWn

(K +Wn)2

)

,

Q3 = φ(h)βWn(Aφ(h)+ Sn),

R1 =

(

1+φ(h)

(

βWn

K +Wn

+ µ

))

,

R2 = K +Wn,

J41 =
∂F4(S, I,R,W )

∂S
= 0,

J42 =
∂F4(S, I,R,W )

∂ I
= 0,

J43 =
∂F4(S, I,R,W )

∂R
= 0,

J44 =
∂F4(S, I,R,W )

∂W
=

bφ(h)+ 1

1+φ(h)
(

βWn

K
+ c

)−

Wnφ(h)b(φ(h)b+ 1)
(

1+φ(h)
(

βWn

K
+ c

))2

K

.

The NSFDS converges to the equilibrium points if the
absolute of the eigenvalues is less than one.

4.3.1 Stability of disease-free equilibrium

In this section, we show the stability of disease-free
equilibrium, P1. Substituting disease-free equilibrium, P1,
to the Jacobian matrix, we have found
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J =













1
φ(h)µ+1

0 0 J14

0 1
1+φ(h)(γ+µ) 0 J24

0
γφ(h)

(1+φ(h)(γ+µ))(µφ(h)+1)
1

µφ(h)+1
J34

0 0 0
bφ(h)+1

cφ(h)+1













.

with

J14 =−
φ(h)β (φ(h)A+A/µ)

(φ(h)µ + 1)2K
,

J24 =
φ(h)β (φ(h)A+A/µ)

(φ(h)µ + 1)K(1+φ(h)(γ + µ))
,

J34 =
φ(h)2β (φ(h)A+A/µ)γ

(φ(h)µ + 1)2K(1+φ(h)(γ + µ))
.

We then determine the eigenvalues of the Jacobian matrix,
J. We find that the eigenvalues are

λ1 = λ2 =
1

µφ(h)+ 1
, λ3 =

1

γφ(h)+ µφ(h)+ 1
,

λ4 =
bφ(h)+ 1

cφ(h)+ 1
.

We can see that the absolute eigenvalues are less than unity
(|λi|< 1, i = 1,2,3,4) if b < c.

4.3.2 Stability of endemic equilibrium

In this section, we prove the stability of the endemic
equilibrium (P2). Substituting the endemic equilibrium
(P2) into the Jacobian matrix and the determining the
eigenvalues, we find that the eigenvalues are

λ1 =
2b− c

(φ(h)bβ + 2φ(h)bµ −φ(h)β c−φ(h)cµ + 2b− c)
,

λ2 =
1

(φ(h)γ +φ(h)µ + 1)
,

λ3 =
1

µφ(h)+ 1
, λ4 =

cφ(h)+ 1

bφ(h)+ 1
.

It is clear that the absolute of the eigenvalues is less than
unity if b> c. Based on the stability analysis, the following
theorem holds.

Theorem 3.If b < c, the absolute eigenvalues of the

disease-free equilibrium is less than unity (|λi| < 1 where

i = 1,2,3,4). Therefore, the disease-free equilibrium (P1)

of the discrete system (5) is stable. In other words, the

solutions of the NSFDS (5) converge to the disease-free

equilibrium for any positive initial conditions of

S0, I0,R0,W0. Otherwise, if b > c, the solutions converge

to the endemic equilibrium.

We can see that the stability condition of the equilibrium
points of the discrete model is consistent with that of the
continous model (Equation (1)). The discrete model
preserves the main properties of the continous model (1).

5 Numerical Simulations

In this section, we present the numerical simulations of the
model. The parameter values used are µ = 1/65, γ = 1/45,
β = 0.01, K = 60, b= 0.1, c= 0.4 (case b< c) and b= 0.2,
c = 0.1 (case b > c) . S0 = 999, I0 = 1, W0 = 20, R0 =
0 [30]. In addition, we compare the numerical solutions of
NSFDS, Euler method and MATLAB’s ode45. Results are
given in Figure 1 and 2.

We compare the NSFDS, Euler method and
MATLAB’s ode45 using h = 0.01 (for NSFDS and Euler
method) and ‘RelTol’ of 10−8 for MATLAB’s ode45.
Figures 1 and 2 show that the discrete model (5)
converges to the equilibriums. The results are consistent
with that generated using Euler method and MATLAB’s
ode45.

Susceptible (S)

991 992 993 994 995 996 997 998 999 1000

In
fe

c
te

d
 (

I)

0

1

2

3

4

5

6

7

8

Initial value

P
2

NSFDS

Euler

ode45

Fig. 1: Numerical simulation with h= 0.01 for NSFDS and Euler

method and ’RelTol’ of 10−8 for MATLAB’s ode45 in S-I plane

for disease-free equilibrium.

6 Conclusions

A NSFDS is developed for a mathematical model of the
effects of hardwater consumption on kidney function.It is
shown analytically and numerically that the discrete
systems preserve the main properties of the model such as
positivity and stability. The numerical simulations also
confirm the results. The numerical simulations are
consistent with that generated by Euler method and
MATLAB’s ode45. In this paper, we present a nonstandard
finite difference scheme for the model proposed by
Tambaru et al. [30]. Note that the convergence of the
solution to the equilibrium points depends on the
step-size h. We can use other denominator functions to
improve the accuracy of the method for smaller step sizes.

The model can be extended to include the effects of
kidney dysfunction on human health. The extension of the
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Susceptible (S)

820 840 860 880 900 920 940 960 980 1000

In
fe

c
te

d
 (

I)

0

10

20

30

40

50

60

70

80
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P
2

NSFDS

Euler

ode45

Fig. 2: Numerical simulation with h= 0.01 for NSFDS and Euler

method and ’RelTol’ of 10−8 for MATLAB’s ode45 in S-I plane

for endemic equilibrium.

model results in complex models which can affect
model’s properties. Therefore, the construction of a stable
numerical scheme is needed to obtain correct solution.
The developed scheme in this paper can be a basis for the
construction of an unconditionally stable numerical
scheme for complicated models.
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