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Abstract: Many of the important characteristics and features of a distribution are obtained through the ordinary moments and

generating function. The main goal of this paper is to address a new approach to compute, without using multiple integrals and

derivatives, E
[

(X a+b)r

(X c+d)s

]

for a nonnegative random variable, where a,b,c,d are any real number. The proposed approach is discussed in

detail and illustrated through a few examples.
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1 Introduction

Many of the important characteristics and features of a
probability distribution are obtained through the ordinary
moments and generating function. The
moment-generating function with a random variable X is
defined as MX (t) := E[et X ], see Feller [6] and Grimmett
and Welsh [7]. The moment-generating function can be
used to compute a distribution’s moments. The nth
moment about 0 is the nth derivative of the
moment-generating function, evaluated at 0, i.e.,

E[Xn] =
dϕX(t)

d tn

∣

∣

∣

∣

t=0

.

However, MX (t) is usually difficult to evaluate and
may not exist a closed-form expression for some
probability distributions, for instance the Hypergeometric
distribution. In this context, Michael et al [1] have used
the probability-generating function to find the negative
integer moments of X + A > 0, where X is a random
variable and A is a constant. Cressie and Borkent [5]
worked on obtaining all ordinary moments from the
moment-generating function, and links between factorial
moment-generating functions and all factorial moments.
If X is integer valued, Chakraborti et al [2] obtained an
alternative expression for E[Xn]. Michael et al [1]
performed a generalized method of generating the

moments of random variables. They presented examples
are only in continuous probability distribution.

Let X be a random variable defined on a probability
space (Ω ,F ,P). Let a,b,c,d be any real numbers and let

ϕ
a,b;c,d
X (t,u) be generalized moment-generating function

of X defined as

ϕ
a,b;c,d
X (t,u) = E

[

et(Xa+b)+u(Xc+d)
]

. (1)

Using the results of Chao and Strawderman [3] and Cressie
et al [4], we have that

E

[

(Xa +b)r

(Xc +d)s

]

=

∫ 0

−∞

∫ u1

−∞
· · ·

∫ us−1

−∞

drϕ
a,b;c,d
X (t,u)

dtr

∣

∣

∣

∣

t=0

du · · ·du2du1.

Which not have closed-form expressions for mgf of
Xa, a ∈R. In this context, the main goal of this paper is to

address a new approach to compute E

[

(Xa+b)r

(Xc+d)s

]

without

using multiple integrals and derivatives, see Jones [8].
Furthermore, we extend the generalization proposed by
Michael et al [1] in order to add inverse moments of
random variables.

The rest of the paper is organized as follows. In Section
2, we introduce a generalized method of generating the
moments of continuous random variables. In Section 3, the
same method is introduced for discrete random variables.
Finally, some concluding remarks are made in Section 4.
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2 Continuous probability distribution

Theorem 1.Let X be a continuous random variable with

probability density function (pdf) fX (x) on a probability

space (Ω ,F ,P). Let a,b,c,d be any real number, then

ϕr,s(a,b;c,d) = E

[

(Xa + b)r

(X c + d)s

]

=
r

∑
i=0

(

r

i

)

br−i

∫ ∞

−∞

xai

(xc + d)s
fX (x)dx.

Proof. Using the binomial series we have

(a+ b)n =
r

∑
i=0

(

n

i

)

aibn−i.

Then

ϕr,s(a,b;c,d) = E

[

r

∑
i=0

(

r

i

)

Xaibr−i

(X c + d)s

]

=
r

∑
i=0

(

r

i

)

br−i

∫ ∞

−∞

xai

(xc + d)s
fX (x)dx.

Corollary 1.Consider c,d ∈ R. The variance of the

random variable X can be written by

Var(X) = ϕ2,0(1,−E(X);c,d).

The skewness of X is given by

A(X) =
ϕ3,0(1,−E(X);c,d)

[ϕ2,0(1,−E(X);c,d)]3/2
.

The kurtosis of X is

K(X) =
ϕ4,0(1,−E(X);c,d)

[ϕ2,0(1,−E(X);c,d)]2
.

Proof. The kth central moment of X is

ϕk,0(1,−E(X);c,d) = E

[

(X −E(X))k

(X c + d)0

]

= E

[

(X −E(X))k
]

.

Therefore

Var(X) = ϕ2,0(1,−E(X);c,d).

The skewness and kurtosis are obtained similarly.

2.1 Gamma probability distribution

A random variable X is said to have a gamma
distribution with parameters α > 0 and β > 0, if its
density function is given by

fX (x) =
β α

Γ (α)
xα−1e−β x x > 0.

Then,

ϕr,s(a,b;c,d) =

∫ ∞

0

r

∑
i=0

(

r

i

)

xaibr−i

(xc + d)s

β α

Γ (α)
xα−1e−β xdx

=
β α

Γ (α)

r

∑
i=0

(

r

i

)

br−i

∫ ∞

0

xα+ai−1e−β x

(xc + d)s
dx.

For any c,d ∈ R, s = 0 and r = a = 1, we have that

ϕ1,0(1,b;c,d) = E(X +b)

=
β α

Γ (α)

[

b

∫ ∞

0
xα−1e−βxdx+

1

β

∫ ∞

0
xα e−βxdx

]

=
β α

Γ (α)

[

b
Γ (α)

β α
+

Γ (α +1)

β α+1

]

= b+
α

β
.

Now, for any a,b ∈ R, r = d = 0 and s = c = 1, we have
that

ϕ0,1(a,b;1,0) = E

(

1

X

)

=
β α

Γ (α)

∫ ∞

0
xα−2e−β xdx

=
β

α − 1
, α > 1.

where X−1 is an inverse gamma distribution with shape
parameters α > 0 and β > 0.

2.2 Beta probability distribution

A random variable X follows a beta distribution with
shape parameters α > 0 and β > 0, if its pdf is given by

fX (x) =
xα−1(1− x)β−1

B(α,β )
, 0 < x < 1,

where B(α,β ) = Γ (α)Γ (β )
Γ (α+β ) is the beta function. Therefore,

ϕr,s(a,b;c,d) =
∫ 1

0

r

∑
i=0

(

r

i

)

xaibr−i

(xc +d)s
·

xα−1(1−x)β−1

B(α,β )
dx

=
1

B(α,β )

r

∑
i=0

(

r

i

)

br−i
∫ 1

0

xα+ai−1(1−x)β−1

(xc +d)s
dx.

For any c,d ∈ R, we have that

ϕ1,0(1,b;c,d) = E(X +b) =
1

B(α,β )
[bB(α,β )+B(α +1,β )]

= b+
B(α +1,β )

B(α,β )
= b+

α

α +β
.

The first inverse moment of X is obtained by

ϕ0,1(a,b;1,0) = E(X−1)

=
1

B(α,β )
[B(α − 1,β )]

=
B(α + 1,β )

B(α,β )

=
α +β − 1

α − 1
, α > 1.
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2.3 F-distribution

A random variable X follows a F-distribution with
degrees of freedom n > 0 and m > 0, if its pdf is given by

fX (x) =
nn/2mm/2xn/2−1

B
(

n
2
, m

2

)

(m+ nx)(n+m)/2
, x > 0.

Thus,

ϕr,s(a,b;c,d)

=
∫ ∞

0

r

∑
i=0

(

r

i

)

xaibr−i

(xc +d)s
·

nn/2mm/2xn/2−1

B
(

n
2 ,

m
2

)

(m+nx)(n+m)/2
dx

=
nn/2mm/2

B
(

n
2 ,

m
2

)

r

∑
i=0

(

r

i

)

∫ ∞

0

br−ixai+n/2−1

(xc +d)s(m+nx)(m+n)/2
dx.

The second inverse moment of X is given by

ϕ0,1(a,b;2,0) = E(X−2) =
nn/2mm/2

B
(

n
2 ,

m
2

)

∫ ∞

0

xn/2−3

(m+nx)(n+m)/2
dx

=

(

n
m

)2
Γ ( n

2 −2)Γ (m
2 +2)

Γ ( n
2 )Γ (m

2 )

=
n2(m+2)

m(n−2)(n−4)
, n > 4.

3 Discrete probability distribution

Let X be a random variable with integer values. It is
not possible to solve

ϕr,s(a,b;c,d) = ∑
x∈X

r

∑
i=0

(

r

i

)

br−i xai

(xc + d)s
P(X = x).

where X is the set of values of X . We extend the result
of Michael et al. (2017) and apply to the random variables
with integer values. The kth moment of X is

E(Xk) =
k

∑
l=0

1

l!

l

∑
m=0

(−1)m

(

l

m

)

(l −m)k
E

[

X!

(X − l)!

]

, k ∈ N. (2)

Theorem 2.Let X be a random variable on a probability
space (Ω ,F ,P). Let a, r ∈ N and b ∈ R, then

φr(a,b) = E [(Xa +b)r]

=
r

∑
i=0

(

r

i

)

br−i
ai

∑
l=0

1

l!

l

∑
m=0

(−1)l

(

l

m

)

(l −m)ai
E

[

X!

(X − l)!

]

.

Proof. Using only the the Binomial series the proof
follows as in Theorem 1.

3.1 Binomial probability distribution

A random variable X is said to be a Binomial random
variable with parameters n ∈ N and p ∈ (0,1) if the
probability function is

P(X = x) =

(

n

x

)

px(1− p)n−x I (x)
{0,··· ,n}

, n ∈ N, 0 ≤ p ≤ 1.

The lth factorial moment of X is

E

[

X!

(X − l)!

]

=
n!pl

(n− l)!
.

Thus, using the theorem 2

φr(a,b) =
r

∑
i=0

(

r

i

)

br−i
ai

∑
l=0

(

n

l

)

pl
l

∑
m=0

(−1)l

(

l

m

)

(l −m)ai.

The first moment of X considers r = a = 1, then

φ1(1,b) = E(X + b)

=
1

∑
i=0

(

1

i

)

b1−i
i

∑
l=0

(

n

l

)

pl
l

∑
m=0

(−1)l

(

l

m

)

(l −m)i

= b
0

∑
l=0

(

n

l

)

pl
l

∑
m=0

(−1)l

(

l

m

)

(l −m)0

+
1

∑
l=0

(

n

l

)

pl
l

∑
m=0

(−1)l

(

l

m

)

(l −m)

= b+ np.

Taking b = 0 we have

φ1(1,0) = E(X) = np.

3.2 Poisson probability distribution

Let X be a Poisson random variable with parameter
λ > 0 and with probability function given by

P(X = x) =
λ xe−λ

x!
I (x)

{0, 1,...}

, λ > 0.

The lth factorial moment of X is

E

[

X!

(X − l)!

]

= λ l .

Therefore

φr(a,b) =
r

∑
i=0

(

r

i

)

br−i
ai

∑
l=0

λ l

l!

l

∑
m=0

(−1)l

(

l

m

)

(l −m)ai.

The first moment of X + b is obtained when r = a = 1

φ1(1,b) = E(X + b)

=
1

∑
i=0

(

1

i

)

b1−i
i

∑
l=0

λ l

l!

l

∑
m=0

(−1)l

(

l

m

)

(l −m)i

= b+λ .
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4 Concluding remarks

In this paper, we have developed a new generalized
moment-generating function of random variables. The
main contributions of the present paper are: (i) we extend
the generalization proposed by Michael et al [1] in order
to add inverse moments of random variables, and (ii) we
compute E [(Xa + b)r /(X c + d)s] without using multiples
integrals and derivatives. The approach are discussed in
detail and illustrated through a few examples. We hope
this generalization may attract applications in statistics.
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