
Applied Mathematics & Information Sciences 2(2) (2008), 225–235
– An International Journal
c©2008 Dixie W Publishing Corporation, U. S. A.

Parallel Solution of Linear System of Equations on Transputer Array

S. H. Abbas

Department of Mathematics, College of Science, University of Bahrain

Sakhier, P. O. Box 32038, Bahrain

Email Address: dr salman121@hotmail.com

Received November 27, 2007; Revised January 30, 2008; Accepted February 22, 2008

This paper describes the implementation in Occam of linear system of equations solver
on a network of transputer. Using Gaussian elimination with partial pivoting, we
present a general solution. The experimental and the theoretical timings are given.
Analysis of the optimum number calculations of processors also is presented.
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1 Introduction

The numerical methods for parallel solution of linear system of equations are well es-
tablished techniques in literature. In the last two decades many papers have appeared on
this topic, see, for example [1]–[22] and references therein.

Let us consider the linear system of equations

Ax = b, (1.1)

where A is a real square dense matrix of size n× n, x and b are vectors of size n× 1. The
reader is assumed to be familiar with the Gaussian Elimination algorithm. Details of the
sequential algorithm can be found in Abbas [1]. The elimination procedure has been split
into two distinct sections:

(i) Reduction of the matrix to upper triangular form.
(ii) Forward elimination and backward substitution of the right hand side vector.

The cost of the sequential matrix reduction algorithm is of order n3 and it offers good
scope for parallelism.

A sequential implementation of the second part has a cost of order n2. For applications
where this is performed once each time the matrix reduction is performed, the additional
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cost involved will be small for large n, that is in situations where it will be performed
many times for each matrix reduction, e.g. for iterative inverse power methods. The total
cost of the repeated evaluation of solution vectors will become significant compared with
the initial cost of matrix reduction. Hence the second part should also perform the forward
substitution and backward elimination of the vector in parallel to keep its overall cost down.

A routine to perform Gaussian Elimination based upon a distribution of columns to
transputers is already available [1]. For comparison purposes this implementation dis-
tributes rows to transputers.

2 Network Topology

The routine executes on a ring of p slave processors. This simple topology was chosen
in preference to a mesh topology because it simplifies the communications required. A
ring instead of a chain is used so that communication during the algorithm can all be in one
direction and thus communication conflicts are avoided. The slaves are numbered from 0
on the right up to (p− l) on the left. The leftmost slave is linked to a master processor and
has a return link to slave 0.

3 Algorithm Description

When the routine is called the master processor first sends out the rows of the matrix
such that slave i receives rows i, i + p, i + 2p, etc. This method of distribution helps to
keep an even workload between the slaves throughout execution. To make this operation
as efficient as possible whilst one row is being output to the right by a slave, it will also be
receiving the next row from the left. In this way the total time for a row to be output and
the next row to be input is only slightly greater than that required simply to output the row.
All the rows for slave 0 are sent first, so that whilst rows are being sent to higher numbered
slaves, those with lower numbers can begin their calculations.

Each slave executes the same main program−a loop for each column, k, of the matrix,
within which the pivot element for that column is chosen and pivoting performed.

For each loop iteration, the slave which will be first to start is assumed to be that to the
left of the slave which on the last iteration owned the pivot row. In general, assuming that
a row swap was required and that there is an even distribution of the workload, this will be
valid. However, if a row swap was not made in the previous iteration then the slave, which
owns the last pivot row, should be the first to start the next iteration.

Within each loop, the best pivot element must be chosen by communication between
the slaves, and then the rows of the matrix held by each slave updated using the chosen
pivot row.
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Choosing the best pivot element is divided into two parts. Firstly, a slave will choose
its element with largest magnitude in column k as a pivot. This is compared with the best
suggestion of previous slaves, input from the right, if there are such slaves, and the best of
these is output left as a new suggested pivot. The last slave hence outputs the best pivot
of column k which is then passed left round the ring to all slaves. The pivot row numbers
chosen at each step are recorded by each slave for subsequent use in the formation of the
result vector.

Secondly, the owner of the best pivot row outputs the slice of that row from element
k upwards. Each slave inputs the row and passes it on if necessary. Also if a row swap
is required because the best pivot row was not the kth row, then the kth row owner will
output the kth row to the left before inputting the pivot row. By physically exchanging
rows between slaves the overall workload balance is maintained.

The pivoting then proceeds with each slave updating those rows it holds from element
k + l onwards, and storing the calculated factors in the kth column for later use:

Calculate factor: aik = aik/akk for all i > k,

Perform pivoting: aij = aij − (aik × akj) for all i > k, j > k.

When this is complete each slave in the network has a subset of rows of the reduced
matrix and a vector of the pivot rows chosen at each pivoting step.

3.1 Calculation of Result Vector

At the start of the second part the right hand side (rhs) vector, b, is passed out to the
network. As for the first routine, the initial distribution of vector elements is such that slave
i receives elements i, i + p, i + 2p, etc. This distribution ensures that all data required to
perform pivoting on a slave’s rhs elements (with the exception of the pivot element for each
step) is already available on that slave.

The calculation of the solution vector for the simultaneous linear equations is split into
two sections:

(i) Pivoting as for the matrix reduction, followed by

(ii) Backward substitution to yield the result vector x.

The first section is performed in a manner very similar to that employed for the matrix
reduction. For each column k of the matrix, the kth row owner broadcasts the kth element
of b to all the slaves. If the pivot row chosen in the matrix reduction was not also the
kth row then the corresponding elements of the right hand side vector, b, are exchanged.
This may require communication between slaves to accomplish. The slaves then perform
pivoting on their rhs elements, utilizing the factors, aik, calculated in the matrix reduction
routine

bi := bi − (aik × bk) for all i > k.
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multiply two REAL32 elements of a vector one million times. The other arithmetic opera-
tions (+,−, /) give slightly different timings, so a better measure for arithmetic cost might
be the cost of the entire central arithmetic operation, e.g.

a[i][j] := a[i][j]− (a[i][k]× a([k][j]).

However, this measure would not be generally applicable to theoretical cost expressions
for other algorithms, which did not include this arithmetic operation.

The time taken to pass a vector of 1000 elements down a hardware link 1000 times was
measured in deriving a value for tc.

It was found that the values of tf and tc depend not only upon the type of transputer
in use (T4, T8) and the link speed settings, but also varied between similar systems of
T4 transputers. For consistency, all parallel algorithm timings were therefore made on the
RSRE Protonode, for which these values were measured as

tf = 17.6 microsecs and tc = 8.4 microsecs and hence the ratio, tf/tc = 2.1.

The properties of the parallel algorithm that we are interested in are the speedup Sp and
the efficiency eff. The speedup of a parallel algorithm is defined as, cost of sequential
algorithm / cost of parallel algorithm.

From this the efficiency is derived

eff = Sp/p.

4 Matrix Reduction

4.1 Cost of parallel algorithm

For a matrix of size n the cost of performing the arithmetic operations in the central
pivoting loop is given by

tf
6

(
4n3 − 3n2 − n

)
. (4.1)

Assuming that the arithmetic is well balanced between processors the total time taken by
processor to update its rows is

tf
6p

(
4n3 − 3n2 − n

)
. (4.2)

The time taken for the last slave to receive its rows during initialization is: n2tc. since each
communication involves the transfer of n items. The time spent during the algorithm to
evaluate pivot elements, distribute pivot rows and perform row swaps is

tc

[
2p(n− 1) + (p− 1)(

n2 + n

2
)
]

, (4.3)
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of which 2p(n − 1)tc is the total cost of choosing the best pivot elements, and (p −
1)[(n2 + n)/2]tc is the total cost of broadcasting the pivot rows. Total communication
time is hence given by

tc
2

[
5pn + n2p− n− 4p

]
. (4.4)

So, the total algorithm cost for a matrix of size n and p slaves is

Cred =
tf
6p

(
4n3 − 3n2 − n

)
+

tc
2

(
5pn + n2p− n− 4p

)
. (4.5)

4.2 Optimum number of processors

The optimum number of slaves Pred to give the minimum algorithmic cost Cmin is
found when

dCred/dp = 0, (4.6)

i.e.
tf

6P 2
red

(4n3 − 3n2/2− n) =
tc
2

(n2 + 5n− 4), (4.7)

P 2
red =

tf
3tc

(
4n3 − 3n2 − n

n2 + 5n− 4

)
. (4.8)

So for large n(n >> 1) we get

Pred =
1
3

√
4n(tf/tc). (4.9)

5 Calculation of Result Vector

5.1 Cost of sequential algorithm

The number of arithmetic operations for the forwards elimination is n(n − l). The
number of arithmetic operations in the back substitution is n2. Hence the total cost to
calculate result vector is n2 given by n(2n− 1)tf .

5.2 Cost of parallel algorithm

Cost of the initial distribution of the right hand side vector n (2p− l)tc/p. The cost for
the forward elimination of the vector has two components:

1. Cost of passing round the pivot elements and swapping: (n− 1)ptc.

2. Total cost in performing the pivoting n(n− l)tf/p.

The cost of the back substitution is also of two parts:

1. Initial calculation of last element: tf + tc.
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2. Cost of loop to evaluate remaining elements

(n− l)ntf/p + (n− 1)(2tf + tc). (5.1)

Returning the result vector to the master costs: n(2p − l)tc/p. Hence the total cost
for the parallel result vector calculation is

Crhs = 2n(ntf − tf − tc)/p + n(5tc + 2tf )− tf + ptc(n− l). (5.2)

5.3 Optimum number of transputers

The optimum number of slaves Prhs to give the minimum algorithmic cost Cmin is
found when

dCrhs/dp = 0, (5.3)

i. e.
−2n(ntf − tf − tc)/P 2

rhs = tc(n− l).

So,
Prhs =

√
2ntf/tc− 2n/(n− l). (5.4)

For large n(n >> 1), n > tf/tc we get

Prhs =
√

2ntf
tc

. (5.5)

6 Experimental Timings

Tests were made on networks between 2 and 16 slaves for matrix sizes from 16 to 256.
The test matrices used were initialized by filling with pseudo-random REAL32 values. Two
separate times were recorded: one for the reduction of the matrix to upper triangular form,
and also other for calculating the result vector.

A sequential implementation of the algorithm was written and the costs of the matrix
reduction and result vector calculation measured for various matrix sizes. Using these
results both the experimental and theoretical speedup and efficiency of the two parts of the
parallel algorithm were calculated (see Tables 7.1, 7.2 and 7.3).

7 Comparisons with Other Implementations

As an indication of the performance of the algorithm and of the suitability of transputer
networks for parallel computation, the results are compared with other implementations on
various systems. The time used for the algorithm is the combined time for the matrix re-
duction and the calculation of the result vector. A similar algorithm has been implemented
in [12].
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George on an Intel Hypercube [12], was based upon distribution of rows and uses a
spanning tree structure for communications between processors. The speedups and effi-
ciencies for large matrices using small numbers of processors showed reasonable agree-
ment but for problems where communication time is significant, i.e. for larger networks
and/or smaller matrices, the transputer- based algorithm gave better results. The timings
were 2.5 to 3 times slower than the transputer results, in agreement with the performance
figures for the Hypercube which are about 2.5 times slower than those for a T4 transputer.

Table 7.1: Hypercube and Transputer timings

n p time(Secs) speedup efficiency
Hypercube 200 16 28.4 7.2 0.45
Transputer 2000 16 10.6 10.0 0.63

An implementation in Ada running on a Sequent Balance has been written by Abbas
[1]. Across the range of problem sizes, this was tested with the transputer implementation
and had efficiency values about 10% better. Note also that the timings are all about 10
times slower than for the transputer implementation due to the lower performance of the
Sequent Balance

Table 7.2: Sequent Balance and Transputer timings

n p time(Secs) speedup efficiency
Sequent 100 6∗ 36.1 4.1 0.69

Transputer 100 6 2.9 4.7 0.79

Sequent result was obtained from a configuration of 6 processors, running 13 separate
Ada tasks.

Table 7.3: Transputer timings

n p time(Secs) speedup efficiency
Abbas 256 16 25.1 8.9 0.55

Transputer 256 16 20.2 11 0.69

A comparison with the implementation by Abbas [1] on a transputer network using a
column distribution to processors proved interesting. It was expected that results would
be roughly comparable as both implementations use similar topologies. However, final
results show that across the range of matrix sizes and numbers of transputers tested this
implementation was consistently better than that due to Abbas [1].
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Table 7.4: Matrix Reduction timings

Size of the matrix Matrix Reduction Calculation of result vector
16 0.06 0.01
32 0.45 0.04
64 3.51 0.17
128 27.69 0.69
256 220.03 2.78

Table 7.5: Theoretical and Experimental Efficiencies I

Size of matrix N. Processors Theor. efficiency time (secs) Exp. speedup Efficiency

16 2 0.05 0.57 0.57 0.89
4 0.04 0.36 0.36 0.67
8 0.04 0.18 0.18 0.34

16 0.05 0.07 0.07 0.11
32 2 0.27 0.83 0.83 0.95

4 0.18 0.62 0.62 0.83
8 0.15 0.37 0.37 0.54

16 0.17 0.17 0.17 0.23
64 2 1.91 0.92 0.92 0.98

4 1.09 0.81 0.81 0.91
8 0.75 0.59 0.59 0.72

16 0.70 0.31 0.31 0.39
128 2 14.28 0.97 0.97 0.99

4 7.53 0.92 0.92 0.96
8 4.50 0.77 0.77 0.84

16 3.42 0.51 0.51 0.57
256 2 110.53 1.00 1.00 0.99

4 56.12 0.98 0.98 0.98
8 30.84 0.89 0.89

16 19.86 0.69 0.69 0.73

8 Conclusions

The theoretical model for the matrix reduction predicts the efficiency well for larger
matrices. For smaller matrices the model is not so good, due to some extent to the uneven
distribution of working rows for much of the algorithm.

The efficiency of the calculation of the result vector is much less than that predicted
suggesting that the model does not take account of some algorithmic costs. A contributing
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Table 7.6: Theoretical and Experimental Efficiencies II

Size of matrix N. Processors Theor. efficiency time (secs) Exp. speedup Efficiency

16 2 0.009 1.18 0.59 0.79
4 0.007 1.51 0.38 0.58
8 0.007 1.51 0.19 0.34

16 0.009 1.18 0.07 0.15
32 2 0.032 1.35 0.67 0.88

4 0.021 2.06 0.67 0.88
8 0.017 2.54 0.32 0.50

16 0.018 2.40 0.15 0.25
64 2 0.118 1.47 0.74 0.94

4 0.067 2.9 0.65 0.85
8 0.46 3.77 0.47 0.67

16 0.041 4.23 0.26 0.40
128 2 0.455 1.53 0.76 0.97

4 0.239 2.91 0.72 0.92
8 0.142 4.89 0.61 0.80

16 0.105 6.62 0.41 0.57
256 2 1.786 1.56 0.78 0.98

4 0.903 3.08 0.77 0.96
8 0.492 5.65 0.71 0.86

16 0.316 8.79 0.55 0.73

factor is the domination of communication in this section of the algorithm, which is difficult
to model accurately, see Table 7.4.

It was difficult to account in a model for the idle time while processes synchronies for
link communication. So instead of trying to find an expression for the total processing time
for an individual transputer, which will involve estimating idle time, the model developed
predicts the global cost of performing sub-sections of the algorithm. For example the time
taken for the initial distribution of rows to the slaves in the network. But this method
introduces the problem of deciding upon the most suitable start and end point of these sub-
sections: for the initial row distribution, is the end marked when the last transputer receives
its final row and hence when all the slaves have completed that section of code? Or when
the first slave has received all its rows and begins finding the pivot estimate whilst the other
slaves still await their rows, or indeed some other mid-way point?

In spite of these difficulties, the dominant matrix reduction is predicted well, especially
for larger matrices allowing predictions to be made confidently on the performance of the
algorithm on very large networks and large problems. Before the model can be used to
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predict the costs for a network of T8 transputers, the values of tf and tc will be required.
The algorithm exhibits good performance with the efficiency falling only to about 0.7

for a matrix of size 256 on a network of 16 transputers. This is encouraging in that even
for large numbers of transputers, where communication has a high cost; the algorithm
performance does not fall too sharply.

As the number of transputers in the network is increased the speedup for a given matrix
size increases to a maximum and then decreases. The number of transputers required to
achieve the optimum speedup for the two sections of the algorithm are given by expressions
(4.9) and (5.5). These expressions are not the same, but as the matrix reduction has the more
dominant cost, the number of transputers used for a given problem size should follow the
expression for that section 1. This is clear from Tables 7.5 and 7.6.

The optimum number of transputers for a problem is quite small, thereby restricting
the maximum speedup achievable. This is due to the high cost of communication in the
algorithm. Better performance may be attained with algorithms based around different net-
work topologies like a mesh. Having a higher connectivity in the network should decrease
communication costs by allowing more parallel communication and shorter path lengths
and hence increase the optimum number of transputers for the problem.

Due to the different processing speeds of the transputer used for the sequential algo-
rithm and the networked transputers in the RSRE Protonode used for the parallel algorithm,
these times have been adjusted to give those timings which would result from running the
sequential algorithm on one of the networked transputers.
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