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1 Introduction

Generalized order statistics (Gos) is very important in life-testing and reliability expreriments, because it represents well-
known models in statistics, such as ordinary order statistics and kthrecord values.

Let F denote a continuous distribution function with density function f . The random variables
X(i,n, m̃,k); i = 1,2, ...,n are called Gos based on F , if their joint density function is given by

f X(1,n,m̃,k),...,X(n,n,m̃,k)(x1, ...,xn) = k

(
n−1

∏
j=1

γ j

)(
n−1

∏
j=1

[1−F(xi)]
mi f (xi)

)
[1−F(xn)]

k−1
f (xn), (1)

on the cone F−1(0)< x1 ≤ ...≤ xn < F−1(1−) of Rn, with parameters, n∈N, n≥ 2,k > 0, m̃=(m1,m2, ...,mn−1)∈R
n−1,

Mr =
n−1

∑
j=r

m j such that γr = k+ n− r+Mr > 0 for all r ∈ {1,2, ...,n− 1}. Moreover,

Cr−1 =
n−1

∏
j=1

γ j,r = 1,2, ...,n− 1,γr − γr+1 − 1 = mr. (2)

The following two cases are considered:
For m1 = m2 = ...= mn−1 = m.

The marginal pdf of the r-th gos X(r,n,m,k) is given by

Cr−1

Γ (r)
[1−F(x)]γr−1

f (x)gr−1
m [F(x)] , (3)

where

gm (x) =

{
− ln(1− x), m =−1
1−(1−x)m+1

m+1
, m 6=−1,

(4)

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), 1≤ r ≤ s ≤ n is

Cs−1

Γ (r)Γ (s− r)
[1−F(x)]γr−1

f (x)gr−1
m [F(x)] [hm(F(y))− hm(F(x))]

s−r−1 [1−F(y)]γs−1
f (y), (5)
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where Cr−1 is defined in (2) and γ j = k+(m+ 1)(n− j).
For γi 6= γ j, i, j = 1,2, ...,n− 1.
The marginal pdf of the r-th gos X(r,n,m,k) is given by

Cr−1 f (x)
r

∑
i=1

ai(r) [1−F(x)]γi−1
, (6)

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), 1 ≤ r ≤ s ≤ n is

Cs−1

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

][
r

∑
i=r+1

ai(r)(1−F(x))
γi

]
f (x)

1−F(x)

f (y)

1−F(y)
,−∞ < x < y < ∞. (7)

where

a
(r)
i (s) =

s

∏
j=r+1, j 6=i

1

γ j − γi

,r+ 1 ≤ i ≤ s ≤ n,ai(r) =
r

∏
j=1, j 6=i

1

γ j − γi

,1 < i < r, and ai(s) = a
(o)
i (s). (8)

Recuurence relations are very useful in obtaining moments, moment generating function and characterizting
distributions. Recurrence relations for Gos have been discussed by several authors, see [1,2,3,4,5,6] and [7].

[8] represented the modified Weibull distribution (MWD) as a generalization of the linear failure rate distribution
(LFRD). The pdf and the cdf of the MWD(λ ,β ,γ) are respectively given, by

f (x) =
(
λ +β γxγ−1

)
exp(−λ x−β xγ) , λ ,β ≥ 0, γ > 0,x > 0, (9)

and

F (x) = 1− exp(−λ x−β xγ) , (10)

the characterizing differential equation is also given by

f (x) =
(
λ +β γxγ−1

)
[1−F (x)] , (11)

where λ is a scale parameter, while β and γ are the shape parameters. Eq. (9) involves the following:

(i)If λ = 0, β = c and γ = a , then MWD reduces to Weibull(c,a).See [9].
(ii)If λ = 0, β = θ and γ = 1 , then MWD reduces to Exponential(θ ).See [10].
(iii)If λ = 0 , β = θ and γ = 2 , then MWD reduces to Rayleigh(θ ). See [11].

(iv)If α = λ ,γ = 2 and β = θ
2

, then MWD reduces to LFRD(λ ,θ ) . See [12].
To identify various views on recurrence relations of Gos for different distributions, see [13,14,15,16,17] and [18].

Sections Two and Three present new recurrence relations for MDW. Section Four involves characterizations of MWD.

2 Recurrence Relations for the Single Moments

In this section, we obtain recurrence relations for single moment of Gos from MWD with pdf and cdf given by Eq. (9)
and Eq. (10), respectively.
For m1 = m2 = ...= mn−1 = m.

The single moment of Gos is written as follows:

µ
(i)

(r,n,m,k) = E
(

X
(i)
(r,n,m,k)

)

=
Cr−1

Γ (r)

∞∫

0

xi [1−F(x)]γr−1
f (x)gr−1

m [F(x)]dx,
(12)

where Cr−1 and gm(x) are defined in Eq. (2) and Eq. (4). The single moment of Gos given in Eq. (12) satisfies the
following:

Relation 1. For n ≥ 1 and 1 ≤ r ≤ n− 1, the following recurrence relation between the single moments of the Gos
from MWD holds

µ
( j)

(r,n,m,k) =
j

γr

E

(
X j−1

λ +β γX γ−1

)
+ µ

( j)

(r−1,n,m,k). (13)
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Proof. Beginning with Eq. (12), we write

µ
( j)

(r,n,m,k) =
Cr−1

Γ (r)

∫ ∞

0
xi [1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx, (14)

where Cr−1 is defined in Eq. (2) and using Eq.(11) we get,

µ
( j)

(r,n,m,k) =
Cr−1

Γ (r)

∫ ∞

0
x j exp{−γr(λ x+β xγ)}]

[
λ +β γxγ−1

]

×

[
1

m+ 1
(1− [exp{−(λ x+β xγ)}]m+1)

]r−1

dx.

(15)

Integrating by parts, we have

µ
( j)

(r,n,m,k) =
jCr−1

γrΓ (r)

∫ ∞

0
x j−1

[
1

m+ 1
(1− [exp{−(λ x+β xγ)}]m+1)

]r−1

× exp{−(λ x+β xγ)}γr−1 f (x)

λ +β γxγ−1
dx

+
(r− 1)Cr−1

γrΓ (r)

∫ ∞

0
x j

[
1

m+ 1
(1− [exp{−(λ x+β xγ)}]m+1)

]r−2

× exp{−(γr + 1)(λ x+β xγ)}
[
λ +β γxγ−1

]
[exp{−(λ x+β xγ)}]m dx.

(16)

After some simplifications, we obtain Eq. (13).�
For γi 6= γ j, i, j = 1,2, ...,n− 1.

The single moment of Gos can be written as

µ
(i)

(r,n,m̃,k) = E

(
X
(t)
(r,n,m̃,k)

)

=Cr−1

r

∑
i=1

ai(r)
∫ ∞

0
xt [1−F(x)]γi−1

f (x)dx,
(17)

where Cr−1 and ai(r) are defined in Eq. (2) and Eq. (8).
Relation 2. For n ≥ 1 and 1 ≤ r ≤ n− 1, the following recurrence relation between the single moments of the Gos

from MWD holds

µ
(t)

(r,n,m̃,k) = γr

[
λ

t + 1

{
µ

(t+1)

(r,n,m̃,k)− µ
(t+1)

(r−1,n,m̃,k)

}

+
β γ

t + γ

{
µ

(t+γ)

(r,n,m̃,k)− µ
(t+γ)

(r−1,n,m̃,k)

}]
.

(18)

Proof. Using Eq. (17) and Eq. (11), we have

µ
(i)

(r,n,m̃,k) =Cr−1

r

∑
i=1

ai(r)
∫ ∞

0
xt [1−F(x)]γi−1

[
λ +β γxγ−1

]
[1−F(x)]dx,

= I + II,

(19)

where

I = λCr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt [1−F(x)]γi dx, (20)

and

II = β γCr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt+γ−1 [1−F(x)]γi dx, (21)
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integrating by parts Eq. (20) and Eq. (21), we get

I =
λCr−1

t + 1

r

∑
i=1

γiai(r)
∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx, (22)

using
ai(r− 1) = (γr − γi)ai(r) and γrCr−2 =Cr−1, (23)

we rewrite

I =
λ γr

t + 1
Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx

−
λ γr

t + 1
Cr−2

r−1

∑
i=1

ai(r− 1)
∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx,

(24)

so,

I =
λ γr

t + 1

[{
µ

(t+1)

(r,n,m̃,k)− µ
(t+1)

(r−1,n,m̃,k)

}]
. (25)

Also,using the same manner, we obtain

II =
β γγr

t + γ

[{
µ

(t+γ)

(r,n,m̃,k)− µ
(t+γ)

(r−1,n,m̃,k)

}]
. (26)

Substituting Eq. (25) and Eq. (26)) into Eq. (19), Eq. (18) is obtained. �

3 Recurrence Relations for the Product Moments

This section is devoted obtaining the results for product moments of Gos from MWD considering two cases:

Case I: m1 = m2 = ...= mn−1 = m

The product moment of Gos is written as

µ
(i, j)

(r,s:n,m,k) = E
(

X
(i)
(r,n,m,k)

Y
( j)
(s,n,m,k)

)

=
Cs−1

Γ (r)Γ (s− r)

∫ ∞

0

∫ ∞

x
xiy j [1−F(x)]m f (x)gr−1

m [F(x)]

× [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1
f (y)dydx,

(27)

where Cr−1 and gm (x) are defined in Eq.(2) and Eq.(4).
Relation 3. For n ≥ 1, the following recurrence relation between the product moments of Gos from the MWD holds.

µ
(i, j)

(r,r+1:n,m,k) = E(X i+ j)+
j

γr+1

E

(
X i Y j−1

λ +β γY γ−1

)
if s = r+ 1, (28)

and

µ
(i, j)

(r,s:n,m,k) =
j

γs

E(
X iY j−1

λ +β γY γ−1
)+ µ

(i, j)

(r,s−1:n,m,k) if s > r+ 1, (29)

Proof. For s = r+ 1 and using Eq. (27),we have

µ
(i, j)

(r,r+1:n,m,k) = E

(
X
(i)
(r,n,m,k)Y

( j)
(r+1,n,m,k)

)

=
Cr

Γ (r)

∫ ∞

0

∫ ∞

x
xi
[
λ +β γxγ−1

]
[exp{−(m+ 1)(λ x+β xγ)}]

×

[
1

m+ 1

(
1− [exp{−(λ x+β xγ)}]m+1

)]r−1

I(y)dx,

(30)
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where

I(y) =
∫ ∞

x
y j
[
λ +β γyγ−1

]
exp [−γr+1 (λ y+β yγ)]dy. (31)

Integrating by parts I(y), we obtain

I(y) =
x j

γr+1

exp [−γr+1 (λ x+β xγ)]+
j

γr+1

∫ ∞

x
y j exp [−γr+1 (λ y+β yγ)]dy. (32)

Simplifying and substituting Eq.(32) into Eq. (30), we obtain Eq. (28).
When s > r+ 1 and using Eq. (29),we have

µ
(i, j)

(r,s:n,m,k) = E
(

X
(i)
(r,n,m,k)

Y
( j)
(s,n,m,k)

)

=
Cs−1

Γ (r)Γ (s− r)

∫ ∞

0

∞∫

x

xiy j
[
λ +β γxγ−1

]
[exp{−γr (λ x+β xγ)}]

×

[
1

m+ 1

(
1− [exp{−(λ x+β xγ)}]m+1

)]r−1

I(y)dx,

(33)

where

I(y) =

∫ ∞

x
y j
[
λ +β γyγ−1

]
[exp{−γs (λ x+β yγ)}]

×

[
1

m+ 1
{exp{−(m+ 1)(λ x+β xγ)}− exp{−(m+ 1)(λ y+β yγ)}}

]s−r−1

dy.

(34)

Integrating by parts I(y), we obtain

I(y) =
j

γs

∫ ∞

x
y j−1

[
1

m+ 1
{exp{−(m+ 1)(λ x+β xγ)}− exp{−(m+ 1)(λ y+β yγ)}}

]s−r−1

× exp [−γs(λ y+β yγ)]dy+
(s− r− 1)(m+ 1)

γs

×

∫ ∞

x
y j

[
1

m+ 1
{exp{−(m+ 1)(λ x+β xγ)}− exp{−(m+ 1)(λ y+β yγ)}}

]s−r−2

×
[
λ +β γyγ−1

]
exp [−(γs−1)(λ y+β yγ)]dy,

(35)

Simplifying and substituting Eq.(35) into Eq. (33), we obtain Eq. (29). �
Case II: γi 6= γ j, i, j = 1,2, ...,n− 1.
The product moment of Gos can be written as

µ
(t,z)

(r,s:n,m̃,k) = E
(

X
(t)
(r,n,m̃,k)

Y
(z)
(s,n,m̃,k)

)

=Cs−1

∫ ∞

−∞

∫ ∞

x
xtyz

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=r+1

ai(r)(1−F(x))
γi

]
f (x)

1−F(x)

f (y)

1−F(y)
dydx,

(36)

where Cs−1 and a
(r)
i (s) are defined in Eq. (2) and Eq. (8).

Relation 4. For n ≥ 1 and 1 ≤ r < s ≤ n, the following recurrence relation between the product moments of the Gos
from MWD holds

µ
(t,z)

(r,s:n,m̃,k) =
λ γs

z+ 1

{
µ

(t,z+1)

(r,s:n,m̃,k)− µ
(t,z+1)

(r,s−1:n,m̃,k)

}

+
β γγs

z+ γ

{
µ

(t,z+γ)

(r,s:n,m̃,k)− µ
(t,z+γ)

(r,s−1,n,m̃,k)

}
.

(37)
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Proof. It can be proved in the same method as Relation (2),

µ
(t,z)

(r,s:n,m̃,k) =Cs−1

∫ ∞

−∞

∫ ∞

x
xtyz

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)] [1−F(y)]

×
[
λ +β γyγ−1

]
[1−F(y)]dydx

= I+ II,

(38)

where

I = λCs−1

∫ ∞

0

xt f (x)

[1−F(x)]

[
r

∑
i=1

ai(r)(1−F(x))
γi

]

×
∫ ∞

x
yz

s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

dy,

(39)

and

II = β γCs−1

∫ ∞

0

xt f (x)

[1−F(x)]

[
r

∑
i=1

ai(r)(1−F(x))
γi

]

×

∫ ∞

x
yz+γ−1

(
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

)
dy,

(40)

integrating by parts of Eq. (39) and Eq. (40) , we get

I =
λCs−1

z+ 1

∫ ∞

0

xt f (x)

[1−F(x)]

[
r

∑
i=1

ai(r)(1−F(x))
γi

]

×

∫ ∞

x
yz+1

s

∑
i=r+1

γia
(r)
i (s)

(1−F(y))γi−1

(1−F(x))γi
f (y)dy.

(41)

Using
ai(s− 1) = (γs − γi)ai(s) and γsCs−2 =Cs−1, (42)

we obtain

I =
λCs−1

z+ 1

∫ ∞

0

xt f (x)

[1−F(x)]

[
r

∑
i=1

ai(r)(1−F(x))
γi

]

×

∫ ∞

x
yz+1

s

∑
i=r+1

γsa
(r)
i (s)

(1−F(y))γi−1

(1−F(x))γi
f (y)dy,

−
λCs−1

z+ 1

∫ ∞

0

xt f (x)

[1−F(x)]

[
r

∑
i=1

ai(r)(1−F(x))
γi

]

×

∫ ∞

x
yz+1

s

∑
i=r+1

(γs − γi)a
(r)
i (s)

(1−F(y))γi−1

(1−F(x))γi
f (y)dy.

(43)

Then,

I =
λ γs

z+ 1

[
µ

(t,z+1)

(r,s:n,m̃,k)− µ
(t,z+1)

(r,s−1:n,m̃,k)

]
. (44)

Similarly, we obtain

II =
β γγs

z+ γ

[
µ

(t,z+γ)

(r,s:n,m̃,k)− µ
(t,z+γ)

(r,s−1:n,m̃,k)

]
. (45)

Simplifying and substituting Eq. (44) and Eq. (44) into Eq. (38), we obtain Eq. (37).�
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4 Characterizations of Modified Weibull Distribution

Characterizations of MWD are presented in subsec. (4.1) and (4.2), respectively.

4.1 Characterization of MWD based on single moments

Theorem 1: Let X be a nonnegative random variable with absolutely continuous cdf F(x) and pdf f (x), with F(0) = 0
and 0 < F(x)< 1, for all x > 0. Then for n ≥ 1 and r = 1,2, ...,n− 1.
(i) For m1 = m2 = ...= mn−1 = m, X has the MWD(λ ,β ,γ) iff

µ
( j)

(r,n,m,k) =
j

γr

E

(
X j−1

λ +β γX γ−1

)
+ µ

( j)

(r−1,n,m,k), (46)

holds

(ii) For γi 6= γ j, i, j = 1,2, ...,n− 1,X has the MWD(λ ,β ,γ) iff

µ
(t)

(r,n,m̃,k) = γr

[
λ

t + 1

{
µ

(t+1)

(r,n,m̃,k)− µ
(t+1)

(r−1,n,m̃,k)

}

+
β γ

t + γ

{
µ

(t+γ)

(r,n,m̃,k)− µ
(t+γ)

(r−1,n,m̃,k)

}]
,

(47)

where m̃ = (m1,m2,...,mn−2) holds.

Proof. The necessary part can be proved immediately from Relation (1). For the sufficient part, consider Eq. (46) is
satisfied. Then, Eq. (46) can be written as:

Cr−1

Γ (r)

∫ ∞

0
x j [1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx

=
j

γr

Cr−1

Γ (r)

∫ ∞

0

x j−1

λ +β γxγ−1
[1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx

+
Cr−2

Γ (r− 1)

∫ ∞

0
x j [1−F(x)]γr+m

f (x)gr−2
m [F(x)]dx.

(48)

Integrating the second part of right side of Eq. (48) by parts gives

Cr−2

Γ (r− 1)

∫ ∞

0
x j [1−F(x)]γr+m

f (x)gr−2
m [F(x)]dx

=
− jCr−2

(r− 1)Γ (r− 1)

∫ ∞

0
x j−1 [1−F(x)]γr gr−1

m [F(x)]dx

+
γrCr−2

(r− 1)Γ (r− 1)

∫ ∞

0
x j [1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx.

(49)

Substituating Eq. (49) into Eq. (48) and simplifying, we get

j

γr

Cr−1

Γ (r)

∫ ∞

0
x j−1 [1−F(x)]γr−1

gr−1
m [F(x)]

[
f (x)

λ +β γxγ−1
− [1−F(x)]

]
dx = 0. (50)

Making use of Muntz-Szasz Theorem [19], we obtain

f (x) =
(
λ +β γxγ−1

)
[1−F(x)] , (51)

which proves X has the MWD(λ ,β ,γ)
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(ii) For γi 6= γ j, i, j = 1,2, ...,n− 1, the fundamental part is proved in Relation (2). For the sufficient part, if Eq. (47)
holds, then

Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt [1−F(x)]γi−1

f (x)dx

=
λ γr

t + 1

[
Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx

−Cr−2

r−1

∑
i=1

ai(r− 1)

∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx

]

+
β γγr

t + γ

[
Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt+γ [1−F(x)]γi−1

f (x)dx

−Cr−2

r−1

∑
i=1

ai(r− 1)

∫ ∞

0
xt+γ [1−F(x)]γi−1

f (x)dx

]
.

(52)

Using

ai(r− 1) = (γr − γi)ai(r) and γrCr−2 =Cr−1, (53)

we obtain

Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt [1−F(x)]γi−1

f (x)dx

=
λCr−1

t + 1

r

∑
i=1

ai(r)γi

∫ ∞

0
xt+1 [1−F(x)]γi−1

f (x)dx

+
β γCr−1

t + γ

r

∑
i=1

ai(r)γi

∫ ∞

0
xt+γ [1−F(x)]γi−1

f (x)dx.

(54)

Integrating by parts of the right hand side of Eq. (54), we obtain

Cr−1

r

∑
i=1

ai(r)

∫ ∞

0
xt [1−F(x)]γi−1

[
f (x)−λ [1−F(x)]−β γxγ−1 [1−F(x)]

]
dx = 0. (55)

Applying Muntz-Szasz Theorem [19] yields , we have

f (x) =
(
λ +β γxγ−1

)
[1−F(x)] , (56)

which proves X has the MWD(λ ,β ,γ).

4.2 Characterization of MWD based on product moments

Theorem 2: Let X be a nonnegative random variable with absolutely continuous cdf F(x) and pdf f (x), with F(0) = 0
and 0 < F(x)< 1, for all x > 0. Then for n ≥ 1and r = 1,2, ...,n−1. (i) For m1 = m2 = ...= mn−1 = m, X has the
MWD(λ ,β ,γ) iff

µ
(i, j)

(r,r+1:n,m,k) = E(X i+ j)+
j

γr+1

E

(
X i Y j−1

λ +β γY γ−1

)
if s = r+ 1, (57)

and

µ
(i, j)

(r,s:n,m,k) =
j

γs

E

(
X iY j−1

λ +β γY γ−1

)
+ µ

(i, j)

(r,s−1:n,m,k) if s > r+ 1, (58)

holds.
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(ii) For γi 6= γ j, i, j = 1,2, ...,n− 1,X has the MWD(λ ,β ,γ) iff

µ
(t,z)

(r,s:n,m̃,k) =
λ γs

z+ 1

{
µ

(t,z+1)

(r,s:n,m̃,k)− µ
(t,z+1)

(r,s−1:n,m̃,k)

}

+
β γγs

z+ γ

{
µ

(t,z+γ)

(r,s:n,m̃,k)− µ
(t,z+γ)

(r,s−1,n,m̃,k)

}
.

(59)

holds.
Proof. For s = r+ 1. The necessary part can be proved immediately from Relation (3). For the sufficient part, if Eq.

(57) holds, then

Cr

Γ (r)

∫ ∞

0

∫ ∞

x
xiy j [1−F(x)]m f (x)gr−1

m [F(x)] [1−F(y)]γr+1−1
f (y)dydx

=
Cr−1

Γ (r)

∫ ∞

0
xi+ j [1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx

+
jCr

γr+1Γ (r)

∫ ∞

0

∞∫

x

xiy j−1

λ +β γyγ−1
[1−F(x)]m f (x)gr−1

m [F(x)] [1−F(y)]γr+1−1
f (y)dydx.

(60)

Integrating by parts the first part of Eq. (60), we get

Cr

γr+1Γ (r)

∫ ∞

0

∫ ∞

x
xi+ j [1−F(x)]m+γr+1 f (x)gr−1

m [F(x)]dx

+
j

γr+1

Cr

Γ (r)

∫ ∞

0

∫ ∞

x
xiy j−1 [1−F(x)]m f (x)gr−1

m [F(x)] [1−F(y)]γr+1 dydx

=
Cr−1

Γ (r)

∫ ∞

0
xi+ j [1−F(x)]γr−1

f (x)gr−1
m [F(x)]dx

+
jCr

γr+1Γ (r)

∫ ∞

0

∫ ∞

x

xiy j−1

λ +β γyγ−1
[1−F(x)]m f (x)gr−1

m [F(x)] [1−F(y)]γr+1−1
f (y)dydx.

(61)

Then,
j

γr+1

Cr

Γ (r)

∫ ∞

0

∫ ∞

x
xiy j−1 [1−F(x)]m f (x)gr−1

m [F(x)] [1−F(y)]γr+1−1

×

[
f (y)

λ +β γyγ−1
− [1−F(y)]

]
dydx = 0. (62)

Applying Muntz- Szasz Theorem [19], we obtain

f (x) =
(
λ +β γyγ−1

)
[1−F(y)] , (63)

which leads to X has the MWD(λ ,β ,γ)
For s > r + 1,the necessary part can be proved immediately from Relation (3). For the sufficient part, if Eq. (58) is

satisfied, then

Cs−1

Γ (r)Γ (s− r)

∫ ∞

0

∫ ∞

x
xiy j [1−F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1

× [1−F(y)]γs−1
f (y)dydx

=
jCs−1

γsΓ (r)Γ (s− r)

∫ ∞

0

∫ ∞

x

xiy j−1

λ +β γyγ−1
[1−F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1

× [1−F(y)]γs−1
f (y)dydx,

+
Cs−2

Γ (r)Γ (s− r− 1)

∫ ∞

0

∫ ∞

x
xiy j [1−F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−2

× [1−F(y)]γs+m
f (y)dydx.

(64)
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Integrating by parts the second part of right hand side of Eq. (64), we obtain

∫ ∞

x
y j [1−F(y)]γs+m [hm(F(y))− hm(F(x))]s−r−2

f (y)dy

=
− j

(s− r− 1)

∫ ∞

x
y j−1 [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs dy

+
γs

(s− r− 1)

∫ ∞

x
y j [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1

f (y)dy,

(65)

Simplifying and substituting Eq.(65) into Eq. (64), and simplified, we get

jCs−1

γsΓ (r)Γ (s− r)

∫ ∞

0

∫ ∞

x
xiy j−1 [1−F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1

× [1−F(y)]γs−1

[
f (y)

λ +β γyγ−1
− [1−F(y)]

]
dydx = 0. (66)

Applying Muntz-Suasz theorem [19] to Eq. (66), we obtain

f (y) =
[
λ +β γyγ−1

]
[1−F(y)] . (67)

(ii) For γi 6= γ j, i, j = 1,2, ...,n−1,The necessary part can be proved immediately from Relation (4). For the sufficient part,
if Eq. (59) holds, then

Cs−1

∫ ∞

−∞

∫ ∞

x
xtyz

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

=
λ γs

z+ 1
Cs−2

∫ ∞

−∞

∫ ∞

x
xtyz+1

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

−
λ γs

z+ 1
Cs−2

∫ ∞

−∞

∫ ∞

x
xtyz+1

[
s

∑
i=r+1

a
(r)
i (s− 1)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

+
β γ

z+ γ
γsCs−2

∫ ∞

−∞

∫ ∞

x
xtyz+γ

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

−
β γ

z+ γ
γsCs−2

∫ ∞

−∞

∫ ∞

x
xtyz+γ

[
s

∑
i=r+1

a
(r)
i (s− 1)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx,

using

ai(s)(s− 1) = (γs − γi)ai(s) and γsCs−2 =Cs−1.
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So,

Cs−1

∫ ∞

−∞

∫ ∞

x
xtyz

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

=
λ γs

z+ 1
Cs−2

∫ ∞

−∞

∫ ∞

x
xtyz+1

[
s

∑
i=r+1

γia
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx

+
β γ

z+ γ
γsCs−2

∞∫

−∞

∫ ∞

x
xtyz+γ

[
s

∑
i=r+1

a
(r)
i (s)γi

(
1−F(y)

1−F(x)

)γi

]

×

[
r

∑
i=1

ai(r)(1−F(x))
γi

]
f (x)

[1−F(x)]

f (y)

[1−F(y)]
dydx.

(68)

Integrating by parts of the right hand of Eq. (68), we get

∫ ∞

x
yz+1

[
s

∑
i=r+1

a
(r)
i (s)γi

(
1−F(y)

1−F(x)

)γi

]
f (y)

1−F(y)
dy = (z+ 1)

∫ ∞

x
yz

s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

dy, (69)

∫ ∞

x
yz+γ

[
s

∑
i=r+1

a
(r)
i (s)γi

(
1−F(y)

1−F(x)

)γi

]
f (y)

1−F(y)
dy = (z+ γ)

∫ ∞

x
yz+γ−1

s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

dy. (70)

Then, substituting Eq. (69) and Eq. (70) into Eq. (68), we obtain

Cs−1

∫ ∞

−∞

∫ ∞

x
xtyz

[
s

∑
i=r+1

a
(r)
i (s)

(
1−F(y)

1−F(x)

)γi

][
r

∑
i=1

ai(r)(1−F(x))
γi

]

×

[
f (x)

1−F(x)

][
f (y)

1−F(y)
−α −β γyγ−1

]
dydx = 0. (71)

Applying Muntz-Suasz theorem [19] to Eq. (71), we have

f (y) = (λ +β γyγ−1)exp(− [λ y+β yγ]).� (72)

which proves X has the MWD(λ ,β ,γ).
Remarks:
1- Setting λ = 0,β = θ and γ = 2 in Relations (1), (2), (3) and (4), the results for Rayleigh distribution in [11] are

deduced.
2- Putting β = θ

2
and γ = 2 in Relations (1), (2), (3) and (4), the results for linear exponential distribution and its

characterization in [12] are deduced.
3- Setting m = 0, k = 1 in Relations (1), (2), (3) and (4), recurrence relations of ordinary order statistics from MWD

are derived.
4- Putting m =−1, k = 1 in Relations (1), (2), (3) and (4), our results agree with the results of [13].
5-Putting m =−1, k = 1 and λ = 0 in Relations (1), (2), (3) and (4), our results agree with the results of [16].
6- Setting m =−1, k = 1, α = λ and γ = 2 in Relations (1), (2), (3) and (4), the results of [16] for linear failure rate

distribution are deduced.
7- Putting m =−1, k = 1 , λ = 0 and γ = 2 in Relations (1), (2), (3) and (4), the results of [16] are obtained.
8- Setting m =−1, k = 1 ,α = λ and β = 0 in Relations (1), (2), (3) and (4), the results in [17] are deduced.
9- Setting m =−1, k = 1,α = λ and β = 0 in Relations (1), (2), (3) and (4), the results of [20] are deduced.
10- Setting m=−1, k = 1, α = λ and β = υ

2
, γ = 2 in Theorem (1) and Theorem (2), characterizations of exponential

distribution are deduced, see [21].
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5 Discussion

The present paper addresses the generalized order statistics from the MWD. Recurrence relations between the single
and product moments are derived. Characterization of the MWD based on a recurrence relation for single and product
moments are discussed. Special cases are also deduced.

Acknowledgements

The authors are highly grateful to the referees and the Editor-in-Chief for their fruitful suggestions and comments which
improved the paper.

References

[1] K. Nain. Recurrence Relations for single and product moments of generalized order statistics from extreme value distribution,

American Journal of Applied Mathematics and Statistics, 2(2), 77-82 (2014).

[2] K. Nain. Recurrence relations for single and product moments of kth record values from generalized Weibull distribution and a

characterization, International Mathematical Forum, 5(33), 1645-1652 (2010).

[3] A. A, Ismail and S. E. Abu-Youssef. Recurrence relations for the moments of order statistics from doubly truncated modified

Makeham distribution and its characterization, Journal of King Suad University-Sceince, 26(3), 200-204 (2014).

[4] S. Zarrin, H. Athar and Y. Abdel-Aty. Relations for Moments of Generalized Order Statistics from Power Lomax Distribution,

Journal of Statistics Applications & Probability Letters, 6(1), 29-36 (2019).

[5] H. Athar and Nayabuddin. Recurrence relations for single and product moments of generalized order statistics from Marshall–

Olkin extended Pareto distributions, Communications in Statistics-Theory and Methods, 46(16), 7820-7826 (2017).

[6] N. Gupta, A. Zaki and D. Aijaz Ahmad. Moment properties of generalized order statistics from Ailamujia distribution,

International Journal of Computational and Theoretical Statistics, 5(2), 115-122 (2018).

[7] M.A.R. Khan, R.U. Khan and B. Singh. Moments of dual generalized order statistics from two parameters Kappa distribution and

characterization, Journal of Applied Probability and Statistics, 14(1), 85-101 (2019).

[8] A. M. Sarhan and M. Zaindin. Modified Weibull distribution, Applied Sciences, 11, 123-136 (2009).

[9] U. Kamps and E. Cramer. On distributions of generalized order statistics, Journal of Theortical and Applied Statistics, 35(2),

269-280 (2001).

[10] M. Ahsanullah. Generalized order statistics from exponential distribution, Journal of Statistical Planning and Inference, 85(1),

85-91 (2000).

[11] M. Mohsin., M. Q. Shahbaz and G. Kibri. Recurrence relations for single and product moments of generalized order statistics for

Rayleigh distribution, Applied Mathematics and Information Sciences, 4(3), 273-279 (2010).

[12] M. A. W. Mahmoud and H. SH. Al-Nagar. On generalized order statistics from linear exponential distribution and its

characterization, Statistical Papers, 50(2), 407-418 (2009).

[13] R.U. Khan, and M. A. Khan. Moment properties of generalized order statistics from exponential-Weibull lifetime distribution,

Journal of Advanced Statistics, 1(3), 146-155 (2016).

[14] M. A. W. Mahmoud, R. M. El-Sagheer and Nagwa M. Mohamed. Recurrence relations for moments of progressively Type-II

censored from modified Weibull distribution and its characterizations, Journal of Applied Statistical Science, 22(3-4), 357-374

(2017).

[15] Nagwa M. Mohamed. Characterization of modified Weibull distribution based on dual generalized order statistics, Southeast Asian

Bulletin of Mathematics, 43, 225-242 (2019)

[16] R. U. Khan., A. Kulshrestha and M. A. Khan. Relations for moments of k-th record values from exponential-Weibull lifetime

distribution and a characterization, Journal of Egyptian Mathematical Soceity, 23, 558-562 (2015).

[17] P. Pawlas and D. Szynal. Recurrence relations for single and product moments of k-th record values from Weibull distributions,

and a characterization, Journal of Applied Statistical Science, 10, 17–26 (2000).

[18] P. Pawlas and D. Szynal. Relations for single and product moments of k-th record values from exponential and Gumble

distributions, Journal of Applied Statistical Science, 7, 53–62 (1998).

[19] J. S. Hwang and G. D. Lin. On a generalized moments problem II, Journal of Proceedings American Mathematical Society, 91(4),

577-580 (1984).

[20] N. Balakrishnan and M. Ahsanullah. Relations for single and product moments of record values from exponential distribution,

Journal of Applied Statistical Science, 2, 73-87 (1995).

[21] J. Saran and S. K. Singh. Recurrence relations for single and product moments of k-th record values from linear-exponential

distribution and a characterization, Asian Journal of Mathematics and Statistics, 3(1), 159-164 (2008).

c© 2020 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 9, No. 2, 333-345 (2020) / www.naturalspublishing.com/Journals.asp 345

Nagwa M. Mohamed is a lecturer of Mathematical Statistics at Mathematics Department,
Faculty of Science, Suez University, Egypt. She received her Ph. D. from Faculty of Science,
Suez University, Egypt in 2016. Her research interests include: Statistical inference, Theory
of Reliability, Censored Data, Life testing, Distribution Theory.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Recurrence Relations for the Single Moments
	Recurrence Relations for the Product Moments
	Characterizations of Modified Weibull Distribution
	Discussion

