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Abstract: In this article, a three parameter generalization of Moyal distribution is obtained to provide a more flexible model relative

to the behaviour of hazard rate functions. Various statistical properties such as density, hazard rate functions, quantile function, mode,

moments, incomplete moments, moment generating functions, mean deviation, Lorenz, Bonferroni and Zenga curves, Renyi and

continuous entropies and distribution of rth order statistics have been derived. Maximum likelihood estimation has been used to

estimate the parameters of the generalized Moyal distribution. Further confidence intervals are also obtained. Finally applicability of

the proposed model to the real data is analyzed. A comparison has also been made with some existing distributions.

Keywords: Moyal distribution, Topp Leone distribution, moment generating function, entropy and maximum likelihood estimation.

1 Introduction

Statistical distributions are used to model the life of an item and investigate its important properties. Proper distribution
provides useful information that results in sound conclusions and decisions. When there is a need for more flexible
distributions, several researchers use the new one with more generalization. Let G be any valid cumulative distribution
function defined on the real line. The last decade has seen various approaches for generating new distributions based on
G. All these approaches can be put in the form

F(x) = H(G(x)), (1)

where H : [0, 1]→ [0,1] and F is a valid cumulative distribution function. Thus, for every G, one can use (1) to generate
a new distribution. The first approach of the form (1) in recent years was the exponentiated G distributions due to
Mudholkar and Srivastava [1], Gupta and Kundu [2], Nassar and Eissa [3], [4] and others. The second approach was
beta-G distributions due to Eugene et al. [5], Jones [6], Nadarajah and Kotz [7], [8], Cordeiro and Lemonte [9], Cordeiro
et al. [10], Nassar and Nada [11], [12], [13], Nassar and Elmasry [14] and Mahmoud et al. [15], followed by Gamma-G
distributions due to Zografos and Balakrishnan [[16]. Jones [17], Cordeiro et al. [18], [19], Cordeiro and de Castro [20],
Elbatal and Elgarhy [21], Nassar [22] and others introduced Kumaraswamy – G distributions that serve survival analysis
and marketing research.

Recently, applying new generators for continuous distributions has become more interesting. This methodology can
improve the goodness of fit and define tail properties. One of the most important generators is the Topp-Leone (TL)
distribution which was proposed by Topp and Leone [23] for empirical data with J-shaped histograms, such as powered
band tool and automatic calculating machine failures.

In the present paper, we introduce a three parameter model( i.e. the Topp Leone Moyal (TLMo) distribution, to extend
the Moyal distribution. The TLMo distribution is convenient for modeling comfortable upside-down bathtub

shaped failure rates and is a competitive model to the Moyal, half-normal, beta normal, skew normal and Gumbel
distributions.

The Moyal distribution was proposed by J. E. Moyal [24] as an approximation for the Landau distribution. It was also
shown that it remains valid taking into account quantum resonance effects and details of atomic structure of the absorber.
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Let Z be a random variable following the Moyal standard probability density function (pdf) given by

g(z) =
1√
2π

e

−1
2 (z+e−z)

, −∞ < z < ∞. (2)

A location parameter µ and a scale factor σ can be introduced to define the random variable Z =
x−µ

σ having a Moyal
distribution, say Mo(µ , σ ), given by

g(x) =
1√

2πσ
e

−1
2 [( x−µ

σ )+e
−( x−µ

σ )]
, −∞ < x,µ < ∞, σ>0. (3)

The cumulative distribution function (cdf) corresponding to (3) depends on the lower incomplete gamma function
γ (α,x) =

∫ x
0 tα−1e−tdt, and is given by

G(x) = 1−
γ
(

1
2
, 1

2
e−(

x−µ
σ )
)

Γ
(

1
2

) , −∞ < x,µ < ∞, σ>0. (4)

The cumulative distribution function of the standard Moyal distribution (2) is

G(z) = 1− γ
(

1
2
, 1

2
e−z
)

Γ
(

1
2

) , −∞ < z < ∞ (5)

The only generalization of the Moyal distribution was the four – parameter Beta Moyal distribution proposed by
Cordeiro et al. [10] to extend the Moyal model for its importance and usefulness in many practical situations.

2 The Topp-Leone Moyal Distribution

In this section, we introduce the Topp-Leone Moyal (TLMo) distribution. Some reliability functions corresponding to
the TLMo distribution are also discussed. Consider the Topp-Leone generated family of distributions proposed by Al-
Shomrani et al. [25], with its cumulative distribution function (cdf) and probability density function (pdf) given by,

FT LG (x) = [G(x)]α [2−G(x)]α , α > 0. (6)

fT LG (x) = 2αg(x)G(x)[G(x)]α−1[2−G(x)]α−1, α > 0. (7)

where G(x) is the baseline distribution function, G(x) = 1−G(x) and g(x) = ∂G(x)/∂x is the baseline density function.
Inserting Equation (4) in Equation (6), we obtain a new distribution, the so-called Topp-Leone Moyal (TLMo)

distribution with cdf given by

F (x;α,µ ,σ) =





1−




γ
(

1
2
, 1/2 e−(

x−µ
σ )
)

Γ
(

1
2

)




2




α

=





1−


er f




√
e−(

x−µ
σ )

√
2






2




α

, −∞ < x,µ < ∞, σ>0. (8)

where γ
(

1
2
,x
)
=
√

πer f (
√

x) , Γ
(

1
2

)
=
√

π and the error function er f (x) is de-fined by er f (x) = 2√
π

∫ x
0 e−t2

dt.

The pdf corresponding to Equation (8) is given by

f (x;α,µ ,σ) =

e−
1
2 e−(

x−µ
σ )
√

e−(
x−µ

σ )
√

2
π αer f

(√
e−(

x−µ
σ )

√
2

) 
1−

[
er f

(√
e−(

x−µ
σ )

√
2

) ]2




α−1

σ
(9)

where −∞ < x,µ < ∞ , σ> 0 and α>0 . For µ= 0 and σ= 1, we obtain the standard TLMo cdf given by

F (x) =



1−

γ2
(

1
2
, e−x

2

)

π





α

=



1−

[
er f

(√
e−x

√
2

) ]2




α

(10)
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and the standard TLMo density function given by

f (x) = e−
1
2 e−x√

e−x

√
2

π
αer f

(√
e−x

√
2

)
1−

[
er f

(√
e−x

√
2

)]2




α−1

=

√
2α

π
e−

1
2 (e

−x+x)γ

(
1

2
,

e−x

2

) 
1−

γ2
(

1
2
, e−x

2

)

π





α−1
(11)

Plots of the density function (9) for selected values of the TLMo distribution are given in Figure 1. It is noticeable that
these plots show great flexibility of the TLMo for different values of the shape parameter α , including the special case in
Equation (11). It is also observed that when the value of µ changes from -ve to +ve value, f (x) is displaced to the +ve
side of x-axis. The pdf given in (9) shows that f (x) can be symmetric and asymmetric.

Fig. 1: Plots of the pdf of TLMo distribution for some parameter values.

We define the hazard function of the TLMo distribution as follows:

h(x) =
f (x)

S (x)
,

where S (x) is the survival (reliability) function of the TLMo distribution,

S (x) = 1−F (x) = 1−





1−


er f




√
e−(

x−µ
σ )

√
2






2




α

.
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Then the hazard function of the TLMo distribution (9) is given by

h(x) =

e−
1
2 e−(

x−µ
σ )
√

e−( x−µ
σ )
√

2
π αer f

(√
e−(

x−µ
σ )

√
2

) 
1−

[
er f

(√
e−(

x−µ
σ )

√
2

) ]2




α−1

σ


1−



1−

[
er f

(√
e
−( x−µ

σ )
√

2

) ]2




α


. (12)

and we define the hazard function of the standard TLMo distribution as follows:

h(x) =

e−
1
2 e−x√

e−x

√
2
π αer f

(√
e−x√

2

) {
1−
[
er f
(√

e−x√
2

) ]2
}α−1

(
1−
{

1−
[
er f
(√

e−x√
2

) ]2
}α ) (13)

Plots of the hazard function (12) of the TLMo distribution (9) are given in Figure 2 for selected values of the
parameters.

Fig. 2: Plots of the hazard function of TLMo distribution for some parameter values.

3 Properties of the TLMo Distribution

If X is a random variable with probability density function (pdf) (9), we write X : T LMo(α,µ ,σ) . Without loss of
generality, for simplicity, we will take µ = 0,and σ = 1.

In this section, we discuss some statistical properties of the proposed distribution such as quantile function, mode,
nth moment, moment generating functions, mean deviation, incomplete moment, Lorenz, Bonferroni and Zenga curves,
Rényi entropy and continuous entropy.
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3.1 Quantile function

Theorem 1.Let X be a random variable following T LMo distribution and let u ∈ (0,1). Then the quantile function is

given by the approximate value

x ≈ ln




1

2

[
er f −1

(√
1−u

α

)]2


 (14)

Proof.Since F (x) is continuous and strictly increasing, then the quantile function x = F−1 (u) , u ∈ (0,1) can be
straightforward computed by inverting Equation (10) to obtain

F (x) = u

If |z|<1 and α >0 is real non-integer, we have the series representation

(1− z)α =
∞

∑
k=0

(α

k

)
(−z)k

(15)

Using the expansion (15) in Equation (10) the cdf of TLMo is written as

F (x) =
∞

∑
k=0

(α

k

)(−1

π
γ2

(
1

2
,

1

2
e−x

))k

= u (16)

The summation on the left – hand side converges absolutely for
∣∣ 1

π γ2( 1
2
, 1

2
e−x)

∣∣ < 1. Using the approximation
technique, the second approximation is given as follows

1− α

π
γ2

(
1

2
,

1

2
e−x

)
≈ u or γ

(
1

2
,

1

2
e−x

)
≈
√

π

α
(1− u)

i.e.

√
πer f (

√
e−x

√
2

) ≈
√

π

α
(1− u)

Then

e−x ≈ 2

(
er f −1

(√
1− u

α

))2

Hence,

x ≈ −ln


2

[
er f −1

(√
1− u

α

)]2



Therefore, an approximate quantile function of order u of the T LMo distribution is the solution of Equation (14).

Putting u = 0.5 in Equation (14) we get the median of T LMo distribution.

The TLMo distribution is easily simulated from F (x) in Equation (8) using the approximate form of the quantile
function in Equation (14).

3.2 Mode

One of the most important features for the distribution is the mode. The mode of the T LMo is deduced by differentiating
the pdf (11)and equating to zero.
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i.e.

d f (x)

dx
= 0 = 2

α

π
e−e−x−x (α − 1)

(
er f

[√
e−x

√
2

] )2

1−

(
er f

[√
e−x

√
2

] )2



α−2

+
α√
2π

e−
e−x

2

√
e−x

{
(
e−x−1

)
er f

[√
e−x

√
2

]
−

√
2√
π

e−
e−x

2 − x
2

}
1−

(
er f [

√
e−x

√
2

]

)2



α−1

However, we cannot obtain an explicit form so we calculate the mode numerically for different values of α.

Table 1: Mode for some chosen different values of α .

The values of α Mode

α=0.1 −2.90202

α= 0.2 −2.13679

α= 0.3 −1.69495

α= 0.4 −1.39069

α= 0.5 −1.15927

α= 0.6 −0.972358

α= 0.7 −0.815446

α= 0.8 −0.680139

α= 0.9 −0.561155

α= 1 −0.454946

α= 2 0.240793

α= 5 1.15774

α= 10 1.85097

α= 20 2.54414

α= 50 3.46044

α= 100 4.15359

3.3 Moments

Theorem 2.If X follows the T LMo distribution given by the pdf (11), the nth moment of X is given by

µ
′
n = 2

∞

∑
k=1

∞

∑
m=0

n

∑
r=0

vr,m,n,k (α)Γr(m+k), (17)

where

vr,m,n,k (α)=
(n

r

)(α

k

)
(−1)k+n+1 k(ln(2) )n−r

πk
c

m,2k−1
,

and cm,2k−1 is defined in detail in the following proof.



 (18)

Proof.The nth moment of the TLMo distribution is given as follows

µ ′
n = E (xn) =

∫ ∞

−∞
xn f (x)dx .

Using the series expansion (15) in Equation (11), we obtain the pdf of T LMo as follows

f (x) = 2
∞

∑
k=1

(α

k

)(−1

π

)k

k
−e

−e−x

2 e
−x
2

√
2

γ2k−1

(
1

2
,

e−x

2

)
. (19)
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Consequently,

µ ′
n = 2

∞

∑
k=1

(α

k

)
(−1)k k

πk

∫ ∞

−∞
xn −e

−e−x

2 e
−x
2

√
2

γ2k−1

(
1

2
,

e−x

2

)
dx.

Setting u = e−x

2
, µ ′

n reduces to

µ ′
n = 2

∞

∑
k=1

(α

k

)
(−1)k+n+1 k

πk

∫ ∞

0
u

−1
2 (ln(2u) )n

e−uγ2k−1

(
1

2
,u

)
du.

Using the binomial expansion in the last equation, we can obtain

µ ′
n = 2

∞

∑
k=1

n

∑
r=0

(n

r

)(α

k

)
(−1)k+n+1 k(ln(2) )n−r

πk

∫ ∞

0
u

−1
2 (ln(u) )r

e−uγ2k−1

(
1

2
,u

)
du. (20)

Let

Ir,k =
∫ ∞

0
u

−1
2 (ln(u) )r

e−uγ2k−1

(
1

2
,u

)
du.

Using the series expansion

γ(α,x) = xα
∞

∑
m=0

(−x)m

(α +m)m!,

in the last equation ,we can obtain

Ir,k =

∫ ∞

0
u

−1
2 (ln(u) )r

e−u

[
u

1
2

∞

∑
m=0

(−u)m

(
1
2
+m

)
m!

]2k−1

du.

Using the identity of a power series raised to an integer, namely
(

∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ck,nxk

(see Gradshteyn and Ryzhik, [26], p.14 Section 0.314), where c0,n = an
0 and

ck,n = (ka0)
−1

k

∑
l=1

(nl− k+ l)alck−l,n.

Hence,

Ir,k =

∫ ∞

0
uk−1(ln(u) )r

e−u
∞

∑
m=0

cm,2k−1umdu,

where

cm,2k−1 = m−1
m

∑
l=1

(−1)l (2kl −m)

(2l + 1) l!
cm−l,2k−1 for m = 1,2, . . . and c0,2k−1 = 22k−1,k = 1,2, . . .

Then Equation (20) can be written as follows

µ ′
n = 2

∞

∑
k=1

∞

∑
m=0

n

∑
r=0

(n

r

)(α

k

)
(−1)k+n+1 k(ln(2) )n−r

πk
cm,2k−1 J (r) (21)

where

J (r) =

∫ ∞

0
um+k−1(ln(u) )r

e−udu.

This integral J(r) in (21) can be calculated from the result given by Gradshteyn and Ryzhik, [26], (p. 578 Section
4.358 integral 5). From the definition of

Γr (p) =
∂ rΓ (p)

∂ pr
,

we have

J (r) =
∫ ∞

0
um+k−1(ln(u) )r

e−udu =Γr (m+ k) .

This yields the nth moment given in Equation (17).
Putting n = 1 in Equation (17), we easily obtain the mean of TLMo distribution.
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3.4 Moment generating function

Theorem 3.If X follows the TLMo distribution given by the pdf (11), the moment generating function (mgf) of X is given

by

Mx (t) =21−t
∞

∑
k=1

∞

∑
m=0

wk,m (α)Γ (m+ k− t),

where wk,m (α) =
(α

k

) k

πk
(−1)k+1

cm,2k−1,

and cm,2k−1 isde f ined indetail inthe proo f o f T heorem2 Section(3.3)





(22)

Proof.The mgf of T LMo distribution is defined by

Mx (t) = E
(
etx
)
=
∫ ∞

−∞
etx f (x)dx

Using Equation (19), the mgf of TLMo distribution reduces to

Mx (t) = 2
∞

∑
k=1

(α

k

) k

πk
(−1)k

∫ ∞

−∞
etx −e

−e−x

2 e
−x
2

√
2

γ2k−1

(
1

2
,

e−x

2

)
dx

Again setting u = e−x

2
, we have

Mx (t) = 21−t
∞

∑
k=1

(α

k

) k

πk
(−1)k+1

∫ ∞

0
u−t− 1

2 e−uγ2k−1

(
1

2
,u

)
du

Let At,k =
∫ ∞

0 u−t− 1
2 e−uγ2k−1

(
1
2
,u
)

du

Following similar steps of Theorem 2, Mx (t) takes the form

Mx (t) = 21−t
∞

∑
k=1

∞

∑
m=0

(α

k

) k

πk
(−1)k+1

cm,2k−1

∫ ∞

0
um+k−t−1e−udu

which yields the result (22).

3.5 Mean deviations

Theorem 4.Let X follow TLMo distribution given by the pdf (11). The mean deviation of X about the mean µ ′
1 and the

median M are defined, respectively, by

δ1 (x) = 2µ ′
1F
(
µ ′

1

)
− 2T

(
µ ′

1

)

and

δ2 (x) = µ ′
1 − 2T (M)

where T (q) is given by

T (q) = 2
∞

∑
k=1

∞

∑
m=0

1

∑
r=0

vr,m,1,k (α)Γr

(
m+ k,

e−q

2

)
, (23)

and vr,m,1,k is defined previously in Equation (18) for n = 1.

Proof.The mean deviations of X about the mean and the median are given by

δ1(x) =

∫ ∞

−∞

∣∣x− µ ′
1

∣∣ f (x)dx = 2µ ′
1F
(
µ ′

1

)
− 2T

(
µ ′

1

)

and

δ 2 (x) =

∫ ∞

−∞
|x−M| f (x)dx = µ ′

1 − 2T (M) ,

where F (M) = 1
2
, F (µ ′

1) can be easily calculated from Equation (10) and T (q) =
∫ q
−∞ x f (x) dx.
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Using Equation (19), we write T (q) in the following form

T (q) = 2
∞

∑
k=1

(α

k

) k

πk
(−1)k

∫ q

−∞
x
−e

−e−x

2 e
−x
2√

2
γ2k−1

(
1

2
,

e−x

2

)
dx.

Again setting u = e−x

2
, we have

T (q) = 2
∞

∑
k=1

(α

k

) k

πk
(−1)k

∫ ∞

e−q

2

u
−1
2 ln(2u) e−uγ2k−1

(
1

2
,u

)
du.

Following similar steps of Theorem 2, T (q) takes the form

T (q) = 2
∞

∑
k=1

∞

∑
m=0

1

∑
r=0

(α

k

)(1

r

)
(−1)k k(ln(2) )1−r

πk
cm,2k−1

∫ ∞

e−q

2

um+k−1(ln(u)) r
e−udu.

From the last equation
∫ ∞

e−q

2

um+k−1(ln(u)) r
e−udu =

∂ r

∂ (m+ k)r

∫ ∞

e−q

2

um+k−1e−udu =
∂ r

∂ (m+ k)r Γ

(
m+ k,

e−q

2

)
= Γr(m+ k,

e−q

2
).

This yields the T (q) given in Equation (23).
Hence, the measures δ1(x) and δ2(x) are immediately defined from (23).

Remark.Regarding the paper “ The Beta Moyal: A Useful Skew Distribution” by Cordeiro et al. [10], the authors need to

point out that in Equation (20) calculated by Maple, the integral in T (q) p.179 defined by
∫ ∞

1
2 e−q um+r+ k+1

2 −1log(u)e−udu

gives the solution

[
1+

(
m+ r+

k+ 1

2

)
(q− ln(1/2) )

](
m+ r+

k+ 1

2

)−2(
1

2
e−q

)m+r+ k+1
2

under the condition
(
m+ r+ k+1

2

)
< 0 which is stated in a wrong form neglecting the condition which is a must.

3.6 Incomplete moments

Theorem 5.If X follows the T LMo distribution defined in Equation (11), the nth incomplete moment is given by

mn (z) = 2
∞

∑
k=1

∞

∑
m=0

n

∑
r=0

vr,m,n,k (α)Γr

(
m+ k,

e−z

2

)
, (24)

where vr,m,n,k (α) is defined in Equation (18).

Proof.The nth incomplete moments denoted as mn (z) can be obtained as follows:

mn (z) =
∫ z

−∞
xn f (x)dx

From Equation (19), we have

mn (z) = 2
∞

∑
k=1

(α

k

) k

πk
(−1)k

∫ z

−∞
xn−e

−e−x

2 e
−x
2

√
2

γ2k−1

(
1

2
,

e−x

2

)
dx.

Using the transformation u = e−x

2
, we have

mn (z) = 2
∞

∑
k=1

(α

k

) k

πk
(−1)k+n+1

∫ ∞

e−z

2

u
−1
2 (ln(2u)) n

e−uγ2k−1

(
1

2
,u

)
du.

Following similar steps of Theorem 2, mn (z) takes the form

mn (z) = 2
∞

∑
k=1

∞

∑
m=0

n

∑
r=0

(n

r

)(α

k

)
(−1)k+n+1 k(ln(2) )n−r

πk
cm,2k−1

∫ ∞

e−z

2

um+k−1(ln(u) )r
e−udu.

which is similar to the integral in Section 3.5
Therefore, this reduces to the result in Equation (24).
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3.7 Lorenz, Bonferroni and Zenga curves

The Lorenz, Bonferroni and Zenga curves are important applications for the first incomplete moments. These curves are
useful in many fields such as insurance, medicine, demography, reliability and economics.

The Lorenz, Bonferroni and Zenga curves are obtained, respectively, as follows:

L(F(z)) =
1

E(z)

∫ z

−∞
x f (x)dx =

m1 (z)

µ ′
1

, B(F (z)) =
L(F(z))

F (z)

and

A(z) = 1− M−(z)
M+(z)

where

M− (z)=
1

F (z)

∫ z

−∞
x f (x)dx , M+ (z)=

1

1−F (z)

∫ ∞

z
x f (x)dx

Therefore, using Equation (17) and (24), we obtain the Lorenz curve as follows

L(F (z)) =
∑∞

k=1 ∑∞
m=0 ∑1

r=0 vr,m,1,k (α)Γr

(
m+ k , e−z

2

)

∑∞
k=1 ∑∞

m=0 ∑1
r=0 vr,m,1,k (α)Γr (m+ k)

, (25)

From Equations (25) and (10), we write the Bonferroni curve as

B(F (z)) =
∑∞

k=1 ∑∞
m=0 ∑1

r=0 vr,m,1,k (α)Γr

(
m+ k, e−z

2

)

[
1−

γ2
(

1
2 , e−z

2

)

π

]α

∑∞
k=1 ∑∞

m=0 ∑1
r=0 vr,m,1,k (α)Γr(m+ k)

, (26)

Hence, the Zenga curve can be obtained as follows

A(z) = 1−









1−

γ2
(

1
2
, e−z

2

)

π



−α

− 1




∑∞
k=1 ∑∞

m=0 ∑1
r=0 vr,m,1,k (α)Γr

(
m+ k, e−z

2

)

∑∞
k=1 ∑∞

m=0 ∑1
r=0 vr,m,1,k (α)γr

(
m+ k, e−z

2

)




, (27)

where

M− (z) =
2∑∞

k=1 ∑∞
m=0 ∑1

r=0 vr,m,1,k (α)Γr

(
m+ k, e−z

2

)

[
1−

γ2
(

1
2 , e−z

2

)

π

]α ,

M+ (z) =
2∑∞

k=1 ∑∞
m=0 ∑1

r=0 vr,m,1,k (α)γr

(
m+ k, e−z

2

)

{
1−
[

1−
γ2
(

1
2 , e−z

2

)

π

]α} ,

and

γr

(
m+ k,

e−z

2

)
=

∂ r

∂ (m+ k)r γ

(
m+ k,

e−z

2

)
=

∂ r

∂ (m+ k)r

∫ e−z

2

0
um+k−1e−udu =

∫ e−z

2

0
um+k−1(ln(u)) r

e−udu.

3.8 Rényi entropy

The Rényi entropy has various applications in different areas such as statistics and ecology as an indication of diversity. In
quantum information, it can be used as a measure of entanglement. The Rényi entropy of order ξ , where ξ ≥ 0, and ξ 6= 1,
is defined as

JR (ξ ) =
1

1− ξ
log(I (ξ )) ,
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where

I (ξ ) =

∫
f ξ (x)dx .

Using this notion, we deduce the Rényi entropy of a random variable following the TLMo pdf (11), in Theorem 6.

Theorem 6.Let X be a continuous random variable following the TLMo distribution given by Equation (11). The Rényi

entropy of X is given by

JR (ξ )= (1− ξ )−1

{
ξ log

(
2α

π

)
+ log

[
∞

∑
k, j,m=0

j

∑
r=0

(
ξ (α − 1)

k

)(
ξ + 2k

j

)(
j

r

)
cm,r

(−1)k+ j+r

πk
ξ
−
(

m+ ξ+r
2

)

Γ (m+
ξ + r

2
)

] }

(28)

Proof.Substituting the pdf of TLMo (11) in the definition of Rényi entropy given above, we have

I (ξ ) = 2
ξ
2

(α

π

)ξ ∫ ∞

−∞
e−

ξ
2 (e

−x+x)γξ

(
1

2
,

e−x

2

) 
1−

γ2
(

1
2
, e−x

2

)

π





ξ (α−1)

dx

Using the series expansion (15) in the last equation, we obtain

I (ξ ) = 2
ξ
2

(α

π

)ξ ∞

∑
k=0

(
ξ (α − 1)

k

)(−1

π

)k ∫ ∞

−∞
e−

ξ
2 (e

−x+x)γξ+2k

(
1

2
,

e−x

2

)
dx

Again using the expansion (15) and then applying the binomial expansion, we obtain

I (ξ ) = 2
ξ
2

(α

π

)ξ ∞

∑
k, j=0

j

∑
r=0

(
ξ (α − 1)

k

)(
ξ + 2k

j

)(
j

r

)
(−1)k+ j+r

πk

∫ ∞

−∞
e−

ξ
2 (e

−x+x)γr

(
1

2
,

e−x

2

)
dx

Using the transformation u = e−x

2
, we have

I (ξ ) =

(
2α

π

)ξ ∞

∑
k, j=0

j

∑
r=0

(
ξ (α − 1)

k

)(
ξ + 2k

j

)(
j

r

)
(−1)k+ j+r

πk

∫ ∞

0
u

ξ
2 −1e−ξ uγr

(
1

2
,u

)
du

Following similar steps of Theorem 2, we have

I (ξ ) =

(
2α

π

)ξ ∞

∑
k, j,m=0

j

∑
r=0

(
ξ (α − 1)

k

)(
ξ + 2k

j

)(
j

r

)
cm,r

(−1)k+ j+r

πk

∫ ∞

0
um+ ξ+r

2 −1e−ξ udu

where cm,r is defined in Section 3.3. The integral in the last equation can be easily calculated. Hence,

I (ξ ) =

(
2α

π

)ξ ∞

∑
k, j,m=0

j

∑
r=0

(
ξ (α − 1)

k

)(
ξ + 2k

j

)(
j

r

)
cm,r

(−1)k+ j+r

πk
ξ
−
(

m+ ξ+r
2

)

Γ (m+
ξ + r

2
)

Finally, the Rényi entropy can be expressed as in Equation (28).

3.9 Continuous entropy

various information theory ’s key results and principles can be extended using the Continuous Entropy defined by Marsh
[27] based on the following

h(x) =

∫
−ln( f (x)) f (x)dx

Theorem 7.Let X be a continuous random variable following the TLMo distribution given by Equation (11). The

Continuous entropy of X is given by

h(x) =
1

2

(
Mx(−1)+ µ ′

1

)
−
[

1

2
ln

(
2

π

)
+ ln(α)

]
−

∞

∑
k=0

( α
k+1

)
(−1)k+1

2k+ 2
+

α − 1

α
(29)

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


372 M. M. Nassar, M. Ibrahem: A New Generalization of the Moyal Distribution

Proof.Substituting the pdf of TLMo (11) in the definition of the continuous entropy given above, we have

h(x) =
1

2
I1 +

1

2
I2 −

1

2
ln

(
2

π

)
I3 − ln(α) I3 −I4 − (α − 1) I5 (30)

I1 =

∫ ∞

−∞
e−x f (x)dx = Mx(−1) (i)

I2 =
∫ ∞

−∞
x f (x)dx = µ ′

1 (ii)

I3 =

∫ ∞

−∞
f (x)dx = 1 (iii)

Also,

I4 =

∫ ∞

−∞
ln

[
er f

(√
e−x

√
2

) ]
f (x) dx

=

∫ ∞

−∞
ln

[
er f

(√
e−x

√
2

) ]
e−

1
2 e−x√

e−x

√
2

π
αer f

(√
e−x

√
2

) 
1−

[
er f

(√
e−x

√
2

) ]2




α−1

dx

Take the transformation

Let v = er f
(√

e−x√
2

)
, we have

∫ ∞

−∞
ln

[
er f

(√
e−x

√
2

) ]
f (x) dx =−2α

∫ 0

1
ln(v) v (1− v2)

α−1
dv

=−2α
∞

∑
k=0

(
α − 1

k

)
(−1)k

∫ 0

1
ln(v) v2k+1dv ,

Integration by parts yields

I4 =

∫ ∞

−∞
ln

[
er f

(√
e−x

√
2

) ]
f (x) dx =

∞

∑
k=0

( α
k+1

)
(−1)k+1

2k+ 2
(iv)

Now the last integral will give

I5 =

∫ ∞

−∞
ln


1−

[
er f

(√
e−x

√
2

) ]2

 f (x)dx

=

∫ ∞

−∞
ln


1−

[
er f

(√
e−x

√
2

) ]2

e−

1
2 e−x√

e−x

√
2

π
αer f

(√
e−x

√
2

) 

1−

[
er f

(√
e−x

√
2

) ]2




α−1

dx

Let

z = 1−
[

er f

(√
e−x

√
2

) ]2

∫ ∞

−∞
ln


1−

[
er f

(√
e−x

√
2

) ]2

 f (x)dx = α

∫ 1

0
ln(z) zα−1dz

Therefore,

I5 =

∫ ∞

−∞
ln


1−

[
er f

(√
e−x

√
2

) ]2

 f (x)dx =− 1

α
(v)

Substituting (i), (ii), (iii), (iv) and (v) in Equation (30), the Continuous entropy can be expressed as the result (29).
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4 Order Statistics

Order statistics are very important in probability and statistics. Let X1:m ≤ X2:m ≤ ·· · ≤ Xm:m be the ordered sample of size
m from a continuous population with pd f f (x) and cd f F(x). The pdf of Xk:m, the kth order statistic is given by

fXk:m
(x) =

m!

(k− 1)!(m− k)!
f (x) [F(x)]k−1[1−F(x)]m−k

;k = 1,2, . . . ,m.

Then , the pdf of the kthorder T LMo random variable Xk:mcan be obtained using Equations (10) and (11) in the last
equation to give

fXk:m
(x) =

m!
√

2α

(k− 1)!(m− k)!π
e−

1
2 (e

−x+x)γ

(
1

2
,

e−x

2

) 
1−

γ2
(

1
2
, e−x

2

)

π




αk−1

1−


1−

γ2
(

1
2
, e−x

2

)

π




α



m−k

Using the binomial expansion, we obtain

fXk:m
(x) =

m!
√

2α

(k− 1)!(m− k)!π
e−

1
2 (e

−x+x)γ

(
1

2
,

e−x

2

) ∞

∑
i=0

(
m− k

i

)
(−1)i


1−

γ2
(

1
2
, e−x

2

)

π




α(k+i)−1

The series expansion (15) yields the pdf the kth order T LMo random variable Xk:m as follows

fXk:m
(x) =

m!
√

2α

(k− 1)!(m− k)!
e−

1
2 (e

−x+x)
∞

∑
i, j=0

(
m− k

i

)(
α (k+ i)− 1

j

)
(−1)i+ j

π j+1
γ2 j+1

(
1

2
,

e−x

2

)
(31)

Also, the nth moment for the kth order statistic with pdf fXk:m
(x) is given by

µ
(n)
k:m =

∫ ∞

−∞
xn fk:m(x)dx

Then , the nth moment for the kth order TLMo random variable Xk:m can be obtained using Equation (31)

µ
(n)
k:m =

∫ ∞

−∞
xn m!

√
2α e−

1
2 (e

−x+x)

(k− 1)!(m− k)!

∞

∑
i, j=0

(
m− k

i

)(
α (k+ i)− 1

j

)
(−1)i+ j

π j+1
γ2 j+1

(
1

2
,

e−x

2

)
dx

Again, using u = e−x

2
, we have

µ
(n)
k:m = 2

m!α

(k− 1)!(m− k)!

∞

∑
i, j=0

(
m− k

i

)(
α (k+ i)− 1

j

)
(−1)i+ j+n

π j+1

∫ ∞

0
[ln(2u)]nu

−1
2 e−uγ2 j+1(

1

2
,u)du

which yields

µ
(n)
k:m = 2

m!α

(k− 1)!(m− k)!

∞

∑
i, j=0

n

∑
r=0

(
m− k

i

)(
α (k+ i)− 1

j

)(n

r

) (−1)i+ j+n

π j+1
[ln(2) ]n−r

∫ ∞

0
u

−1
2 e−u[ln(u) ]rγ2 j+1

(
1

2
,u

)
du

(32)
Set

Br, j =

∫ ∞

0
u

−1
2 e−u[ln(u) ]rγ2 j+1(

1

2
,u)du

Using the series expansion

γ(α,x) = xα
∞

∑
m=0

(−x)m

(α +m)m!

and the identity of a power series raised to an integer, namely

(
∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ck,nxk
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in the last equation, we have

Br, j =
∞

∑
s=0

cs,2 j+1

∫ ∞

0
u j+se−u[ln(u) ]rdu

where cs,2 j+1 is defined in Section 3.3. The integral in Br, j can be calculated from the result given by Gradshteyn and

Ryzhik. [26], (p. 578, Section 4.358, integral 5). From the definition of Γr (p) = ∂ rΓ (p)
∂ pr , we have

Br, j =
∞

∑
s=0

cs,2 j+1Γr( j+ s+ 1)

This yields the nth moment of Xk:m given by

µ
(n)
k:m = 2

m!α

(k− 1)!(m− k)!

∞

∑
i, j,s=0

n

∑
r=0

(
m− k

i

)(
α (k+ i)− 1

j

)(n

r

) (−1)i+ j+n

π j+1
[ln(2) ]n−r

cs,2 j+1Γr( j+ s+ 1) (33)

5 Estimation of Parameters

In this section, we derive the maximum likelihood estimators (MLEs) and the observed information matrix of the TLMo

distribution. Suppose X1,X2, . . . ,Xn be a random sample from the TLMo distribution, then the log-likelihood function is
given by

l =n

[
(ln(α)+

1

2
ln(2)− ln(σ)− 1

2
ln(π) )

]
− 1

2

n

∑
i=1

e−(
xi−µ

σ )− 1

2

n

∑
i=1

(
xi − µ

σ
)

+
n

∑
i=1

ln


er f




√
e−(

xi−µ
σ )

√
2




 +(α − 1)

n

∑
i=1

ln


1−


er f




√
e−(

xi−µ
σ )

√
2






2



(34)

Then

∂ l

∂α
=

n

α
+

n

∑
i=1

ln


1−


er f




√
e−(

xi−µ
σ )

√
2






2

 (35)

∂ l

∂ µ
=

n

2σ
− 1

2

n

∑
i=1

e−(
xi−µ

σ )

σ
+

n

∑
i=1

e−
1
2 e−(

xi−µ
σ )

√
e−(

xi−µ
σ )

√
2πσer f

[√
e−(

xi−µ
σ )

√
2

] − (α − 1)
n

∑
i=1

e−
1
2 e−(

xi−µ
σ )

√
e−(

xi−µ
σ )
√

2
π er f

[√
e−(

xi−µ
σ )

√
2

]

σ


1−

[
er f

(√
e−(

xi−µ
σ )

√
2

) ]2



(36)

∂ l

∂σ
=− n

σ
+

1

2

n

∑
i=1

xi − µ

σ2
− 1

2

n

∑
i=1

e
−
(

xi−µ
σ

)

(xi − µ)

σ2
+

n

∑
i=1

e−
1
2 e

−
(

xi−µ
σ

)√
e
−
(

xi−µ
σ

)

(xi − µ)

√
2πσ2er f

[√
e
−
(

xi−µ
σ

)

√
2

]

− (α − 1)
n

∑
i=1

e−
1
2 e−(

xi−µ
σ )

√
e−(

xi−µ
σ )
√

2
π er f

[√
e−(

xi−µ
σ )

√
2

]
(xi − µ)

σ2


1−

[
er f

(√
e−(

xi−µ
σ )

√
2

) ]2



(37)

The MLEs (α̂ , µ̂ , σ̂)o f the parameters (α,µ ,σ) are obtained by solving the system of nonlinear equations (35) ,(36)
and (37). These equations cannot be solved analytically, but they require using numerical techniques such as Newton-
Raphson method.
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For interval estimation and testing of hypotheses of the parameters (α,µ ,σ) , we require the 3× 3 unit observed
information matrix

J(ψ) =




∂ 2l

∂α2

∂ 2l

∂α∂ µ

∂ 2l

∂α∂σ

∂ 2l

∂ µ∂α

∂ 2l

∂ µ2

∂ 2l

∂ µ∂σ

∂ 2l

∂σ∂α

∂ 2l

∂σ∂ µ

∂ 2l

∂σ2




whose elements are given by the following.

∂ 2l

∂α2
=− n

α

∂ 2l

∂α∂ µ
=

∂ 2l

∂ µ∂α
=−

n

∑
i=1

e−
1
2 A
√

A

√
2
π B

σ
(

1− [B]2
)

∂ 2l

∂α∂σ
=

∂ 2l

∂σ∂α
=−

n

∑
i=1

e−
1
2 A
√

A

√
2
π B(xi − µ)

σ2
(

1− [B]2
)

∂ 2l

∂ µ2
=− 1

2

n

∑
i=1

A

σ
+

n

∑
i=1

(
− e−AA

2πσ2[B]2
+

e−
1
2 A
√

A(1−A)

2
√

2πσ2B

)

+(α − 1)
n

∑
i=1


− 2e−AA[B]2

πσ2
(

1− [B]2
)2

− e−AA

πσ2
(

1− [B]2
) − e−

1
2 A
√

AB(1−A)
√

2πσ2
(

1− [B]2
)




∂ 2l

∂ µ∂σ
=

∂ 2l

∂σ∂ µ
=− n

2σ2
− 1

2

n

∑
i=1

(
− A

σ2
+

A(xi − µ)

σ3

)
+

n

∑
i=1

(
−e−

1
2 A
√

A√
2πσ2B

− e−AA(xi − µ)

2πσ3B
+

e−
1
2 A
√

A(xi − µ)(1−A)

2
√

2πσ3B

)

+(α − 1)
n

∑
i=1




e−
1
2 A
√

A

√
2
π B

σ2
(

1− [B]2
) − 2e−AA[B]2 (xi − µ)

πσ3
(

1− [B]2
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6 Applications

In this section, we use three real data sets. The first data set represents the remission times (in months) of a random sample
of 128 bladder cancer patients given by Lee and Wang [28] as: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,
43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87,
11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,
12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The second data set consists of 63 observations of the gauge lengths of 10 mm from Kundu & Raqab.[29], given as
follows: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532,
2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030,
3.125, 3.139,3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435,3.493, 3.501, 3.537,
3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225,4.395, 5.020.

The third data set consists of 106 observations representing that in addition to physical, chemical and biological factors
Some widely used pesticides are also harmful to humans. One of the commonly used pesticides is clorpirifos, which
harms some animals as well. A study conducted in Chile by Dra. Fernanda Cavieres of the University of Valparaı́so,
Chile, established that clorpirifos likely causes congenital malformations, which can be avoided by folic acid. One of the
variables that was measured in this study was the fetal height of the mouse (in millimeters). The data are :3.4, 3.4, 3.5,
3.5, 3.5, 3.5, 3.5, 3.6, 3.6, 3.6, 3.6, 3.6, 3.7 , 3.7, 3.7, 3.7, 3.7, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.9, 3.9, 3.9,
3.9, 3.9, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1,
4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.2, 4.2, 4.2, 4.2, 4.2, 4.2, 4.2, 4.2, 4.2, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.4,
4.4, 4.4, 4.5, 4.5, 4.5, 4.5, 4.5, 4.6, 4.6, 4.6, 4.6, 4.6, 4.6, 4.6, 4.7, 4.7, 4.7, 4.7, 4.8. This data was used by N. Balakrishnan
et al. [30].

We use these data sets to compare the fit of the new distribution, TLMo distribution with Beta Moyal distribution
(BMo) and Moyal distribution (Mo). First, we obtain the maximum likelihood estimates (MLEs) for the unknown
parameters of each distribution and then compare the results of different criteria , such as AIC (Akaike information
criterion), AICC (corrected Akaike information criterion), CAIC (consistent Akaike information criterion) and BIC
(Bayesian information criterion), where,

AIC = 2K − 2l

AICC =AIC+
2k(k+ 1)

n− k− 1
,

CAIC =
2kn

n− k− 1
− 2l,

BIC = klogn − 2l,

l denotes the log – likelihood function evaluated at MLEs, k is the number of parameters and n is the sample size.
The best model corresponds to the lowest AIC, AICC, CAIC and BIC values

Table 2: MLEs for TLMo, BMo, Mo models and the statistics AIC, AICC, CAIC, BIC for the first data set

Model α̂ â b̂ µ̂ σ̂ −ℓ AIC AICC CAIC BIC

T LMo 18.9858 —- —- -7.86458 5.41925 416.046 838.092 838.2855 838.2855 838.4136

BMo —- 1.71863 2.46764 -4.82708 8.5297 421.183 850.366 850.691 850.691 850.7948

Mo —- —- —- 4.72749 3.20053 423.276 850.552 850.648 850.648 850.7664

Table 3: MLEs for TLMo, BMo, Mo models and the statistics AIC, AICC, CAIC, BIC for the second data set

Model α̂ â b̂ µ̂ σ̂ −ℓ AIC AICC CAIC BIC

T LMo 0.749306 —- —- 3.15792 0.498941 56.4824 118.9648 119.372 119.372 118.363

BMo —- 0.580778 0.500737 -6.8271 2.86742 242.637 493.274 493.96 493.96 492.471

Mo —- —- —- 2.66284 0.332443 1743.96 3491.92 3492.12 3492.12 3491.52
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Table 4: MLEs for TLMo, BMo, Mo models and the statistics AIC, AICC, CAIC, BIC for the third data set

Model α̂ â b̂ µ̂ σ̂ −ℓ AIC AICC CAIC BIC

T LMo 4.72753 —- —- 3.57965 0.304893 37.263 80.526 80.761 80.761 80.601

BMo —- 0.402933 0.676748 −9.59398 6.62878 487.836 983.672 984.068 984.068 983.773

Mo —- —- —- 3.49064 0.0134665 2789 5582 5582.116 5882.116 5882.05

7 Conclusion

The present paper introduces a new distribution , i.e. the Topp-Leone Moyal (TLMo) distribution which is a new extension
of the Moyal distribution. Different properties of the new distribution , including the density, hazard rate functions, quantile
function, mode, nth moment, moment generating functions, mean deviation, incomplete moment, Lorenz, Bonferroni and
Zenga curves, Rényi entropy and continuous entropy and the moments of order statistics. The parameters of the new
distribution are estimated using the maximum likelihood approach and the information matrix is derived. Three real data
sets are applied to demonstrate that the Topp-Leone Moyal (TLMo) distribution can provide a better fit than the Moyal
(Mo) and beta Moyal (BMo) distributions.
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