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Abstract: In this paper, we introduce a general framework of the quintic non-polynomial spline method for solving the time fractional

biharmonic equation. Applying the concept of Von Neumann, the stability of the method is investigated and it is shown that the proposed

technique is unconditionally stable. The effectiveness and the accuracy of the method are illustrated using a test problem.
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1 Introduction

Biharmonic partial differential equation is considered to
be one of the important classes of partial differential
equations (PDEs) which arise in both physics and in the
modeling of many engineering applications. For example,
it appears in the bending behavior of a thin elastic
rectangular plate, as might be encountered in ship design
and manufacture, or the equilibrium of an elastic
rectangle can be formulated in terms of the biharmonic
equation. Also Stokes flow of a viscous fluid in a
rectangular cavity under the influence of the motion of the
walls can be described in terms of the solution of this
equation. A more recent application of the biharmonic
equation has been in the area of geometric and functional
design, where it has been used as a mapping to produce
efficient mathematical descriptions of surfaces in a
physical space. Let Ω be a bounded simply connected
region in the plane. We then consider the following
boundary value problem for the biharmonic equation

∆ 2u = f , on Ω ,

u = g, on ΓΓΓ ,

∂u

∂n
= h, on ΓΓΓ ,

where, ∆ 2, Ω is the biharmonic operator in the plane, ∂u
∂n

denotes the outward normal derivative of u on ΓΓΓ and
f ,g and h are the known functions, for more details of

this biharmonic partial differential equation, see Heydari
et al. [1]. Many of the applications of the biharmonic
equation stem from the consideration of the more
complex mechanical and physical processes involving
solids and fluids. One of the earliest applications of the
biharmoic equation deals with the classical theory of
flexure of elastic plates [2]. Fractional differential
equations are generalized from integer order ones, which
are obtained by replacing integer order derivatives by
fractional order ones [3]. The fractional differential
equations show many advantages over integer order
differential equations in the simulation of natural physical
processes and dynamical systems. Many researchers
introduced different effective methods for solving
fractional partial differential equations such as differential
transform method, the homotopy perturbation method, the
fractional complex and the variational iteration method,
and others, see for example [4] and references therein.
Recently, a computational method for approximating
solution of the above fractional biharmonic equation with
fractional derivatives in the domain Ω , concerning the
solution satisfying the equation by combining the shifted
Chebyshev polynomials together with their operational
matrix of fractional derivatives was proposed by Heydari
et al. [1]. In this paper, we shade lights on the attempt of
using non-polynomial spline to get an accurate numerical
solution to the time fractional biharmonic equation given
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by [5,6]

∂ α u(x, t)

∂ tα
+

∂ 4u(x, t)

∂x4
= g(x, t) , a ≤ x ≤ b, 0 ≤ α ≤ 1,

(1)
where g(x, t) is a source term. The boundary conditions
associated with (1) are assumed to be of the form

u(a, t) = β1 (t) , u(b, t) = β2 (t) , uxx(a, t) = β3 (t) ,

uxx(b, t) = β4 (t) t > 0,
(2)

and the initial condition is

u(x,0) = f (x) , a ≤ x ≤ b. (3)

The non-polynomial spline function, T5, as defined in [7]-
[12] has the form

T5 = span
{

1,x,x2
,x3

,sinω x,cosω x
}

,

where ω is the frequency of the trigonometric part of the
spline functions. A novel method depending on the use of
the non-polynomial splines T5 is derived in the first
section. In the second section, the truncation error of the
method is theoretically analyzed. In addition, in the third
section the stability analysis is discussed. Using Von
Neumann method, the proposed method is shown to be
conditionally stable. In the end we give a numerical
example for the biharmonic equation.

2 Analysis of the method

To derive the method, we select the mesh constants h and
k, so that we have the mesh points (xi, t j) which are
defined by xi = a + ih, i = 0,1, . . . ,N + 1 and t j = jk,

j = 0,1, . . . . Let Zi
j be an approximation to u(xi, t j),

obtained by the segment Pi(x, t j) of the mixed spline

function passing through the points (xi,Z
j
i ) and

(xi+1,Z
j
i+1). Each segment has the form [4]

Pi(x, t j) =ai(t j)sinω(x− xi)+ bi(t j)cosω(x− xi)

+ ci(t j)(x− xi)
3 + di(t j)(x− xi)

2

+ ei(t j)(x− xi)+ fi(t j), i = 0,1, · · · ,N.

(4)

To obtain expressions for the coefficients of (4) in terms of

Zi
j, Z

j
i+1, Di

j, D
j
i+1, Si

j, and S
j+1
i , we first define

Pi(xi, t j) = Z
j
i ,Pi(xi+1, t j) = Z

j
i+1,Pi

(1)(xi, t j) = D
j
i ,

Pi
(1)(xi+1, t j) = D

j
i+1,Pi

(4)(xi, t j) = S
j
i ,Pi

(4)(xi+1, t j) = S
j
i+1.

(5)

Using Eqs. in (5) and Eq. (4), we get

bi + fi = Z
j
i ,

aisinθ + bicosθ + cih
3 + dih

2 + eih+ fi = Z
j
i+1,

aiω + ei = D
j
i ,

aiθcosθ − biθ sinθ + 3cih
2 + 2dih+ ei = D

j
i+1,

ω4bi = S
j
i ,

ω4aisinω +ω4bicos = S
j
i+1,

where θ = ωh. After solving the previous six equations,
we get expressions as follow:

ai =
h4

(

S
j
i+1 − S

j
i cosθ

)

θ 4sinθ} , bi =
h4S

j
i

θ 4
,

ci =−
2
(

Z
j
i+1 −Z

j
i

)

h3
+

D
j
i+1 +D

j
i

h2
+

2h
(

S
j
i+1 − S

j
i

)

θ 4

−
h
(

S
j
i+1 − S

j
i

)

(1+ cosθ )

θ 3sinθ
,

di =
3
(

Z
j
i+1 −Z

j
i

)

h2
−

D
j
i+1 + 2D

j
i

h
−

3h2
(

S
j
i+1 − S

j
i

)

θ 4

+
h2

(

S
j
i+1(2+ cosθ )− S

j
i (1+ 2cosθ )

)

θ 3sinθ
,

(6)

ei = D
j
i −

h3
(

S
j
i+1 − S

j
i cosθ

)

θ 3 sinθ
, fi = Z

j
i −

h4S
j
i

θ 4
.

From the continuity condition of the second and third

derivatives at x = xi, that is P
(n)
i−1(xi, t j) = P

(n)
i (xi, t j) where

n=2 and 3, we obtain the relations:

− (ω2sinω)ai−1 − (ω2cosω)bi−1 + 6hci−1+ 2di−1

=−ω2bi + 2di,
(7)

−(ω3cosθ )ai−1 +(ω3sinθ )bi−1 + 6ci−1 =−ω3ai + 6ci.

(8)

Using expressions (6), Eqs. (7) and (8) give us

D
j
i+1 + 4D

j
i +D

j
i−1 =

3
(

Z
j
i+1 −Z

j
i−1

)

h
−

3h3
(

S
j
i+1 − S

j
i−1

)

ω4

+
h3

(

S
j
i+1 − S

j
i−1

)

(2+ cosθ )

θ 3sin θ
,

(9)

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 507-513 (2019) / www.naturalspublishing.com/Journals.asp 509

D
j
i+1 −D

j
i−1 =

2
(

Z
j
i+1 − 2Z

j
i +Z

j
i−1

)

h

+
h3

(

S
j
i+1 − 2S

j
i cosθ + S

j
i−1

)

6θ sinθ

−
2h3

(

S
j
i+1 − 2S

j
i + S

j
i−1

)

θ 4

+
h3

(

S
j
i+1 − 2S

j
i + S

j
i−1

)

(1+ cosθ )

θ 3sin θ
.

(10)

To eliminate D’s, we use the continuity of the second and
third derivatives at x = xi−1 and x = xi+1, that are

P
(n)
i−2(xi−1, t j) = P

(n)
i−1(xi−1, t j),

and

P
(n)
i (xi+1, t j) = P

(n)
i+1(xi+1, t j),

where n = 2 and 3. In other words i is replaced by i-1 and
i+1 in Eqs. (9) and (10) respectively:

D
j
i + 4D

j
i−1 +D

j
i−2 =

3
(

Z
j
i −Z

j
i−2

)

h
−

3h3
(

S
j
i − S

j
i−2

)

θ 4

+
h3

(

S
j
i − S

j
i−2

)

(2+ cosθ )

θ 3sinθ
,

(11)

D
j
i −D

j
i−2 =

2
(

Z
j
i − 2Z

j
i−1 +Z

j
i−2

)

h

+
h3

(

S
j
i − 2S

j
i−1cosθ + S

j
i−2

)

6θ sinθ

−
2h3

(

S
j
i − 2S

j
i−1+ S

j
i−2

)

θ 4

+
h3

(

S
j
i − 2S

j
i−1 + S

j
i−2

)

(1+ cosθ )

θ 3sin θ
,

(12)

D
j
i+2 + 4D

j
i+1+D

j
i =

3
(

Z
j
i+2 −Z

j
i

)

h

−
3h3

(

S
j
i+2 − S

j
i

)

θ 4

+
h3

(

S
j
i+2 − S

j
i

)

(2+ cosθ )

θ 3sinθ
,

(13)

D
j
i+2 −D

j
i =

2(Z j
i+2 − 2Z

j
i+1 +Z

j
i )

h

+
h3(S

j
i+2 − 2S

j
i+1cosθ + S

j
i )

6θ sinθ

−
2h3(S

j
i+2 − 2S

j
i+1+ S

j
i )

θ 4

+
h3(S

j
i+2 − 2S

j
i+1+ S

j
i )(1+ cosθ )

θ 3sinθ
.

(14)

If we multiply Eqs. (10) and (13) and add Eqs. (10)-
(14), we obtain the following relation

(1− 1)D
j
i+2+(4− 4)D

j
i+1+(1+ 1− 1− 1)D

j
i +(−4+ 4)×

D
j
i−1 +(−1+ 1)D j

i−2 =
1

h
[(−3+ 2)Z j

i−2+(8− 4)Z j
i−1

+(−16+ 3+ 2+3+2)Z
j
i +(8− 4)Z

j
i+1+(−3+ 2)Z

j
i+2]

+ h3[(
3

θ 4
− 2+ cosθ

θ 3sinθ
+

1

6θ sinθ
− 2

θ 4
+

1+ cosθ

θ 3sin θ
)×

(S j
i−2 + S

j
i+2)]+ h3[(

4

6θ sinθ
− 8

θ 4
+

4+ 4cosθ

θ 3sinθ

− 2cosθ

6θ sinθ
+

4

θ 4
− 2+ 2cosθ

θ 3sinθ
)(S j

i−1 + S
j
i+1)]

+ h3
[( −8cosθ

6θsinθ + 16
θ 4 − 8+8cosθ

θ 3sinθ
− 3

θ 4 +
2+cosθ
θ 3sinθ

+ 1
6θsinθ − 2

θ 4

+ 1+cosθ
θ 3sinθ

− 3
θ 4 +

2+cosθ
θ 3sinθ

+ 1
6θsinθ − 2

θ 4 +
1+cosθ
θ 3sinθ

)

S
j
i

]

.

After simple calculations, the last equation becomes

Z
j
i−2 − 4Z

j
i−1 + 6Z

j
i − 4Z

j
i+1 +Z

j
i+2 = γS

j
i−2 +β S

j
i−1

+ δS
j
i +β S

j
i+1+ γS

j
i+2, i = 0,1, · · · ,N + 1,

(15)

where

γ = h4(
−1

θ 3sinθ
+

1

6θ sinθ
+

1

θ 4
),

β = h4(
2(1+ cosθ)

θ 3sinθ
− cosθ − 2

3θ sinθ
− 4

θ 4
),

and

δ = h4(−2(1+ 2cosθ)

θ 3sin θ
− 4cosθ − 1

3θ sinθ
+

6

θ 4
).

3 Remarks

1-The above relations that enable us to choose γ, β and
δ can be computed using simple calculations by

expanding Eq. (15) in terms of u
j
i and its derivatives.

Hence, the local truncation error of Eq. (15) can be
obtained as follows:

T ∗ j
i =(u

j
i−2 + u

j
i+2)− 4(u

j
i−1+ u

j
i+1)

+ 6u
j
i − γ(D4

xu
j
i−2 +D4

xu
j
i+2)

−β (D4
xu

j
i−1 +D4

xu
j
i+1)− δD4

xu
j
i ,
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T ∗ j
i =(h4−(δ+2γ+2β ))D4

xu
j
i+h2(

h4

6
−(β+4γ))D6

xu
j
i

+h4(
504h4

8!
− 1

12
(β+16γ))D8

xu
j
i + + · · · .

2-As ω → 0, that is θ → 0, then

(γ,β ,δ )→ ( h4

120
,

26h4

120
,

66h4

120
), and Eq.(15) reduce to the

following ordinary quintic spline:

Z
j
i−2 − 4Z

j
i−1 + 6Z

j
i − 4Z

j
i+1 +Z

j
i+2 =

h4

120
(S j

i−2 + 26S
j
i−1+ 66S

j
i + 26S

j
i+1+ S

j
i+2),

i = 0,1, · · · ,N + 1,

Using Eq. (1), we can write S
j
i in the form

S
j
i =

∂ 4Z
j
i

∂x4
= g

j
i −

∂ α Z
j
i

∂ tα
. (16)

Using the Caputo partial fractional derivative [11-13],
we have

∂ α Z(xi, t j)

∂ tα
=

1

Γ (1−α)

∫ t j+1

t0

∂Z(xi,s)

∂ t
(t j+1 − s)−α

ds,

t j+1 = ( j+ 1)k, 0 < α < 1.

(17)

Using the concept of to the short memory principle
[15], the fractional derivative with the lower limit t0 is
approximated by the fractional derivative with moving
lower limit t j+1 − ∆ t , which means taking into account
the behavior of Z(x, t) in the interval [t j+1 − ∆ t, t j+1],
where ∆ t is the memory length.

t0Dα
t j+1

Z(x, t)≈ (t j+1 −∆ t)Dα
t j+1

Z(x, t), t j+1 > t0 +∆ t

where t j = t j+1 −∆ t, then

∫ t j+1

t0

∂Z(xi,s)

∂ t
(t j+1 − s)−α ds ≈

∫ t j+1

t j

∂Z(xi,s)

∂ t
(t j+1 − s)−α ds,

j = 0,1,2, · · ·

and

∂ α Z(xi, t j)

∂ tα
=

1

Γ (1−α)

∫ t j+1

t j

∂Z(xi,s)

∂ t
(t j+1 − s)−α

ds,

0 < α < 1,

(18)

since (t j+1 − s)−α
does not change sign on [t j, t j+1], the

weighted mean value theorem for integrals [13], can be
applied to each integration in the last summation as
follows [10,16],

∫ t j+1

t j

∂Z(xi,s)

∂ t
(t j+1 − s)−α

ds =

∂Z(xi,s
∗)

∂ t

∫ t j+1

t j

(t j+1 − s)−α
ds, t j < s∗ < t j+1.

This implies that

∫ t j+1

t j

∂Z(xi,s)

∂ t
(t j+1 − s)−α

ds ≈ Z
j
i −Z

j−1
i

k

∫ t j+1

t j

(t j+1 − s)−α
ds

= [
Z

j
i −Z

j−1
i

k
][
(t j+1 − t j)

1−α

1−α
]

=
1

kα (1−α)
[Z

j
i −Z

j−1
i ].

After that, the partial fractional derivative (18) of the
discrete approximation can be written as follows:

∂ α Z(xi, t j)

∂ tα
≈ 1

λ
[Z j

i −Z
j−1
i ], 0 < α < 1, (19)

where λ = (1−α)Γ (1−α)kα . From formula (19) S
j
i can

be expressed as in the form

S
j
i = g

j
i −

1

λ
[Z

j
i −Z

j−1
i ] (20)

Using Eq. (1), we can write S
j
i−2,S

j
i−1, S

j
i ,S

j
i+1 and S

j
i+2,

in the form:

S
j
i−2 =

∂ 4Z
j
i−2

∂x4
= (g j

i−2 −
∂ α Z

j
i−2

∂ tα
),

S
j
i−1 =

∂ 4Z
j
i−1

∂x4
= (g

j
i−1 −

∂ α Z
j
i−1

∂ tα
)

S
j
i =

∂ 4Z
j
i

∂x4
= (g

j
i −

∂ α Z
j
i

∂ tα
),

S
j
i+1 =

∂ 4Z
j
i+1

∂x4
= (g

j
i+1 −

∂ α Z
j
i+1

∂ tα
)

S
j
i+2 =

∂ 4Z
j
i+2

∂x4
= (g j

i+2 −
∂ α Z

j
i+2

∂ tα
).

These equations can be discretized in the form

S
j
i−2 ≈ (g j

i−2 − (
Z

j
i−2 −Z

j−1
i−2

λ
)),

S
j
i−1 ≈ (g

j
i−1 − (

Z
j
i−1 −Z

j−1
i−1

λ
)),

S
j
i ≈ (g j

i − (
Z

j
i −Z

j−1
i

λ
)),

S
j
i+1 ≈ (g

j
i+1 − (

Z
j
i+1 −Z

j−1
i+1

λ
)),

S
j
i+2 ≈ (g

j
i+2 − (

Z
j
i+2 −Z

j−1
i+2

λ
)).

(21)
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The use of Eq. (21) in Eq. (15) gives us the following
system

Z
j
i−2 − 4Z

j
i−1 + 6Z

j
i − 4Z

j
i+1 +Z

j
i+2 =

γ(g
j
i−2 −

Z
j
i−2 −Z

j−1
i−2

λ
)+β (g

j
i−1−

Z
j
i−1 −Z

j−1
i−1

λ
)

+ δ (g j
i −

Z
j
i −Z

j−1
i

λ
)+β (g j

i+1 −
Z

j
i+1 −Z

j−1
i+1

λ
)

+ γ(g j
i+2 −

Z
j
i+2 −Z

j−1
i+2

λ
),

or

AiZ
j
i−2 +BiZ

j
i−1 +CiZ

j
i +DiZ

j
i+1 +EiZ

j
i+2 =

γZ
j−1
i−2 +βZ

j−1
i−1 +δZ

j−1
i +βZ

j−1
i+1 + γZ

j−1
i+2 + τ

j
i , i = 2, . . . ,N,

(22)

where

Ai = λ + γ,

Bi =−4λ +β ,

Ci = 6λ + δ ,

Di =−4λ +β ,

Ei = λ + γ,

and

τ j
i = λ (γg

j
i−2 +β g

j
i−1+ δg

j
i +β g

j
i+1+ γg

j
i+2).

System (22) consists of N-2 equations in N+2

unknowns. Now, 4-additional equations are needed to get
a solution to this system. From conditions (2) these
equations are obtained. The first two boundary conditions
in (2) are replaced by

Z
j
0 = β0,Z

j
N+1 = β1, j ≥ 0, (23)

but the last two boundary conditions in (2) are discretized
by the following equations

45Z
j
0 −154Z

j
1 +214Z

j
2 −156Z

j
3 +61Z

j
4 −10Z

j
5 = 12h2 ∂ 2Z

j
0

∂x2

= 12h2L0 −10Z
j
N−4 +61Z

j
N−3 −156Z

j
N−2 +214Z

j
N−1

−154Z
j
N +45Z

j
N+1 = 12h2

∂ 2Z
j
N+1

∂x2
= 12h2L1, j ≥ 0.

(24)

4 Stability analysis

Applying the Von Neumann concept, the stability analysis
of the technique can be investigated. According to this
method the solution of the difference equation (22) has a
solution of the form [13,16,17]

Z
j
i = ζ jexp(qϕ ih) , (25)

where ϕ is the wave number, q =
√
−1, h is the element

size, and ζ j is the amplification factor at time level j.

Inserting Z
j
i given by (25) in scheme (22), we obtain

ζ j{Aiexp((i− 2)qϕh) +Biexp((i− 1)qϕh) +Ciexp(iqϕh)

+Diexp((i+ 1)qϕh) +Eiexp((i+ 2)qϕh) }=
ζ j−1{γexp((i− 2)qωh) +β exp((i− 1)qϕh) + δexp(iqϕh) +

β exp((i+ 1)qϕh) + γexp((i+ 2)qϕh) }.

After simple calculations, we obtain

ζ=

γexp(−2qϕh) +βexp(−qϕh) +δ+βexp(qϕh) +γexp(2qϕh)

Aiexp(−2qϕh) +Biexp(−qϕh) +Ci+Diexp(qϕh) +Eiexp(2qϕh)
.

(26)

Using Euler’s formula, that is

exp[ qφ ] = cosφ + qsinφ ,φ = ϕh.

Eq.(26) becomes

ζ =
2γcos2 φ + 2β cosφ + δ

2λ cos2 φ + 2γcos2 φ + 2β cosφ + δ − 8λ cosφ + 6λ
.

(27)
Since the condition of stability is |ε| ≤ 1. We can rewrite
this condition as

ζ 2 ≤ 1. (28)

From Eq. (27), inequality (28) becomes

[2γ cos2φ + 2β cos2φ + δ ]2 ≤
[2λ cos2φ + 2γ cos2φ + 2β cosφ + δ

− 8λ cosφ + 6λ ]2,

(29)

Squaring and arranging Eq. (29) with some
simplification of the resulting equation, we get

− 24β δ cosφ − 8β λ cos2φ cosφ + 32β λ cos2 φ

− 24γλ cos2φ − 8γλ cos2 2φ + 32γλ cos2φ cosφ

− 12δλ − 4δλ cos2φ + 16δλ cosφ − 36λ 2

− 24λ 2 cos2φ − 4λ 2 cos2 2φ + 96λ 2 cosφ

+ 32λ 2 cos2φ cosφ − 64λ 2 cos2 φ ≤ 0.

(30)

Dividing by ω the inequality (30) takes the form:

32β cos2 φ + 32γ cos2φ cosφ + 16δ cosφ

+ 96λ cosφ + 32λ cos2φ cosφ ≤ 24β cosφ

+ 8β cos2φ cosφ + 24γ cos2φ + 8γ cos2 2φ

+ 12δ + 4δ cos2φ + 36λ + 24λ cos2φ

+ 4λ cos2 2φ + 64λ cos2 φ ,

(31)
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since

φ = ϕh, ω = (1− a)G(1− a)ka
,

the inequality (31) is satisfied. For h being small
enough and k < h,δ > 0,β > 0 and γ < 0, 0 = a = 1 ,
the condition of stability (31) is satisfied.

5 Numerical example

We obtain numerical solutions of Eq. (1) for a test
example. Given the time fractional biharmonic problem
[15];

∂ α u

∂ tα
+

∂ 4u

∂x4
=

4!

Γ (5−α)
t4−α(sin4 πx)+ 256π4t4(sin4 πx)

with0 ≤ x ≤ 1, t ≥ 0, 0 ≤ α ≤ 1,

(32)

where the initial conditions

u(x,0) = 0 0 ≤ x ≤ 1, (33)

and the boundary conditions

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0. (34)

This problem has an exact solution given as

u(x, t) = t4sin(4px) (35)

Using a variety of time steps and for fixed values for
h and k ( k = 0.0005) and for certain values ofδ ,β and
ω the numerical results obtained by implementing our
technique are summarized in the tables below where all
calculations are carried out using Mathematica. The
accuracy is measured by computing the maximum
absolute error.

Table 1h = 0.025,α = 0.1,δ + 2ω + 2β =

h4,β + 4γ = h4

6
,andβ + 16γ = 12×504h4

8!
Time 0.05 0 .1 0 .15 0.2

L8 − error 6.98625×10−8 1.11768×10−6 5.65779×10−6 1.78802x10−5

Table2h = 0.025,α = 0.5,δ +2γ +2β = h4
,β +4γ =

h4

6
,andβ + 16γ = 12×504h4

8!
Time 0.05 0.1 0.15 0.2

L8 − error 7.06453×10−8 1.12688×10−6 5.77173×10−6 1.81617 x10−5

Table 3h = 0.025,α = 0.99,δ + 2γ + 2β =

h4,β + 4γ = h4

6
,andβ + 16γ = 12×504h4

8!
Time 0.05 0 .1 0 .15 0.2

L8 − error 6.70731×10−8 1.0931×10−6 5.56942×10−6 1.78369x10−5

Table 4h = 0.025,α = 1.0,δ + 2ω + 2β =

h4,β + 4γ = h4

6
,andβ + 16γ = 12×504h4

8!
Time 0.05 0 .1 0 .15 0.2

L8 − error 6.65568×10−8 1.0882×10−6 5.55146×10−6 1.76143 x10−5

In the following, we introduce some figures to
illustrate the behavior of the numerical and exact
solutions for some values of the parameters h,α,δ ,γ and
β with varying time level step.

Fig. 1: The behavior of exact solution and numerical solution at

α= 0.1

Fig 1h = 0.025,α = 0.1,δ + 2ω + 2β = h4,β + 4γ =
h4

6
,andβ + 16γ = 12×504h4

8!
.

Fig 2 h = 0.025,α = 0.5,δ + 2γ + 2β = h4,β + 4γ =
h4

6
,andβ + 16γ = 12×504h4

8!

Fig. 2: The behavior of exact solution and numerical solution at

α= 0.5

Fig 3h = 0.025,α = 0.99,δ +2γ +2β = h4,β +4γ =
h4

6
,andβ + 16γ = 12×504h4

8!
From Fig. 1, Fig 2 and Fig 3, respectively, it can be

seen that the proposed method is very accurate for solving
the time-dependent fractional biharmonic equation
because the numerical solution tends to the exact
solutions as the fractional order of the time-derivative is
close to α = 1.

6 Conclusion

A numerical technique based on quintic non-polynomial
spline method for solving the time dependent fractional
biharmonicequation is suggested. The stability analysis
has revealed that the meth od is unconditionally stable.
The numerical results clarify that the proposed method
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Fig. 3: The behavior of exact solution and numerical solution at

α= 0.99

has a high accuracy when compared with the exact
solutions.
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