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Abstract: In this paper, we investigate two inverse source problems for degenerate time-fractional partial differential equations in

rectangular domains. The first problem involves a space-degenerate partial differential equation and the second one involves a time-

degenerate partial differential equation. Solutions to both problems are expressed in series expansions. For the first problem, we obtained

solutions in the form of Fourier-Legendre series. Convergence and uniqueness of solutions have been discussed. Solutions to the second

problem are expressed in the form of Fourier-Sine series and they involve a generalized Mittag-Leffler type function. Moreover, we have

established a new estimate for this generalized Mittag-Leffler type function. The obtained results are illustrated by providing example

solutions using certain given data at the initial and final times.
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1 Introduction

It is known that the problem of finding a solution of a partial differential equation (PDE) along with all necessary
conditions is called a direct problem. Whereas, if not all characteristics (source term, coefficients or order of the PDE
itself, initial or boundary conditions) of the problem are completely known, then we deal with an inverse problem.
Depending on the missing information about the characteristics of the problem, we have different types of inverse
problems , such as inverse-coefficient [1], [2], inverse problems of determining the order of differential equations [3],
inverse source problems [4], inverse problems for determining the unknown boundary condition [5] and inverse initial
problems [6]. The missing information will be determined using additional data. Solutions to inverse problems can be
obtained through analytical and numerical methods as well. Analytical methods include, for example, spectral method
[7], the homotopy perturbation method [8] and regularization method [9]. For numerical methods, one may see, for
example, [10] and [11]. However, due to their ill-posedness and nonlinearity, inverse problems are very challenging from
a pure mathematical point of view. For more details, we refer the reader to [12] and [13].

From application point view, inverse source problems for PDEs have numerous applications in many real-life processes
[14]. For instance, in heat conduction problems [4] and [15], pollution detection problem [16], ... etc. Moreover, there is a
growing interest in studying fractional differential equations not only due to their importance in modeling many real-life
problems, but also for their theoretical challenges from mathematical point of view. For more details about fractional
differential equations and their applications, we refer the reader to [17] and [18]. Hence, there is also a growing interest
in studying inverse problems for time-fractional PDEs [19], [20], [21] and [22]. In these works, authors mainly addressed
PDEs without singularity. Inverse problems of space-dependent source for fractional PDEs with singularity were the
subject of several works like [24], [25], [26] and [27]. Inverse source problems have been also considered for the diffusion
and sub-diffusion equations for positive operator [28]. In a recent work by Kirane and Torebek [29], authors investigated
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inverse problems for the non-local heat equation with involution of space variable. Inverse source problems with time-
dependent source term for integer order or time-fractional diffusion equation have been also investigated, see for example,
[30] and [31]. Moreover, inverse problems with a constant unknown parameter for degenerate evolution equations with
the Riemann-Liouville derivative have been recently studied in [32], where the authors proved a unique solvability and
well-posedness issues for linear inverse problems in Banach spaces.

In this paper, we consider inverse source problems for degenerate time-fractional PDEs. In particular, we consider
two problems, one with space-degenerate PDE and the second with time-degenerate PDE. Inverse source problem for
time-fractional space-degenerate PDE can be related to heat source identification problems where thermal conductivity
in the heat conduction equation depends on space variable only, see [30] for example. On the other hand, inverse source
problem for time-degenerate PDE might be used in mathematical modelling of groundwater pollution as in [33].

The rest of the paper is organized as follows: First, we present some preliminaries on fractional integrals and
derivatives, Mittag-Leffler type functions and their properties and Legendre polynomials. Then, we present our main
work related to the investigation of the two inverse source problems for time-fractional degenerate PDEs.

2 Preliminaries

2.1 Fractional integral and differential operators

If α /∈N∪{0}, the Riemann-Liouville fractional integral Iα
ax f of order α ∈C is defined by [[17], p.69]

Iα
ax f (x) =

1

Γ (α)

x
∫

a

f (t)dt

(x− t)1−α
(x > a, ℜ(α)> 0) (1)

and the Riemann-Liouville and the Caputo fractional derivatives of order α are defined by [[17], pp.70, 92]

RLDα
ax f (x) =

dn

dxn
In−α
ax f (x) =

1

Γ (n−α)

dn

dxn

x
∫

a

f (t)dt

(x− t)α−n+1
(x > a, n = [ℜ(α)]+ 1), (2)

CDα
ax f (x) =

1

Γ (n−α)

x
∫

a

y(n) (t)dt

(x− t)α−n+1
(x > a, n = [ℜ(α)]+ 1) , (3)

respectively.
The Riemann-Liouville and the Caputo derivatives are related by the following [[17], p.91]:

RLDα
ax f (x) =C Dα

ax f (x)+
n−1

∑
k=0

f (k) (a)

Γ (k−α + 1)
(x− a)k−α (n = [ℜ(α)]+ 1, x > a) . (4)

Here Γ (·) is the well-known Euler’s gamma-function [[17], p.24].

2.2 Mittag-Leffler type functions

A two-parameter function of the Mittag-Leffler is defined by a series expansion [[18], p.17] as follows

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
(α > 0, β > 0) , (5)

which satisfies the following relation [[17], p.45] and formula of differentiation [[18], p.21], respectively

Eα ,β (z)− zEα ,α+β (z) =
1

Γ (β )
, (6)

and

RLD
γ
0t

(

tαk+β−1E
(k)
α ,β (λ tα)

)

= tαk+β−γ−1E
(k)
α ,β−γ (λ tα) , (7)

where E
(k)
α ,β

(t) = dk

dtk Eα ,β (t) denotes the classical derivative of order k.

The Mittag-Leffler type function of two-parameters also satisfies the inequality presented in the following theorem.
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Theorem 1.(Theorem 1.6 in [18]) If α < 2, β is an arbitrary real number, µ is a real number such that πα/2 < µ <
min{π ,πα} and C is a real constant, then

∣

∣Eα ,β (z)
∣

∣≤ C

1+ |z| , (µ ≤ argz ≤ π) , |z| ≥ 0.

It also appears in the solution of the following Cauchy problem.

Theorem 2.(Theorem 4.3 in [17]) Let n− 1 < α < n(n ∈ N) and let 0 ≤ γ < 1 bu such that γ ≤ α . Also let λ ∈ R. If

f (x) ∈Cγ [a,b], then the Cauchy problem

(CDα
ax y)(x)−λ y(x) = f (x) (a ≤ x ≤ b, n− 1 < α < n; n ∈N, λ ∈ R) ,

y(k)(a) = bk (bk ∈ R; k = 0,1,2, ...,n− 1)

has a unique solution y(x) ∈C
α ,n−1
γ [a,b] and this solution is given by

y(x) =
n−1

∑
j=0

b j(x− a) jEα , j+1 [λ (x− a)α ]+

x
∫

0

(x− t)α−1Eα ,α [λ (x− t)α ] f (t)dt.

Here C
α ,n−1
γ [a,b] =

{

y(x) ∈Cn−1[a,b], (CDα
axy)(x) ∈Cγ [a,b]

}

.
Now, we recall the following generalized Mittag-Leffler type function, which was introduced by Kilbas [23]:

Eα ,m,n(z) = 1+
∞

∑
k=1

k−1

∏
j=0

Γ (α( jm+ n)+ 1)

Γ (α( jm+ n+ 1)+ 1)
zk,

where α, n ∈ C, m ∈ R such that ℜ(α) > 0, m > 0, α( jm+ n) /∈ Z− ( j ∈ N0).
As a particular case, if m = 1, we have

Eα ,1,n(z) = Γ (αn+ 1)Eα ,αn+1(z).

We have established a new estimate for this generalized Mittag-Leffler type function. This result is presented in the
following lemma:

Lemma 1. If αn+ 1 > c̄, m,α > 0 and |z|< 1, then

|Eα ,m,n(z)| ≤
1

1−|z| ,

where c̄ is a point of minimum of Γ (x) at x > 0, precisely, 1 < c̄ < 2.

Proof:

Assume that α[(k− 1)m+ n]+ 1 > c̄ for k = 1,2,3, .... If we choose α and n such that αn+ 1 > c̄, then the above
given inequality will be true for all k = 1,2,3, .... This condition guarantees that

Γ [α((k− 1)m+ n)+ 1]

Γ [α((k− 1)m+ n+ 1)+ 1]
< 1.

Hence,

|Eα ,m,n(z)| ≤ 1+ |z|+ |z|2+ |z|3 + ...=
∞

∑
k=0

|z|k.

If |z|< 1, then according to geometric series properties, the above series will converge to 1
1−|z| . This completes the proof

of the Lemma.

Lemma 2.[[34], p.107] If α, m and n are real numbers such that the condition

α > 0, m > 0, α(im+ n)+ 1 6=−1,−2,−3, ...(i = 0,1,2,3, ...)

is satisfied, then Eα ,m,n(z) is an entire function of variable z.
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2.3 Legendre polynomials

The following Legendre equation

(1− x2)y′′(x)− 2xy′(x)+λ y(x) = 0 (8)

has a bounded solution in [−1,1] only if λ = n(n+ 1), n = 0,1,2, ... and it has a form

y(x) = Pn(x) =
1

2n ·n!

dn(x2 − 1)n

dxn
(n = 0,1,2, ...),

where Pn(x) is Legendre polynomial [35].

Below we give some statements considering certain properties of this polynomial for the sake of the reader. Some of
these properties will be also used later in our paper.

Theorem 3([35], p.508). Pn(x) is a polynomial of degree n. Pn(x) is an odd function or even function according to whether

n is odd or even. The following identities hold for n = 1,2, ...
a) P′

n(x) = xP′
n−1(x)− nPn−1(x);

b) Pn(x) = xPn−1(x)+
x2−1

n
P′

n−1(x).

Theorem 4([35], p.509). The Legendre polynomials satisfy the following identities and relations:

c) P′
n+1(x)−P′

n−1(x) = (2n+ 1)Pn(x) (n ≥ 1);

d) d
dx

[

(1− x2)P′
n(x)

]

+ n(n+ 1)Pn(x) = 0;

e) Pn+1(x) =
(2n+1)xPn(x)−nPn−1(x)

n+1
(n ≥ 1);

f) Pn(1) = 1, Pn(−1) = (−1)n;

g) 1−x2

n
(P′

n)
2 +P2

n = 1−x2

n
(P′

n−1)
2 +P2

n−1 (n ≥ 1);

h) 1−x2

n
(P′

n)
2 +P2

n ≤ 1 (n ≥ 1, |x| ≤ 1);
i) |Pn(x)| ≤ 1 (|x| ≤ 1);

j)
1
∫

−1

Pn(x)Pm(x)dx = 0 (n 6= m);

k)
1
∫

−1

[Pn(x)]
2dx = 2

2n+1
;

l) xn can be expressed as a linear combination of P0(x),P1(x), ...,Pn(x).

Theorem 5([35], p.509). The Legendre polynomials Pn(x)(n = 0,1,2, ...) form an orthogonal system in the interval −1 ≤
x ≤ 1, and ‖Pn(x)‖2 = 2

2n+1
.

Any arbitrary piecewise continuous function f in −1 ≤ x ≤ 1 can be expressed in the form of a Fourier series with respect
to the system {Pn(x)}:

∞

∑
n=0

cnPn(x), cn =
( f ,Pn)

‖Pn‖2
=

2n+ 1

2

1
∫

−1

f (x)Pn(x)dx, (9)

which is called Fourier-Legendre series.

Theorem 6([35], p.511). If f (x) is very smooth for −1 ≤ x ≤ 1, then the Fourier-Legendre series of f (x) converges

uniformly to f (x) for −1 ≤ x ≤ 1.

Note that there is no condition of periodicity or any other condition is imposed on f (x) at x = ±1, as in analogous
to trigonometric series. This is due to the symmetry of Legendre polynomials. Finally, we recall the following theorem
regarding Legendre polynomials:

Theorem 7([35], p.511). The Legendre polynomials form a complete orthogonal system for the interval [−1,1].
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3 Inverse source problem for space-degenerate PDE

3.1 Problem formulation

We formulate an inverse source problem for space-degenerate partial differential equation with time-fractional Caputo
derivative as follows:

Problem 1. Find a pair of functions {U(t,x),h(x)}, which satisfies the equation

CDα
0tU(t,x) =

[

(1− x2)Ux

]

x
+ h(x) (10)

in the domain Ω = {(t,x) : −1 < x < 1, 0 < t < T} together with the initial condition:

U(0,x) = v(x), −1 ≤ x ≤ 1, (11)

and the over-determining condition:

U(T,x) = w(x), −1 ≤ x ≤ 1, (12)

such that U,Ux are bounded at x =−1,x = 1. Here, 0 < α < 1, T > 0 and v(x),w(x) are given functions.

3.2 Existence and Convergence of the Solution

Solving the homogeneous equation corresponding to (10) using separation of variables leads to the Legendre equation
(8). According to Theorem 7, the Legendre polynomials form a complete orthogonal system in [−1,1], so the solution set
{U(t,x),h(x)} and the given data v(x),w(x) can be represented in a form of Fourier-Legendre series as follows:

U(t,x) =
∞

∑
n=0

Un(t)Pn(x), h(x) =
∞

∑
n=0

hnPn(x), (13)

v(x) =
∞

∑
n=0

vnPn(x), w(x) =
∞

∑
n=0

wnPn(x), (14)

where the coefficients Un(t), hn are the unknowns to be found and the coefficients vn, wn, according to (9), are given by

vn =
2n+ 1

2

1
∫

−1

v(x)Pn(x)dx, wn =
2n+ 1

2

1
∫

−1

w(x)Pn(x)dx, n = 0,1,2, ...

Now, substituting the above series representations into (10) - (12), we obtain the following equation for Un(t),hn:

CDα
0tUn(t)+λnUn(t) = hn n = 0,1,2, ... (15)

subjected to the following conditions:

Un(0) = vn, Un(T ) = wn, n = 0,1,2, ... (16)

Solutions to equation (15) are found to be (See Theorem 2)

U0(t) = c0 +
h0

Γ (α + 1)
tα

Un(t) = cnEα (−λntα)+
hn

λn

, n = 1,2, ...

where c0, cn are unknown constants. Using the conditions (16), we get

c0 = v0, h0 =
Γ (α + 1)

T α
(w0 − v0)

cn =
vn −wn

1−Eα (−λnT α)
, hn = λn (vn − cn) , n = 1,2, ...
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Hence, we have

U0(t) = v0 +(w0 − v0)
( t

T

)α

, Un(t) =
1−Eα (−λntα)

1−Eα (−λnT α)
(wn − vn)+ vn, n = 1,2, ...

h0 = (w0 − v0)
Γ (α + 1)

T α
, hn =

λn

1−Eα (−λnT α)
(wn − vn)+λnvn, n = 1,2, ...

Substituting back, we get the following expressions for U(t,x) and h(x):

U (t,x) =
tα

T α
(w0 − v0)+ v(x)+

∞

∑
n=1

1−Eα (−λntα)

1−Eα (−λnT α)
(wn − vn)Pn(x),

and

h(x) =
Γ (α + 1)

T α
(w0 − v0)−

d

dx

[(

1− x2
)

v′(x)
]

+
∞

∑
n=1

λn
wn − vn

1−Eα (−λnT α)
Pn(x).

To complete the proof of existence of a formal solution, we need to prove the uniform convergence of the series
appearing in the above expressions for U(t,x),h(x) as well as the corresponding series in [(1− x2)Ux]x and CDα

0tU(t,x).
We start with U(t,x),h(x) by considering the following estimates:

|U (t,x)| ≤ |w0|+ |v0|+ |v(x)|+C1

∞

∑
n=1

(|wn|+ |vn|) ,

and

|h(x)| ≤ Γ (α + 1)

T α
(|w0|+ |v0|)+

∣

∣

∣

[(

1− x2
)

v′(x)
]′∣
∣

∣
+C2

∞

∑
n=1

n(n+ 1)(|wn|+ |vn|) ,

where C1,C2 are positive constants. Here, we have used the following properties of the Mittag-Leffler function and
Legendre polynomials:

Eα ,β (λ tα)≤ M, 0 < α ≤ β ≤ 1, 0 ≤ t ≤ T < ∞,

|Pn(x)| ≤ 1, |x| ≤ 1,

for some positive constant M. Clearly the convergence of the above series depends on finding appropriate estimates for vn

and wn. This can be done by utilizing the following properties of Legendre polynomials:

(2n+ 1)Pn = P′
n+1 −P′

n−1

Pn(1) = 1, Pn(−1) = (−1)n,

and using integration by parts to get

vn =−1

2

1
∫

−1

v′(x)(Pn+1(x)−Pn−1)dx =−1

2

[

(v′,Pn+1)− (v′,Pn−1)
]

.

Hence, we have

|vn| ≤
1

2

[∣

∣(v′,Pn+1)
∣

∣+
∣

∣(v′,Pn−1)
∣

∣

]

≤ 1

2

(

||v′|| · ||Pn+1||+ ||v′|| · ||Pn−1||
)

≤ 1

2
||v′||

( √
2

(2n+ 3)
1
2

+

√
2

(2n− 1)
1
2

)

≤ ||v′||
√

2

(2n− 1)
1
2

.

Here, we have used the Schwartz inequality |( f ,g)| ≤ || f || · ||g|| and ||Pn(x)||2 =
2

2n+ 1
. Repeating the above process

one more time, one will arrive to

|vn| ≤
4
√

2

(2n− 3)
3
2

||v′′||.

A similar estimate can also be obtained for wn. Clearly, these estimates on using Weierstrass M-test would be enough
to ensure the uniform convergence of the series representation of U(t,x) provided v,w ∈C(−1,1) and v′′,w′′ ∈ L2(−1,1).
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However, the convergence of the series representation of h(x) would require integration by parts two more times since the
series includes the term n(n+ 1). This would lead to the following estimates for vn,wn:

| fn| ≤
6
√

2

(2n− 7)
7
2

|| f (4)||, f = v,w. (17)

Hence, the series representation of h(x) converges uniformly provided v,w ∈C3(−1,1) and v(4),w(4) ∈ L(−1,1). Finally,
the series representations of CDα

0tU(t,x) and [(1− x2)Ux]x are given by

CDα
0tU (t,x) =

Γ (α + 1)

T α
(w0 − v0)+

∞

∑
n=1

n(n+ 1)Eα (−λntα)

1−Eα (−λnT α)
(wn − vn)Pn(x),

and

[(1− x2)Ux]x =
[(

1− x2
)

v′(x)
]′−

∞

∑
n=1

1−Eα (−λntα)

1−Eα (−λnT α)
(n(n+ 1))(wn − vn)Pn(x),

and they have the following estimates

|CDα
0tU (t,x) | ≤ Γ (α + 1)

T α
(|w0|+ |v0|)+C3

∞

∑
n=1

n(n+ 1)(|wn|+ |vn|) ,

and

|[(1− x2)Ux]x| ≤ |
[(

1− x2
)

v′(x)
]′ |+C4

∞

∑
n=1

n(n+ 1)(|wn|+ |vn|) ,

where C3,C4 are positive constants. Hence, the estimate (17) along with the corresponding conditions on v and w would
be enough to ensure the uniform convergence of the series representations of CDα

0tU(t,x) and [(1− x2)Ux]x.

3.3 Uniqueness of the solution

Suppose that there are two solution sets {u1 (t,x) ,h1 (x)} and {u2 (t,x) ,h2 (x)} to the inverse problem (10)- (12). Denote

U (t,x) = u1 (t,x)− u2 (t,x) ,

and
h(x) = h1 (x)− h2 (x) .

Then, the functions U (x, t) and h(x) clearly satisfy equation (10) and the homogeneous conditions

U (0,x) = 0, U (T,x) = 0, x ∈ [−1,1] (18)

Let us now introduce the following:

Un (t) =

1
∫

−1

U (t,x)Pn(x)dx, n = 0,1,2, ..., (19)

hn =

1
∫

−1

h(x)Pn(x)dx, n = 0,1,2, ..., (20)

Note that the homogeneous conditions in (18) lead to

Un(0) =Un(T ) = 0, n = 1,2, ..., (21)

Differentiating equation (19) gives

CDα
0tUn (t) =

1
∫

−1

[(

1− x2
)

Ux

]

x
Pn(x)dx+ hn,

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


46 N.Al-Salti, E.T.Karimov: Inverse problems for degenerate...

which on integrating by parts twice reduces to

CDα
0tUn (t)+ n(n+ 1)Un(t) = hn.

One can then easily show that this equation together with the conditions in (21) imply that

hn = 0, un (t)≡ 0.

Therefore, due to the completeness of the system {Pn(x)} in [−1,1], we must have

h(x)≡ 0, U (t,x)≡ 0, x ∈ [−1,1], t ∈ [0,T ],

which ends the proof of uniqueness.

3.4 Main result

The main result for the inverse problem (10) - (12) can be summarized in the following theorem:

Theorem 8.Let v,w ∈ C3(−1,1) and v(4),w(4) ∈ L2(−1,1). Then, a unique solution to the inverse problem (10) - (12)

exists and it can be written in the form

U (t,x) =
tα

T α
(w0 − v0)+ v(x)+

∞

∑
n=1

1−Eα (−λntα)

1−Eα (−λnT α)
(wn − vn)Pn(x),

and

h(x) =
Γ (α + 1)

T α
(w0 − v0)−

d

dx

[(

1− x2
)

v′(x)
]

+
∞

∑
n=1

λn
wn − vn

1−Eα (−λnT α)
Pn(x).

where λn = n(n+ 1) and

vn =
2n+ 1

2

1
∫

−1

v(x)Pn(x)dx, wn =
2n+ 1

2

1
∫

−1

w(x)Pn(x)dx, n = 0,1,2, ...

This result will be illustrated by a simple example solution in the next section.

3.5 Example solution

Here, we consider the following choices for the functions v and w:

v(x) = 0, and w(x) = w0 +w2(3x2 − 1).

Solutions corresponding to this choice of conditions are given by

U(x, t) = w0

tα

T α
+w2

1−Eα(−6tα)

1−Eα(−6Tα)
(3x2 − 1) and h(x) = w0

Γ (α + 1)

T α
+

6w2(3x2 − 1)

1−Eα(−6T α).

These solutions are illustrated in Figures (1) - (2) for w0 = 1,w2 =−0.5 and T = 1. Figure (1) shows the solution profile
at different times and the source function for a fixed value of the fractional order. The effect of the over-determining
condition is seen in the solution profile and in the shape of the source function. Moreover, the solution is increasing with
time and reaching its maximum when t = T = 1. The effect of the order of the fractional derivative α is illustrated in
Figure (2). It shows a slight effect on the source term, while its effect is more apparent in the solution profile. It shows
that the solution is decreasing with the increase of the fractional order.
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Fig. 1: Graphs of U(x, t) at different times (left) and h(x) (right) for α = 0.6.

Fig. 2: Graphs of U(x, t) at t = 0.5 (left) and h(x) (right) for different values of α .

4 Inverse source problem for time-degenerate PDE

In this section, we investigate the following time-degenerate partial differential equation with time-fractional Riemann-
Liouville derivative:

RLDα
0t ū(t,x) = tβ ūxx(t,x)+ h̄(x), (22)

where α,β ∈ R such that 0 < α < 1, β ≥ 0.
In particular, we consider the following inverse source problem:
Problem 2. Find a pair of functions

{

ū(t,x), h̄(x)
}

, which are regular solutions to equation (22) in the domain Φ =

{(t,x) : 0 < x < 1, 0 < t < T̄} satisfying the boundary conditions

ū(t,0) = 0, ū(t,1) = 0, 0 ≤ t ≤ T̄ (23)

together with the initial condition:

I1−α
0t ū(t,x)

∣

∣

t=0
= ϕ̄(x), 0 ≤ x ≤ 1 (24)
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and the over-determining condition:

ū(T̄ ,x) = ψ̄(x), 0 ≤ x ≤ 1. (25)

Here I1−α
0t (·) is the Riemann-Liouville fractional integral of order 1−α , ϕ̄(x) and ψ̄(x) are given functions such that

ϕ̄(0) = ϕ̄(1) = ψ̄(0) = ψ̄(1) = 0.

We use the method of separation of variables for the corresponding homogeneous equation of (22) and obtain the
following boundary problem with respect to space-variable

X ′′(x)−λ X(x) = 0, X(0) = 0, X(1) = 0, 0 ≤ x ≤ 1, (26)

which is a well-known Sturm-Liouville eigenvalue problem and it has a complete orthonormal system of eigenfunctions
Xn(x) = sinnπx, n = 1,2, ...

We now look for solution to Problem 2 in the following form:

ū(t,x) =
∞

∑
k=1

ūk(t)sin kπx, h̄(x) =
∞

∑
k=1

h̄k sinkπx, (27)

where ūk and h̄k are unknown coefficients.

Substituting (27) into (22), we will get the following ordinary differential equation of fractional order with respect to
time-variable:

RLDα
0t ūk(t)− (kπ)2tβ ūk(t) = h̄k. (28)

Initial condition (24) will be given as

I1−α
0t ūk(t)

∣

∣

t=0
= ϕ̄k, (29)

where ϕ̄k = 2
1
∫

0

ϕ̄(x)sin kπxdx is the Fourier coefficient of the function ϕ̄(x). Similarly, over-determining condition (25)

leads to

ūk(T̄ ) = ψ̄k (30)

with ψ̄k = 2
1
∫

0

ψ̄(x)sinkπxdx.

Solution of the Cauchy problem (28)-(29) can be written as [17] (see page 247)

ūk(t) = ϕ̄ktα−1E
α ,1+ β

α ,1+ β−1
α

(

−(kπ)2tα+β
)

+
h̄k

Γ (α + 1)
tα E

α ,1+ β
α ,1+ β

α

(

−(kπ)2tα+β
)

. (31)

We have to note that (31) will be a solution to problem (28)-(29) if β >−{α}, which is valid in our case, since β ≥ 0.

In order to find h̄k, we use the condition in (30), which leads to

h̄k =
Γ (α + 1)

T̄ α E
α ,1+ β

α ,1+ β
α

(

−(kπ)2T̄ α+β
)

[

ψ̄k − ϕ̄kT̄ α−1E
α ,1+ β

α ,1+ β−1
α

(

−(kπ)2T̄ α+β
)]

. (32)

Substituting (31) and (32) into (27) we obtain

ū(t,x) =
∞

∑
k=1

[

ϕ̄ktα−1E
α ,1+ β

α ,1+ β−1
α

(

−(kπ)2tα+β
)

+
h̄k

Γ (α + 1)
tαE

α ,1+ β
α ,1+ β

α

(

−(kπ)2tα+β
)

]

sinkπx,

h̄(x) =
∞

∑
k=1

Γ (α + 1)

T̄ α E
α ,1+ β

α ,1+ β
α

(

−(kπ)2T̄ α+β
)

[

ψ̄k − ϕ̄kT̄ α−1E
α ,1+ β

α ,1+ β−1
α

(

−(kπ)2T̄ α+β
)]

sinkπx.

Having an appropriate estimate for the generalized Mittag-Leffler type function appeared in the above solution would
in general contribute to the uniform convergence of the above series solutions. However, our estimate in Lemma 1 is not
applicable in this case, because the argument of the Mittag-Leffler type function appeared in the solution does not satisfy
condition of the Lemma 1. Moreover, appropriate choices of the given conditions will also ensure the convergence of
solutions as illustrated the following example solution.
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Fig. 3: Graphs of ū(t,x) at different times (left) and h̄(x) (right) for α = β = 0.5.

4.1 Example solution

For the sake of the illustration, we consider the following choices of ψ̄(x) and ϕ̄(x):

ψ̄(x) = sinπx, and ϕ̄(x) = 0.

Hence, the corresponding solutions are

ū(t,x) =
tα E

α ,1+ β
α ,1+ β

α

(

−π2tα+β
)

T̄ α E
α ,1+ β

α ,1+ β
α

(

−π2T̄ α+β
) sinπx and h̄(x) =

Γ (α + 1)

T̄ α E
α ,1+ β

α ,1+ β
α

(

−π2T̄ α+β
) sin πx.

The obtained solutions are illustrated graphically in Figures (3) - (5) for T̄ = 1. Figure (3) shows the solution profile at
different times and the source function for a fixed value of the fractional order α . Similar to the space-degenerate case, the
effect of the over-determining condition is seen in the solution profile and in the shape of the source function. However,
the solution in this case is decreasing with time and reaching its minimum when t = T̄ = 1. Whereas, it is increasing with
the increase of the fractional order α and reaching it maximum when α = 1 as shown in Figure (4). On the other hand,
the source term profile shows a decreasing behavior with the increase of α . The parameter β has similar effects to those
of α on the solution and source term profiles as illustrated in Figure (5).
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Fig. 4: Graphs of ū(x, t) at t = 0.5 (left) and h̄(x) (right) for different values of α , and with β = 0.5

Fig. 5: Graphs of ū(x, t) at t = 0.5 (left) and h̄(x) (right) for different values of β , and with α = 0.5

5 Conclusion

We have considered two inverse source problems for degenerate time-fractional PDEs, which are related to practical
problems, namely, heat conduction and groundwater pollution processes. Formal solutions to these problems have been
obtained in a form of series expansion using orthogonal basis which are eigenfunctions of self-adjoint spectral problems
obtained by considering the corresponding homogeneous equation and using the method of separation of variables. For
the first problem, which includes a space-degenerate fractional PDE, solutions were represented in a form of Fourier-
Legendre series. Convergence of solutions were obtained using properties of Legendre polynomials and by imposing
certain conditions on the given data. Uniqueness of solution was obtained using the completeness property of the system
of Legendre polynomials. The second problem includes a time-degenerate fractional PDE. Solutions to this problem were
obtained in a form of Fourier-Sine series which include a generalized Mittag-Leffler type function. In both cases, the
obtained results were illustrated by providing example solutions using certain given data.

Finally, It is worth mentioning here that we have established for the first time a new estimate for a generalized Mittag-
Leffler type function as stated in Lemma 1.
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