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Abstract: The decline in the unemployment rate is an indication of the success of economic development in a country, so it needs to

be managed to a stability point. The unemployment rate is influenced by various factors (predictor variables). One of the most widely

used models if there are many predictor variables is regression model, which is how to know the pattern of functional relationships

between one response variable with one or more predictor variables. In this study, a nonparametric regression model is developed by

expanding the smoothing Spline model. Based on the results obtained, the model can capture cases of unemployment rate well and can

make good predictions based on the data obtained.
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1 Introduction

In general, the national and regional development puts
more emphasis on the economy in order to improve the
standard of living and prosperity among the community.
Specific understanding of the characteristics and potential
differences of a region is important to be considered in
implementing the economic development at both regional
and national levels. Every region is demanded to be able
to carefully identify its characteristics and potentials so
that the objective of economic development can be
achieved and right on the target. East Java is the third
province that becomes the national development
barometer, the first is Jakarta and followed by West Java.
High economic growth is the main target of every region
in implementing national development. The rate of Gross
Domestic Product (GDP) is one of the indicators used to
measure the magnitude of economic growth at the
national level, while the rate of Regional Domestic
Product (GRDP) is used for the regional level. In
addition, another important thing that becomes a
benchmark for economic development in a country is the
unemployment rate.

East Java Economy in 2015, measured using Gross
Regional Domestic Product (GDP) on the basis of current
prices, reached IDR. 1,689.88 trillion while the GDP at
constant prices reached IDR. 1,331.42 trillion. There was
a decrease in the growth of East Java Economy from
5.86% in 2014 to 5.44 in 2015. From all production
categories, only the supply of electricity and gas
experienced a decrease by 3.00%. The highest growth rate
was found in mining and quarrying sectors at 7.92%;
followed by provision of accommodation food and
beverage at 7.91%. In terms of expenditure, the highest
growth rate was achieved by the inter-regional export net
at 13.39%. The unemployment problem also causes the
level of national income and the level of prosperity of the
people not to reach maximum potential. The high
unemployment rate in Indonesia is caused by the
increasing population which is not balanced with the
growth of existing business fields. Based on Statistics
Indonesia (BPS) publication, it was noted that the
unemployment rate in East Java had increased by 0.28%
compared to the previous year.

Econometrics is a branch of science integrating
economics, mathematics, and statistics. Qualitative
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economic phenomenon is mathematically modeled
without verification of empirical theory. Statistics play a
role in collecting data, turning mathematical models into
econometric models, then statistical methods are used to
estimate the parameters and suitability of the model
formed.

One of the most frequently used models in
econometrics is a regression model. The model is applied
to figure out the pattern of functional relationships
between one variable to another or between one variable
and multiple variables. The use of multiple regression
analysis to determine the factors that influence the
unemployment rate makes an important contribution
because it can be used as a consideration in government
policy making, see [1,2,3,4]. Based on these studies it
was obtained that factors that influence the
unemployment rate include investment, number of
workers, level of education, Gross Domestic Product
(GDP) and economic growth. In addition to multiple
regression models, the use of other statistical models such
as Weibull regression models and log-linear models to
find out the factors that influence the unemployment rate
have been widely developed by researchers, see, among
others, [5,6,7]. Based on the model, in addition to the
previously mentioned factors, the Human Development
Index (HDI) and income distribution also influence the
unemployment rate.

Regression analysis can be used to predict and to
figure out the pattern of the relationship. There are three
approaches used in regression analysis in estimating the
regression curve, namely parametric regression,
nonparametric regression, and semi-parametric
regression. Most researchers used parametric regression
in modeling. There are very strong and rigid assumptions
in the parametric regression approach. The form of the
regression curve known includes linear, quadratic, cubic,
polynomial, exponents and so on. Besides that, previous
knowledge about the characteristics of the data is needed
in order to obtain good modeling. So that in this study,
unemployment rate is modeled by nonparametric
regression. Meanwhile, in the nonparametric regression
model, the form of the regression curve is assumed to be
unknown. The regression curve is assumed to be smooth,
which means that it is in a certain function space function
(Hilbert space, Sobolev space, Banach space, Entropi
space, etc) [8]. There is a difference between parametric
and nonparametric approach in which the parametric
approach tends to follow certain patterns, while the latter
has more freedom to find its regression curve patterns
which makes the nonparametric approach very flexible
and objective. The regression approach that is widely
used by researchers is Spline and Kernel. The benefit of
using Spline is its ability to handle data patterns that
change at certain intervals. Whereas if the data plot is
unclear and the standard deviation is large, the Kernel
approach is used, see [9].

In some real cases, there is often a different data
pattern between predictors. Thus, this study develops a

new method in nonparametric regression that combine
smoothing Spline and Kernel approach, which we then
call the Mix Spline-Kernel (M S-K). This approach is
developed to be able to handle different data patterns
between each predictor in which there are predictors that
follow the Spline data pattern and some other predictors
follow the Kernel data pattern.

2 Materials

Spline Function
Spline function is a function that is widely used in
numerical methods for interpolation purposes. In
statistics, this function is also used for the purposes of
modeling relationships between variables. The Spline
function is built based on the polynomial form. In
general, the form of order polynomials m is given by:

℘m =

{

p(x) : p(x) =
m

∑
i=1

cix
i−1,x,c1,c2, . . . ,cm ∈ R

}

(1)
At relatively small data intervals, polynomial

functions work well. However, if the data interval is
getting bigger, the polynomial function is not always able
to approach the data properly [10]. One important type of
polynomial cut is the polynomial Spline. Spline as a data
approach was introduced by Whittaker in 1923. Whereas
Spline which is based on an optimization problem, was
developed by Reinch in 1967 [11,12]. Smoothing Spline
is obtained if the estimation of the regression curve is
resulted by minimizing the penalized least square

S ( f ) = n−1
n

∑
i=1

(yi − f (xi))
2 +λ

b
∫

a

(

f (m)
)2

dx (2)

with a ≤ x1 ≤ x2 ≤ ...≤ xn ≤ b

The first term is the sum of the residual squares, and
the second term is a penalty for function f with λ as the
smoothing parameter.

Solution S ( f ) is a natural Spline polynomial with
degree 2m − 1 that no longer interpolates y1,y2, . . . ,yn,
but passes it smoothly with the smoothing parameters λ
[13]. The smoothing parameter λ acts to regulate the
smoothness of the function f . If λ → 0 , then the form of
the function f is getting more rough by interpolating the
points of observation. Conversely, if λ → ∞ , then the
form of the f function approaches a straight line, as in
linear regression.

Kernel Function
A function K : R → R is called a kernel function if the
function is continuous, symmetrical, limited and

∫ ∞

−∞
K(t)dt = 1
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From this definition, if K is a nonnegative function then K

is also interpreted as a function of chance density (density
function). Generally, Kernel K with bandwidth α are
defined by:

Kα (ti) =
1

α
K
( t

α

)

; −∞ < t < ∞, α > 0 (3)

Paired data is given (ti,yi) in which the relationship
pattern can be expressed in the regression model
yi = h(ti)+ εi . The regression curve h is approached by
the Kernel regression curve. One of the estimators that
can be used to approach the h curve in nonparametric
regression is to use the Kernel estimator, see [14].

ĥα (t) = n−1
n

∑
i=1

Wα i (t)yi (4)

with Wα i (t) =
α−1K

(

t−ti
α

)

n−1
n

∑
j=1

α−1K
(

t−ti
α

) .

K is the Kernel function. Several types of kernel functions
are commonly used: uniform, triangle, Epanechnikov,
quartic, tricube, triweight, Gaussian, quadratic and
cosine, but in this study the Kernel function to be used is
the Gaussian Kernel

K(t) =
1√
2π

e−
1
2 t2

.

ĥα (t) is a Kernel regression estimation function, t is a
predictor variable whose value is not observed but is used
to estimate, ti is the predictor variable, and α is the width
of the bandwidth.

The Kernel approach depends on bandwidth α , which
functions to control the smoothness of the estimation
curve. Choosing the right bandwidth is very important in
Kernel function [15,16,17,18]. The too large bandwidth
produces a very smooth estimation curve and it leads to
the mean of the variable response, whereas, if the
bandwidth is too small, it produces a less smooth
estimation curve in which the estimation results reach the
data.

3 Method

Penalized Maximum Likelihood Estimation (PMLE)
Multiple regression analysis is used to find out the pattern
of the relationship between the response variable and the
predictor variable. Given a set of data pairs
(x1i, ...,xpi, t1i, ..., tsi,yi) then the general form of a
nonparametric regression model is given by:

yi = m(x1i, ...,xpi, t1i, ..., tqi)+ εi (5)

The regression curve m in equation (5) is unknown and
additive, so that it can be written in the form of:

m(x1i, ...,xpi, t1i, ..., tsi) =
p

∑
j=1

f j(x ji)+
s

∑
k=1

hk(tki) (6)

Function f and h are respectively approached using
Spline dan Kernel functions. Function f j is assumed to be
smooth and in the Sobolev space. Estimator m̂ by using M
S-K model is obtained through PMLE optimization by
completing likelihood function

L
(

a,b,σ2 |λ ,θ ,α
)

=
n

∏
i=1

[

1√
2πσ2

exp

(

− ε2
i

2σ2

)]

(7)

with a constraint function

b j
∫

a j

(

f j
(m) (x j)

)2

dx j ≤ϒj,ϒj ≥ 0 (8)

The estimation of the nonparametric regression model
with the M S-K approach is obtained by the following
steps:

•Step 1. Forming an additive regression curve m has an
equation model (6)
•Step 2. Assume nonparametric regression curve f is in
the Sobolev space f j ∈W m

2 (a j,b j)
•Step 3. Determining the f curve with the Spline
function
•Step 4. Determining the h curve using the Kernel
function
•Step 5. Obtaining the Penalty component:

p

∑
j=1

λ j

b j
∫

a j

(

f j
(m) (x j)

)2

where λ j is a smoothing parameter
•Step 6. Obtaining maximum likelihood function based
on the results in steps 3,4 and 5
•Step 7. Completing the penalized maximum likelihood
function based on the results in step 6

4 Results and Discussion

This section discusses the completion of the M S-K
model. Firstly, the regression curve f is approached using
Spline function, then the regression curve h is approached
using Kernel function. After the estimator for each curve
f and h, then the M S-K model estimator is completed.

Estimated Spline Function
The form of the regression curve f in (6) is unknown and
assumed to be in the Sobolev space. Suppose Hilbert
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space H is decomposed H = H0 ⊕H1, where H0⊥H1. H0

is finite-dimensional space on the basis ϕ1,ϕ2, . . . ,ϕm and
H1 is with reproducing Kernel ϑ (x,xi). Smoothing Spline
equation is obtained by forming curve f (x) in the form
Li f where f is a member of H and Li f is a linear function
limited to H. If vi is a functional representation Li then
based on Riesz representation theory, it is obtained:

Li f = f (xi) = 〈vi, f 〉
Liϕv =ϕv (xi)= 〈vi,ϕv〉 and Liϑℓ =ϑℓ (xi)= 〈vi,ϑℓ〉=

〈ϑℓ,ϑℓ〉
So that the regression curve f has the basis

ϕ1,ϕ2, . . . ,ϕn and ϑ1,ϑ2, . . . ,ϑn stated as:

f =
m

∑
v=1

avϕv +
n

∑
ℓ=1

bℓϑℓ (9)

to get the smoothing Spline estimator in the
multipredictors cases, an extension is made to the
equation (9)

f(x) =
p

∑
j=1

m

∑
v=1

a jvϕ jv +
n

∑
i=1,ℓ=1

bi

p

∑
j=1

θ jϑ j (10)

or can be written in the form of vectors and matrices:

f(x) = Ta+Sθ b (11)

with
a =

(

a1 a2 · · · ap

)′

b =
(

b1 b2 . . . bn

)′

T =
(

T1 T2 . . . Tp

)

Sθ = θ1S1 +θ2S2 + . . .+θpSp

Sk =
{

ϑ j (xi,xℓ)
}n,n

i=1,ℓ=1
Tj =

{

ϕ jv (x ji)
}n,m

i=1,v=1

Estimated Kernel Function
From equation (4), Kernel functions are given in the form:

hαk
(tki) = n−1

n

∑
i=1

Wαki (ti)yi (12)

for each k = 1,2, . . . ,s, for k = 1 we obtain

hα1
(ti) = n−1

n

∑
i=1

Wα1i (ti)yi because it applies for

i = 1,2, ...,n then:

hα1
(t1) =Wα11 (t1)y1 +Wα12 (t1)y2 + . . .+Wα1n (t1)yn

hα1
(t2) =Wα11 (t2)y1 +Wα12 (t2)y2 + . . .+Wα1n (t2)yn

...

hα1
(t1) =Wα11 (tn)y1 +Wα12 (tn)y2 + . . .+Wα1n (tn)yn

in the form of a matrix written:









hα1
(t1)

hα2
(t2)
...

gα1
(tn)









=











n−1Wα11 (t1) · · · n−1Wα1n (t1)
n−1Wα11 (t2) · · · n−1Wα1n (t2)

...
. . .

...

n−1Wα11 (tn) · · · n−1Wα1n (tn)



















y1

y2

...
yn









h1 = Z1 (α1)y

for k = 2,3, ...,s then we obtain the following function:

s

∑
k=1

hk = Z1 (α1)y+Z2 (α2)y+ ...+Zs (αs)y

= (Z1 (α1)+Z2 (α2)+ ...+Zs (αs))y

= Z(α)y

Then we obtain the following equation

s

∑
k=1

hk = Z(α)y (13)

Then the constraint function (8) can be written as :

p

∑
j=1

λ j

b j
∫

a j

(

f j
(m) (x j)

)2

dx j = λ
p

∑
j=1

∥

∥Pj f j

∥

∥

2

= λ
p

∑
j=1

(

b′θ jS jb
)

= λ b′Sθ b (14)

Theorem 4.1. If the sum of the squared errors from
nonparametric regression model is given by equation (5),
the error model is multivariate normal distribution with
zero mean and E (εε ′) = σ2I, where L

(

a,b,σ2 |λ ,θ ,α
)

is a likelihood function, then estimator MLE for the
parameter vector a and b is obtained from optimization of
: max

a∈Rpm

b∈Rn

{

L
(

a,b,σ2 |λ ,θ ,α
)}

=

min
a∈Rpm

b∈Rn

{

‖y−Ta−Sθ b−Z(α)y‖2
}

Proof. Given nonparametric regression model (5), ε
normal multivariate distribution with E (ε) = 0 and
E (εε ′) = σ2I, then likelihood function
L
(

a,b,σ2 |λ ,θ ,α
)

is given by:

L
(

a,b,σ2 |λ ,θ ,α
)

=
n

∏
i=1

[

1√
2πσ2

exp

(

− ε2
i

2σ2

)]

=
(

2πσ2
)− n

2 exp

(

− 1

2σ2
‖ε‖2

)

Based on equation (11) and (13), we obtain the
likelihood function:

=
(

2πσ2
)− n

2 exp

(

− 1

2σ2
‖y−Ta−Sθ b−Z(α)y‖2

)
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Using MLE method, estimator for parameter a,b is
obtained from optimization:

max
a∈Rpm

b∈Rn

{

(

2πσ2
)− n

2
exp

(

− 1

2σ2
‖y−Ta−Sθ b−Z(α)y‖2

)}

If likelihood function L
(

a,b,σ2 |λ ,θ ,α
)

is transformed
into logarithm:

l
(

a,b,σ2 |λ ,θ ,α
)

= lnL
(

a,b,σ2 |λ ,θ ,α
)

=−n

2
ln
(

2πσ2
)

− 1

2σ2
‖y−Ta−Sθ b−Z(α)y‖2

Maximum optimization occurs when the component

‖y−Ta−Sθ b−Z(α)y‖2
has a minimum value, so the

equation applies:
max

a∈Rpm

b∈Rn

{

L
(

a,b,σ2 |λ ,θ ,α
)}

=

min
a∈Rpm

b∈Rn

{

‖y−Ta−Sθ b−Z(α)y‖2
}

(15)

Theorem 4.2. If a regression model is given (5), the error
model is multivariate normal distribution with zero mean
and E (εε ′) = σ2I, and estimator PMLE for parameter a,b
is obtained from optimization Theorem 1, then the MLE
estimator for the regression curve mixture m̂ is given by:

m̂ = Aλ ,α y

with
Aλ ,α= T

(

T′M−1T
)−1

T′M−1 (I−Z(α))

+Sθ M−1
(

I−T
(

T′M−1T
)−1

T′M−1
)

(I−Z(α))+Z(α)

Proof. Based on Theorem 1 and the solution of the
constraint function in equation (14), the PMLE estimator
for the mixed regression m̂ is given by:
max

a∈Rpm

b∈Rn

{

n−1(y−Ta−Sθ b−Z(α)y)′

(y−Ta−Sθ b−Z(α)y)+λ b′Sθ b}
Deriving the partial in equation above to a and b, we
obtain:

â =
(

T′M−1T
)−1

T′M−1 (I−Z(α))y (16)

b̂ =M−1

(

I−T
(

T′M−1T
)−1

X′M−1

)

(I−Z(α))y

(17)

Based on equation (16),(17) and (13), the estimator for
Spline component and Kernel component are obtained:

f̂ = Tâ+Sθ b̂ (18)

ĥ = Z(α)y (19)

Based on equation (18) and (19), we obtain following
M S-K model:

m̂ = f̂+ ĥ

= Tâ+Sθ b̂+Z(α)

m̂ =
{

T
(

T′M−1T
)−1

T′M−1 (I−Z(α)) +

Sθ M−1
(

I−T
(

T′M−1T
)−1

(I−Z(α))
)

+Z(α)
}

y

m̂ =Aλ ,αy (20)

5 Smoothing Parameter and Bandwidth

Selection

In nonparametric regression, one of the important things
is to find the estimator m̂ that is most suitable for a set of
data. This is related to the smoothing parameters and
appropriate bandwidth parameters. If the smoothing
parameter value and bandwidth parameters are very
small, then it provide a very rough estimator [11].
Conversely, if the smoothing parameter value and
bandwidth parameters are very large, it will produce a
very smooth estimator. As a result, smoothing parameters
and optimal bandwidth parameters are needed to obtain
the most suitable estimator for the data. One method in
selecting the optimal smoothing parameters in the spline
estimator is Cross Validation (CV) method, see [19]. The
Unbiased Risk method (UBR) method can also be used to
select the optimal smoothing parameters on the spline
estimator [20]. An excellent method for selecting optimal
smoothing parameters in the Spline-Kernel estimator,
namely the general validation cross validation (GCV)
method [21]. Theoretically, the GCV has asymptotic
optimal properties, which do not belong to other methods,
see [11]. The strength possessed by GCV makes it very
well known in nonparametric and semiparametric. The
GCV formula is often generalized and adjusted by
researchers in other estimators to select the optimal
smoothing parameters. The following is given a method
for selecting smoothing parameters and optimal
bandwidth in the M S-K model in multiple nonparametric
regression. The goodness of fit in the estimator model M
S-K is given by:

MSE = n−1
(

y−Aλ ,α

)′ (
y−Aλ ,α

)

= n−1
∥

∥

(

I−Aλ ,α

)

y
∥

∥

2

then:

G(λ ,α) =
n−1

∥

∥

(

I −Aλ ,α

)

y
∥

∥

2

[

n−1tr
(

I−Aλ ,α

)]2
(21)

Smoothing parameter and optimal bandwidth are obtained
by completing optimization of function G(λ ,α) as
presented in equation (21).
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6 Application

In this study, the model obtained is applied to the
unemployment rate data in East Java province in 2015, as
the response variable with 38 districts/cities unit of
observation. While predictor variables used are Gross
Domestic regional Product (GDRP), Literacy Rate (LR),
Population Growth (PG), and Rough Participation Rate
(RPR). Several alternative models are used to ensure the
best model is based on predictor variables.

Model A : y = h(GDRP)+ h(LR)+ g(PG)+ g(RPR)

Model B : y = h(GDRP)+ h(PG)+ g(LR)+ g(RPR)

Model C : y = h(LR)+ h(PG)+ g(GDRP)+ g(RPR)

Model D : y = h(LR)+ h(RPR)+ g(GDRP)+ g(PG)

Model E : y = h(PG)+ h(RPR)+ g(GDRP)+ g(LR)

Model F : y = h(GDRP)+ h(RPR)+ g(LR)+ g(PG)

The function estimation model M S-K in multiple
nonparametric regression is more effective and can handle
the local nature of functions or data on different domains
in an integrated manner. So that the unemployment rate
can be formed with multiple nonparametric regression
models using several alternatives. To compare the six
models, GCV criteria is used to get the lowest GCV.
Comparison of GCV values is presented in the following
table:

Model GCV

Model A 3.867× 10−4∗
Model B 2.508× 10−3

Model C 3.552× 10−4

Model D 6.133× 10−3

Model E 2.836× 10−3

Model F 1.475× 10−3

Based on the goodness criteria for GCV, each model
shows that the A model is the best model to estimate the
unemployment rate of East Java. The model gives value
of R2 = 87.01%. For comparison, the data set is analyzed
using multiple linear regression. Based on the results of
analysis with multiple linear regression on the
unemployment rate data, the value of R2 = 23.98% is
obtained. So based on the value of R2 it can be concluded
that the M S-K model is better than multiple linear
regression.

Model validation is the next stage to do after the best
model formation obtained to check the accuracy of the
model in predictions. Cross validation method is applied
in this stage. The cross validation process applied to the
multiple nonparametric regression models M S-K formed
from the unemployment rate data in 2015 is used to
predict the East Java unemployment rate data in 2016
using predictor variables in 2016. The estimation of
unemployment rate in 2016 using the multiple

nonparametric regression model M S-K can be seen in
Figure 1. Based on the bar diagram, it can be seen that the
results of the estimated unemployment rate in 2016 have
closed to the real data.

Fig. 1: Comparison between observation and prediction data

To examine the reliability of the model, statistical
explorations is carried out using the
Kolmogorov-Smirnov test. The test is to find the pattern
similarity between the predictive data and the observation
data. Based on the results of the test on prediction and
observation data, it can be seen that the pattern of
predictive data with observation data has the same
pattern. This means that the multiple nonparametric
regression model with the M S-K model approach is still
valid to be applied in the unemployment rate data in 2016.

7 Conclusion

This paper introduces a new method in nonparametric
regression. This model is a combination of Spline and
Kernel functions. We have given explicit mathematical
expressions for some basic functions such as the Spline
multipredictor function, the Kernel function
multipredictors, and the new model itself. Also, the
method for determining optimal smoothing parameter and
bandwidth parameter. Estimation of the model was
approached through the method of penalized maximum
likelihood estimation. The application of this model was
illustrated with a real data set and the results obtained
show that the model is quite good at modeling data
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