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Abstract: This work is intended to study the problem of heat and mass transfer with single-phase flow in a porous cavity. The model

of this problem consists of the conservation laws of energy, momentum, and mass. The cavity boundaries are described by mixed

Dirichlet-Neumann boundary conditions. The momentum equation which is represented by Darcy’s law has been solved with the

continuity equation to give the pressure implicitly, then the velocity of the field has been calculated explicitly. Therefore, both energy

equation and concentration equations are solved implicitly. The multiscale time-splitting implicit method has been used to treat the

temporal discretization of the system of governing equations. The Courant-Friedrichs-Lewy condition has been used to achieve the

time step-size adaptation. Some results are represented in graphs such as temperature, concentration, pressure, velocity, local Nusselt

number and local Sherwood number. Two numerical cases are considered for different boundary conditions.
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1 Introduction

Porous media are solid bodies that contain void spaces
(so-called pores) and consist of a portion of space
occupied by heterogeneous or multiphase matter [1]. In
the last few decades, heat transfer in porous media has
played an important role in many of engineering
applications. Heat transfer in porous media involves a
wide range of industrial applications such as geophysical
systems, heat exchangers, thermal insulation of buildings,
chemical reactors, drying processes, nuclear waste
disposal, petroleum resources, packed bed spheres, grain
storage, etc. Several studies gave an excellent picture of
research being carried out in porous media [2,3]. Saeid
and Pop [4] proposed the effect of viscosity dissipation on
natural convection in a porous cavity, and they found that
the viscous dissipation parameter increases with the
decrease of heat transfer rate at the hot surface. Sheremet
and Pop [5] studied the steady laminar-mixed convection
inside a lid-driven square cavity filled with water-based
nanofluid, and they found that the governing parameters
have a greater effect on the heat transfer characters and
the flow. Chalambaz et al. [6] studied the heat and mass
transfer in a square porous cavity with differential

temperature and concentration at the side walls, and they
found that the heat transfer of the mixture and the mass
transfer of the other phase can be maximized for specific
values of the Lewis number of one phase. Carvalho and
de Lemos [7] have presented the laminar free convection
within a square porous cavity filled with a saturated fluid,
and they found that the overall Nusselt number decreases
rather than increases by increasing the void space within
the porous material. The problem of free convection in a
square porous cavity using a thermal nonequilibrium
model had been invistegated by Baytas and Pop [8].

Implicit-Explicit (IMEX) method generally treats the
linear terms implicitly and evaluates the others explicitly
[9] to solve the differential equations that arise after
discretization of time-dependent partial differential
equations, the Implicit-Explicit technique has been
improved several times [10]. Lang and Hundsdorfer [11]
have studied systems of ordinary differential equations
with both non-stiff and stiff parts included in the source
term by a new class of Implicit-Explicit (IMEX) two-step
methods of peer type. Burger et al. [12] proposed
numerical schemes for the nonlinear equilibrium
dispersive model for chromatographic processes with
adsorption isotherms of Langmuir type which is treated
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by implicit diffusion and explicit convection. Kadalbajoo
et al. [13] solved the partial integrodifferential equation
that describes the nature of the option price under
jump-diffusion model by using a radial basis
function-based implicit-explicit numerical method.

The multiscale time-splitting methods have been
considered in many numerical studies. Gravouil and
Combescure [14] have introduced non-linear structural
dynamics by the implicit-explicit multi-time-stepping
method. A sub-time stepping method was described for
computational fluid dynamics problems that utilize
implicit-type time marching procedures to resolve
transients, this was proposed by Bhallaudi et al. [15].
El-Amin et al. [16] presented an adaptive time-splitting
scheme to investigate the problem of two-phase flow in
heterogeneous porous media. The pressure and saturation
equations are coupled by the capillary pressure which is
linearized in terms of saturation. Zhang and Qian [17]
have introduced the time viscosity-splitting method used
for the Boussinesq problem. Caliari and Zuccher [18]
proposed a numerical accurate algorithm of the
well-known time-splitting Fourier spectral method for
approximation of singular solutions of the
Gross-Pitaevskii equation. El-Amin et al. [19] used
multiscale time-splitting strategy to manage different
time-step sizes for different physics. El-Amin et al. [20]
have developed an iterative implicit scheme for
nanoparticles transport with two-phase flow in porous
media. Multiscale adaptive time-splitting technique for
nonisothermal two-phase flow and nanoparticles transport
in a heterogeneous porous medium have been investigated
[21].

In this paper, we introduce a multiscale adaptive
time-splitting scheme to simulate the problem of heat and
mass transfer with a single-phase flow in a porous cavity.
An IMEX algorithm has been used such that the
equations of pressure, temperature and concentration have
been treated implicitly in a consequence way. Also, the
Cell-Centered Finite Difference (CCFD) method has been
used for the spatial discretization. On the other hand, the
Courant-Friedrichs-Lewy (CFL) stability condition has
been used to adapt the proposed scheme by dividing
time-steps as needed. Selected results of two cases of
different boundary conditions are considered. Contours of
the temperature, the concentration, the pressure, and the
velocity, as well as the local Nusselt number and the
Sherwood number are represented in graphs.

2 Mathematical Modeling

This mathematical model describes the basic equations of
non-isothermal single-phase flow in porous media
governed by the conservation laws of momentum, energy,
and mass; in terms of pressure, temperature and
concentration. We consider two distinct numerical cases
in the porous cavity based on boundary conditions types.

The energy conservation equation in porous media can be
represented as [21],

∂
∂ t
[(1−φ)ρscp,s+φρcp)T ]+ρu ·∇T = ∇·

[(1−φ)hs+φh]∇T +ρQt
(1)

Momentum conservation in porous media is
represented in the form of Darcy’s law [22],

u =−
K

µ
(∇p+ gρ0 [1−β (T −Tr)−β ∗(c− c0)]∇z) (2)

(2)

In the Boussinesq approximation, the density of the
body force term is calculated by,

ρ = ρ0 [1−β (T −Tr)−β ∗(C−C0)] ,

β =−
1

ρ0

∂ρα

∂T
,

and

β ∗ =−
1

ρ0

∂ρα

∂C
.

Mass conservation equation is represented by,

∇ ·u = q (3)

where φ is the porosity, ρs is the density of the solid
phase, cp [J/Kg.K] is the heat capacity, T[K] is the
temperature and h [J/K.m.s] is the thermal conductivity. u
and ρ are, respectively, velocity and density, Qt is the heat
source term. K is the permeability. g is the gravitation
acceleration, and z is the depth. p, and µ are, respectively,
pressure, and viscosity. The temperature difference may
cause a convective flow, which is represented by the
Boussinesq approximation in the body force term of Eq.
(2). β is the thermal expansion coefficient, β ∗ is the
solute expansion, C is the concentration, C0 is the initial
concentration, Tr is a temperature reference and q is the
external mass flow rate.

Substituting by (2) into (3), then the pressure equation
can be rewritten as,

−∇ ·
K

µ

(

∇p+ gρ0 [1−β (T −Tr)−β ∗(C−C0)]∇z
)

= q

(4)

Concentration equation (mass transport) in the water
phase may be represented as [39],

φ
∂C

∂ t
+∇ · (uC−D∇C) = Qc (5)

where Qc is the rate of change of particle volume
belonging to a source/sink term. The diffusion-dispersion
tensor is defined by,

D = QτDt , Dt = DBr +Ddisp (6)
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where τ is the tortuosity parameter of the water phase. Br

is the Brownian diffusion and Ddisp is the dispersion
coefficient which is defined by [23],

QτDdisp = dt |u|I+(dl − dt)(uut )/|u| (7)

Thus,

D = (QτDBr + dt |u|)I+(dl − dt)(uut)/|u| (8)

where dl and dt are, respectively, the longitudinal and
transverse dispersion coefficients.

The local surface heat fluxes, qx, and qy are defined as,

qx =−k
∂T

∂x
|x=0, (9)

qy =−k
∂T

∂y
|y=0. (10)

where k is the effective thermal conductivity of the fluid.
The local Nusselt number measures the competition
between convection and conduction heat flows, defined
by,

Nux =
qxLx

(Tw −T0)k
=−

Lx

(Tw −T0)

∂T

∂x
|x=0 (11)

Nuy =
qyLy

(Tw −T0)k
=−

Ly

(Tw −T0)

∂T

∂y
|y=0 (12)

where Lx,Ly are the characteristic lengths. Similarly, the
local surface mass fluxes, jx, jy may be defined as,

jx =−D
∂C

∂x
|x=0 (13)

jy =−D
∂C

∂y
|y=0 (14)

Therefore, the local Sherwood number which represents
the ratio of the convective mass transfer to the rate of
diffusive mass transport is given by,

Shx =
jxLx

(Cw −C0)D
=−

Lx

(Cw −C0)

∂c

∂x
|x=0 (15)

Shy =
jyLy

(Cw −C0)D
=−

Ly

(Cw −C0)

∂C

∂y
|y=0 (16)

3 Numerical Method

The time-splitting technique subdivides an equation
including several physical processes into a number of
simpler equations, and instead of applying the
one-dimensional advection-diffusion equation over one
time step, it may be splitting into the pure advection
equation and the pure diffusion equation each to be

applied over half a time step and it solves the simpler
diffusion and advection equations [24]. A numerical
strategy for time discretization has been presented [25]. In
this model, the pressure time-step size can be taken larger
than the dependent variables such as temperature. For
pressure, the total time interval, [0, T], is divided into Np ,
time-steps, namely, 0 = t0 < t1 < ... < tNp=T , with a time

step of length, ∆ tk = tk+1 − tk. The subscript k + 1
represents the current time step and the subscript k

represents the previous time step. For temperature and
concentration, each interval, (tk, tk+1), is divided into Np,c

subintervals, i.e. (tk, tk+1) = ∪
Np,c

l=0 (t
k,l , tk,l+1). In our

study, we assume the temperature and concentration have
the same discretization level, and we use backward Euler
time discretization for the time derivative of equations of
temperature and concentrations. Hence the pressure
equation becomes,

−∇ · K
µ

(

∇pk+1 + gρ0

[

1−β (Tk −Tr)−β ∗(Ck −C0)
]

∇z
)

= qk+1

(17)
The energy equation and concentration equation are

computed implicitly as,

[

(1−φ)ρscp,s +φρ(T k)cp)
]

T k,l+1−T k,l

∆ t
+ρkuk+1 ·∇T k,l+1

= ∇ · [(1−φ)hs+φh]∇T k,l+1 +ρQ
k,l+1
t

(18)

φ
Ck,l+1 −Ck,l

∆ t
+∇ ·(uk+1Ck,l+1−D∇Ck,l) =Qk,l+1

c (19)

Hence, we update the porosity, the permeability, and
the density.

The Courant-Friedrichs-Lewy (CFL) condition has
been used to ensure that CFL< 1. The CFLs for the
temperature equations are,

CFLT,x =
ux∆ tk,l

∆x
(20)

CFLT,y =
uy∆ tk,l

∆y
(21)

and for the concentration equation are given by,

CFLC,x =
ux∆ tk,l

∆x
(22)

CFLC,y =
uy∆ tk,l

∆y
(23)

In this algorithm, the initial time step of the
temperature and concentration equations is taken as the
pressure time step, i.e., ∆ tk,0 = ∆ tk. Then, we check if
CFLC,x > 1 or CFLC,y > 1, the concentration time step
will be divided into smaller steps, then, CFLC,x and
CFLC,y will be recalculated and so on until we get
CFLC,x < 1 and CFLC,y < 1. Similarly, CFLT,x and
CFLT,y can be used as CFLC,x and CFLC,y.
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Table 1: Physical parameters of the model

Parameter Value Unit

T0 300 K

Tw 360 K

C0 0 –

Cw 1 –

p0 1.0E6 N/m2

uin 0.03 m/year

φ 0.3 –

cp 800 J/Kg. K

ρs 2550 kg/m3

µ 1.0E-03 Pa s

p0 1.0E6 Pa

ρs 2500 kg/m3

ρw 1000 kg/m3

D 1E-5 m2/s

hs 0.718 W/(m/K)
hw 0.6 W/(m/K)
βw 0.001 K−1

βw 0.001 K−1

g 9.8 m/s2

md 9.86923E-16 m2

4 Results and Discussion

The governing equations have been solved numerically
using the numerical method which are explained above,
with two different cases of the boundary conditions as
shown in Fig. 1(a, b). The boundary conditions of each
case are shown on the figure. In Case 1, all boundaries are
described by Dirichlet boundary conditions except in the
west boundary, no-flow boundary conditions with
velocity inlet have been used. The physical parameters are
shown in Table 1.

The domain is a square with a 1× 1 m and which is
uniformly discretized into 50×150 rectangle cells. We
use the outer time loop k for the number of steps, then,
the time-step sizes, ∆ t l and ∆ tm which are explained later
are calculated based on the CFLs. In order to investigate
the accuracy of the current numerical scheme, Table 2
presents some error estimates for temperature and
concentration for various values of the number of outer
time steps k. It can be seen from Table 2 that the error
decreases as the number of time steps increases. It is
interesting to note that the temperature error is very small
and approaches zero, however, the concentration error
needs bigger time step numbers to reach the desired
approximation.

Now, let us introduce the cases of study:

Case 1: All the walls of the square cavity are kept at a
cool temperature Tc and concentration Cc except the
center of the left wall is kept at a high temperature Th and
a high concentration Ch as shown in Fig. 1(a). The
boundary conditions are described as follows:

x = 0,0 ≤ y ≤ L,T = Tc,C =Cc,
∂ p

∂x
= 0,

Table 2: Error estimates for various values of number of time

steps k.

k
∥

∥T n+1,k+1 −T n+1,k
∥

∥

∥

∥Cn+1,k+1 −Cn+1,k
∥

∥

1000 3.2895E-12 0.0088

1500 3.0320E-12 0.0059

2000 2.6311E-12 0.0044

2000 2.6021E-12 0.0029

Fig. 1: Schematic diagram of the 2D square porous cavity (a)

case 1, and (b) case 2.

Tin = Th,Cin =Ch,u = uin,

0 ≤ x ≤ L,y = 0,T = Tc,C =Cc, p = p0,

x = L,0 ≤ y ≤ L,T = Tc,C =Cc, p = p0,

0 ≤ x ≤ L,y = L,T = Tc,C =Cc, p = p0

where in refers to the injection location (inlet), we
consider the velocity on all cells to be zero (no-flow
boundary conditions) except for the central cells being
equal to 0.03 m/year. The inlet is located at the center
(width is 0.3 m).

Case 2: All the walls of the square cavity are
adiabatic and isothermal with constant Dirichlet pressure,
except for the center of the left wall is kept at hot
temperature Th and high concentration Ch and the upper
and lower of left wall are kept at cold temperature and
low concentration with no-flow Neumann boundary
condition as shown in Fig. 1(b). The boundary conditions
are described as follows:

x = 0,0 ≤ y ≤ L,T = Tc,C =Cc,
∂ p

∂x
= 0,

Tin = Th,Cin =Ch,u = uin,
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Fig. 2: Temperature distribution of case 1.

0 ≤ x ≤ L,y = 0,
∂T

∂y
=

∂C

∂y
= 0, p = p0,

x = L,0 ≤ y ≤ L,
∂T

∂x
=

∂C

∂x
= 0, p = p0,

0 ≤ x ≤ L,y = L,
∂T

∂y
=

∂C

∂y
= 0, p = p0

The results of the Case 1 have been presented in the
following figures (Fig. 2 - Fig. 7). Fig. 2 shows the
temperature distribution of case 1. The temperature in this
figure is seen to be high at the inlet with a maximum
value of Tmax = 340 K and then decreases because the
other walls are cooled. It is also interesting to observe the
buoyancy effect on the temperature contours in Fig. 2.
This appears for a small inlet velocity for which the
buoyancy force dominates the advection force.

Concentration profiles in the square cavity of case 1 are
plotted in Fig. 3. From this figure, we can see a reduction
in the concentration everywhere but it is high at the inlet.
The concentration decreases gradually from the inlet to the
far-field location.

The pressure distribution of case 1 is shown in Fig. 4.
From this figure, we can see that the pressure decreases
gradually from the inlet area to the other points. The high
pressure is due to the fluid injection from the center of
the left wall. The velocity distribution of case 1 has been
plotted in Fig. 5. The maximum value of velocity occurs
along the central portion of the left wall and then decreases
as it moves away from the inlet.

Fig. 6 illustrates the local Nusselt number profiles
along the left wall, right wall, upper wall, and lower wall.
It is clear from this figure that the higher local Nusselt
number is located in the center of the left wall, which
indicates that the heat transfer rate is high in the region.
Moreover, it is interesting to notice that the shape of the
local Nusselt number is symmetric and represented by a
Gaussian distribution. From this figure, it can be seen that
the heat transfer rate on the right wall is very high at the
edges of the right wall and it increases from the bottom to

Fig. 3: Concentration distribution of case 1.

Fig. 4: Pressure distribution of case 1.

Fig. 5: Velocity distribution of case 1.
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Fig. 6: Local Nusselt number distributions along the left wall, the

right wall, the upper wall, and the lower wall

the top. The negative sign indicates that heat transfer
direction is from the fluid to the solid wall. Also, the heat
transfer rate at the upper wall is high at the top left
portion and then decreases to the right portion. Also, this
figure shows that the local Nusselt number at the lower
wall is high at the left portion and then decreases to the
right portion. This is a very small variation in Nu but it is
not constant. This may indicate that the wall the field
temperature adjacent to the wall is very close the wall
temperature. Moreover, one may notice that the behavior
of the heat transfer on the upper wall is quite similar to
the behavior of the heat transfer on the lower wall but
with opposite sign, i.e. heat flows in opposite directions.

Fig. 7 illustrates the local Sherwood number profiles
along the left wall, the right wall, the upper wall, and the
lower wall. It can be seen from this figure that the local
Sherwood number profiles along the left wall and the
right wall are symmetric around the center of the y-axis
and it decreases gradually from the center to the upper to
the lower corners. It can be seen that the mass transfer
rate on the left wall is high at the inlet location of the right
wall and it decreases from the bottom to the top. The
negative sign indicates that mass transfer direction is from
the fluid to the solid wall. Also, the mass transfer rate on
the right wall is very small. The local Sherwood number
on the upper wall and the left wall has a similar behavior
and same order of magnitude with different signs. The
local mass transfer rate has maximum values at x ≈ 0.1.

The results of the Case 2 have been presented in the
following figures (Fig. 8 -Fig. 11). The temperature
distribution of case 2 are shown in Fig. 8. It can be seen
from this figure that the temperature is high at and around
the inlet location with a maximum value of Tmax=340 K
and then it decreases gradually faraway because the other
walls are kept adiabatic with a constant pressure. This
may be interpreted as the heat transfer changes from the
mixed convection region to a is due to purely conduction
region. On the other hand, the amount of heat which is

Fig. 7: Local Sherwood number distributions along the left wall,

the right wall, the upper wall, and the lower wall

Fig. 8: Temperature distribution of case 2.

transferred to the lower wall and the upper wall, as a
result of convection.

Fig. 9 shows the concentration distribution of case 2.
The behavior of the concentration of this figure is similar
to the temperature distribution in Fig. 8, which can be
interpreted similarly with respected to mass transfer and
solute convection. Fig. 10. shows the local Nusselt
number at the left wall, the right wall, the upper wall, and
the lower wall of Case 2. The local heat transfer at the left
wall of the cavity is symmetric around the inlet area and
its highest values located at the center of the left wall and
decreases gradually to the lower to the upper parts. On the
other hand, the heat transfer rate on the right wall of the
cavity is very high at the center but with opposite
direction, while, the negative sign indicates that heat
transfer direction is from the fluid to the solid right wall.
Also, the figure shows that the local Nusselt number at
the upper wall increases close to the left wall and
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Fig. 9: Concentration distribution of case 2.

Fig. 10: Local Nusselt number distributions along the left wall,

the right wall, the upper wall, and the lower wall, Case 2

decreases close to the right wall. The opposite is true for
the local heat transfer on the lower wall of the cavity.

Fig. 11 shows the local Sherwood number profiles
along the left wall, the right wall, the upper wall, and the
lower wall. The local mass transfer in terms of local
Sherwood number at the left wall of the cavity is
symmetric around the inlet and behaves very similar to
the Sherwood number at the left wall of Case 1. The mass
transfer rate on the right wall of the cavity is very high at
the center and decreases towards the left side and
decreases more towards the right side. On the other hand,
the local Sherwood number at the upper wall increases
close to the left wall and decreases close to the right wall.
The opposite is true for the local heat transfer on the
lower wall of the cavity.

Fig. 11: Local Sherwood number distributions along the left wall,

the right wall, the upper wall, and the lower wall, Case 2

5 Conclusions

In this paper, we have studied the simulations of
non-isothermal single-phase flow in porous media. Using
an adaptive multiscale time-stepping scheme. The
proposed scheme is controlled by evaluating the CFL
conditions, namely, CFLT,x , CFLT,y , CFLC,x and CFLC,y

are calculated at each sup-step and checked if they are
satisfied i.e. (CFL< 1). We have used the CCFD method
to discretize the governing equations. Some numerical
experiments of the proposed scheme have been employed.
Temperature, concentration, pressure, velocity, local
Nusselt number and local Sherwood number, are shown
in graphs. The local Nusselt number profiles along the left
wall, right wall, upper wall, and lower wall of the square
porous cavity have been investigated for the two cases of
boundary conditions. The heat transfer rate in terms of the
local Nusselt number has Gaussian-like distribution
which is symmetric around the inlet location. Similar
conclusions can be drawn for the mass-transfer rate
behavior.
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