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Abstract: Consider the differential equation with a retarded argument of the form

x′(t)+ p(t)x(τ(t)) = 0, t ≥ t0, (1)

where the functions p,τ ∈C([t0,∞),R+), (here R
+ = [0,∞)),τ(t)≤ t for t ≥ t0 and limt→∞ τ(t) = ∞ and the equation with a constant

positive delay τ of the form

x′(t)+ p(t)x(t − τ) = 0, t ≥ t0, (2)

Optimal conditions for the oscillation of all solutions to these equations are presented when the well-known oscillation conditions

limsup
t→∞

∫ t

τ(t)
p(s)ds > 1 and liminf

t→∞

∫ t

τ(t)
p(s)ds >

1

e

are not satisfied and also in the critical case where liminft→∞ p(t) = 1
eτ in Eq. (2). In the case that the function

∫ t
t−τ p(s)ds is slowly

varying at infinity, then under mild additional assumptions

limsup
t→∞

∫ t

t−τ
p(s)ds >

1

e

is a sharp condition for the oscillation of all solutions to Eq. (2). Examples illustrating the results are given.

Keywords: Oscillation, delay differential equation, slowly varying at infinity function, S-asymprotically periodic function

1 Introduction

Consider the differential equation with a retarded
argument of the form

x′(t)+ p(t)x(τ(t)) = 0, t ≥ t0,

where the functions p,τ ∈ C([t0,∞),R+), (here
R
+ = [0,∞)),τ(t) ≤ t for t ≥ t0 and limt→∞ τ(t) = ∞ and

the equation with a constant positive delay τ of the form

x′(t)+ p(t)x(t − τ) = 0, t ≥ t0,

By a solution of Eq. (1), we understand a
continuously differentiable function defined on
[τ(T0),+∞) for some T0 ≥ t and such that Eq. (1) is
satisfied for t ≥ T0., analogously for Eq. (2). Such a
solution is called oscillatory if it has arbitrarily large
zeros, and otherwise it is called nonoscillatory.

It is noteworthy to observe that a first-order linear
differential equation of the form Eq. (1) [Eq. (2)] without
delay (τ(t) ≡ t) [τ = 0] does not possess oscillatory
solutions. Therefore the investigation of oscillatory
solutions is of interest for equations of the above forms.
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Furthermore, the mathematical modeling of several
real-world problems leads to differential equations that
depend on the past history (like equations of these forms)
rather than only the current state. For the general theory
of these equations the reader is referred to [10,13,14,15].

In this paper optimal conditions for the oscillation of
all solutions to these equations are presented when the
well-known oscillation conditions

limsup
t→∞

∫ t

τ(t)
p(s)ds > 1 and liminf

t→∞

∫ t

τ(t)
p(s)ds >

1

e

are not satisfied, also in the critical case where
liminft→∞ p(t) = 1

eτ in Eq. (2) and in the case that the

function
∫ t

t−τ p(s)ds is slowly varying at infinity, where
under mild additional assumptions

limsup
t→∞

∫ t

t−τ
p(s)ds >

1

e

is a sharp condition for the oscillation of all solutions to
Eq. (2).

2 Oscillation Criteria for Equation (1)

In this section we study the delay differential equation

x′(t)+ p(t)x(τ(t)) = 0, t ≥ t0,

where the functions p,τ ∈ C([t0,∞),R+), τ(t) < t for
t ≥ t0 and limt→∞ τ(t) = ∞. The problem of establishing
sufficient conditions for the oscillation of all solutions to
the delay differential equation (1) has been the subject of
many investigations [2]-[15], [17]-[31]. The first
systematic study for the oscillation of all solutions to Eq.
(1) was made by Myshkis. In 1950 [26] he proved that
every solution of Eq. (1) oscillates if

limsup
t→∞

[t−τ(t)]<∞ and liminf
t→∞

[t− τ(t)] liminf
t→∞

p(t)>
1

e
.

In 1972, Ladas, Lakshmikantham and Papadakis [23]
proved that the same conclusion holds if τ is a
non-decreasing function and

A := limsup
t→∞

∫ t

τ(t)
p(s)ds > 1. (3)

In 1979, Ladas [22] established integral conditions for the
oscillation of Eq. (1) with constant delay, while in 1982,
Koplatadze and Canturija [20] established the following
result. If

a := liminf
t→∞

∫ t

τ(t)
p(s)ds >

1

e
, (4)

then all solutions of Eq. (1) oscillate; If

limsup
t→∞

∫ t

τ(t)
p(s)ds <

1

e
, (5)

then Eq. (1) has a non-oscillatory solution.

It is obvious that there is a gap between the conditions
(3) and (4) when the limit lim

t→∞

∫ t
τ(t) p(s)ds does not exist.

How to fill this gap is an interesting problem which has
been investigated by several authors.

In 1988, Erbe and Zhang [11] developed new
oscillation criteria by employing the upper bound of the
ratio x(τ(t))/x(t) for possible non-oscillatory solutions
x(t) of Eq. (1). Their result says that all the solutions of

Eq. (1) are oscillatory, if 0 < a≤ 1
e

and

A > 1− a2

4
. (6)

Since then several authors tried to obtain better results by
improving the upper bound for x(τ(t))/x(t).

In 1991, Jian [18] derived the condition

A > 1− a2

2(1− a)
, (7)

while in 1992, Yu, Wang, Zhang and Qian [30] obtained
the condition

A > 1− 1− a−
√

1− 2a− a2

2
. (8)

In 1990, Elbert and Stavroulakis [8] and in 1991
Kwong [21], using different techniques, improved (6), in
the case where 0 < a≤ 1

e
, to the conditions

A > 1− (1− 1√
λ1

)2 (9)

and

A >
lnλ1 + 1

λ1

, (10)

respectively, where λ1 is the smaller real root of the

equation λ = eaλ .
In 1998, Philos and Sficas [27] and in 1999, Zhou and

Yu [31] and Jaroš and Stavroulakis [17] improved further
the above conditions in the case where 0 < a ≤ 1

e
as

follows

A > 1− a2

2(1− a)
− a2

2
λ1, (11)

A > 1− 1− a−
√

1− 2a− a2

2
− (1− 1√

λ1

)2, (12)

and

A >
lnλ1 + 1

λ1

− 1− a−
√

1− 2a− a2

2
, (13)

respectively.

Consider Eq. (1) and assume that τ(t) is continuously
differentiable and that there exists θ > 0 such that
p(τ(t))τ ′(t) ≥ θ p(t) eventually for all t. Under this
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additional assumption, in 2000, Kon, Sficas and
Stavroulakis [19] and in 2003, Sficas and Stavroulakis
[29] established the conditions

A > 2a+
2

λ1

− 1, (14)

and

A >
lnλ1 − 1+

√
5− 2λ1+ 2aλ1

λ1

, (15)

respectively. In the case where a= 1
e
, then λ1 = e, and (15)

leads to

A >

√
7− 2e

e
≈ 0.459987065.

It is to be noted that for small values of a (a → 0),
all the previous conditions (6)-(14) reduce to the condition
(3), i.e. A > 1. However, the condition (15) leads to

A >
√

3− 1 ≈ 0.732,

which is an essential improvement. Moreover (15)
improves all the above conditions for all values of a

∈ (0, 1
e
]. Note that the value of the lower bound on A can

not be less than 1
e
≈ 0.367879441. Thus, the aim is to

establish a condition which leads to a value as close as

possible to 1
e
.

For illustrative purpose, we give the values of the lower
bound on A under these conditions when (i) a=1/1000
and (ii) a= 1/e.

(i) (ii)
(6): 0.999999750 0.966166179
(7): 0.999999499 0.892951367
(8): 0.999999499 0.863457014
(9): 0.999999749 0.845181878
(10): 0.999999499 0.735758882
(11): 0.999998998 0.709011646
(12): 0.999999249 0.708638892
(13): 0.999998998 0.599215896
(14): 0.999999004 0.471517764
(15): 0.733050517 0.459987065

We see that the condition (15) essentially improves all
the known results in the literature.

3 Oscillation Criteria for Equation (2) in a

critical case

In 1995 Elbert and Stavroulakis [9] established sufficient
conditions under which all solutions to Eq. (1) oscillate in
the critical case where

∫ t

τ(t)
p(s)ds ≥ 1

e
and lim

t→∞

∫ t

τ(t)
p(s)ds =

1

e
.

In 1996 Domshlak [2,3] investigated Eq. (2) in the
critical case where

liminf
t→∞

p(t)=
1

τe

and sufficient conditions for the oscillation of all solutions
were established in spite of the fact that the corresponding
limiting equation

x′(t)+
1

τe
x(t − τ) = 0, t ≥ t0,

admits a non-oscillatory solution x(t) = e−t/τ . Indeed, in
[2,3] it was proved that if

liminf
t→∞

p(t)=
1

τe
and liminf

t→∞

[

(p(t)− 1

τe
)t2

]

>
τ

8e
(16)

then all solutions of Eq. (2) oscillate.
Also in 1996 this result was improved by Domshlak

and Stavroulakis [4] as follows.

Theorem 3.1 ([4]) Assume that

liminf
t→∞

p(t) =
1

τe
, liminf

t→∞

[

(p(t)− 1

τe
)t2

]

=
τ

8e

and

C := liminf
t→∞

{[

(p(t)− 1

τe
)t2 − τ

8e

]

ln2 t

}

>
τ

8e
. (17)

Then all solutions of Eq. (2) oscillate.

Example 3.1 ([4]) Consider the equation (cf. Theorem
3 in [9])

x′(t)+ p(t)x(t − 1) = 0, t ≥ 1,

where

p(t) =
(2t − 1) lnt − 1

2e
√

t(t − 1) lnt ln(t − 1)
.

It is easy to see that

x(t) = e−t
√

t ln t

is a non-oscillatory solution. In this case one can check
that

liminf
t→∞

{[

(p(t)− 1

τe
)t2 − τ

8e

]

ln2 t

}

=
1

8e
,

that is, condition (17) is not satisfied (as expected). Thus
the inequality C > τ

8e
can not be replaced by the

corresponding equality.

Later in 1998 and 2000 the above results were
extended by Diblik [5,6,7] using the iterated logarithm
as follows. Call the expression lnk t, k ≥ 1, defined by the
formula

lnk t = ln ln . . . ln
︸ ︷︷ ︸

k

t, k ≥ 1

the k-th iterated logarithm if t > expk−2 1 where

expk t ≡ (exp(exp(. . .exp
︸ ︷︷ ︸

k

t ))), k ≥ 1,
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exp0 t ≡ t and exp−1 t ≡ 0. Moreover, let us define ln0 t ≡ t

and also instead of expressions ln0 t, ln1 t, we write only t

and lnt. Then the folowing results are established.
Theorem 3.2 ([5,6,7]) If for some integer k ≥ 0

p(t) ≤ 1

eτ
+

τ

8et2
+

τ

8e(t lnt)2
+

τ

8e(t ln t ln2 t)2

+ · · ·+ τ

8e(t ln t ln2 t . . . lnk t)2
as t → ∞,

then there exists a positive solution x = x(t) of Eq. (2) and
moreover,

x(t)< e−t/τ
√

t lnt ln2 t . . . lnk t as t → ∞,

while if for a constant θ > 1,

p(t)≥ 1

eτ
+

τ

8et2
+

τ

8e(t ln t)2
+ . . .

+
τ

8e(t lnt ln2 t . . . lnk−1 t)2
+

θτ

8e(t ln t ln2 t . . . lnk t)2

(18)

as t → ∞, then all solutions of Eq. (2) oscillate.

4 Sharp Oscillation Criteria for Eq (1)

Observe that in the case of the equation

x′(t)+ p(t)x(t − τ) = 0, t ≥ t0,

A = limsup
t→∞

∫ t

t−τ
p(s)ds

and

a= liminf
t→∞

∫ t

t−τ
p(s)ds.

Set

A(t) :=

∫ t

t−τ
p(s)ds,

P := limsup
t→∞

p(t)

and
p : = liminf

t→∞
p(t).

Then the results by Myshkis [26] reduce to the following
conditions: If

pτ >
1

e
, (19)

then all solutions of Eq. Eq. (2) oscillate, while

Pτ <
1

e
(20)

implies the existence of a non-oscillatory solution of Eq.
(2). Thus, for the oscillation of all solutions to Eq. (2) a
necessary condition is the following

Pτ ≥1

e
. (21)

At this point it should be pointed out that in the special
case of the delay equation with a constant positive
coefficient p and a constant positive delay τ , that is in the
case of the equation

x′(t)+ px(t − τ) = 0, t ≥ t0, (22)

pτ >
1

e
(23)

is a necessary and sufficient condition ([24]) for all
solutions to Eq. (22) to oscillate.

In 2017, Pituk [28] studied the delay Eq. (2) in the case
where the function p ∈C([t0,∞),R+) is slowly varying at
infinity. Recall (see, e.g. [1]) that a function f : [t0,,∞)→R

is slowly varying at infinity if for every s ∈ R,

f (t + s)− f (t)→ 0 as t → ∞. (24)

Generally speaking, a slowly varying function is a
function of a real variable whose behavior at infinity is in
some sense similar to the behavior of a function
converging at infinity. As noted in [28], a continuous
function f : [t0,,∞) → R is slowly varying at infinity if
and only if there exists t1 ≥ t0 such that on the interval
[t1,∞) the function f can be decomposed into the sum

f (t) = g(t)+ h(t), t ≥ t1, (25)

where g : [t1,,∞)→ R is a continous function which tends
to a finite limit as t → ∞ and h : [t1,,∞) → R is a
continuously differentiable function such that h′(t) → 0
as t → ∞. Since A′(t) = p(t)− p(t − τ) for t ≥ t0 + τ, this
implies that the condition

p(t + τ)− p(t)→ 0 as t → ∞ (26)

is sufficient for the function A(t) to be slowly varying at
infinity. Functions p satisfying (26) are sometimes called
S−asymptotically τ−periodic [16]. In [28] Pituk proved
the following theorem.
Theorem 4.1 ([28]) Suppose that the function p is slowly

varying at infinity and p> 0. Then

Pτ >
1

e
, (27)

implies that all solutions of Eq. (2) oscillate.
Remark 4.1 ([28]) It is easy to see that in the case of Eq.
(2)

pτ ≤ a≤ A ≤ Pτ.

Thus the above oscillation results by Ladas [22] and
Koplatadze and Chanturija [20] imply the results by
Myshkis [26]. As it is shown in [28], when the function p

is slowly varying at infinity, then

pτ = a and Pτ =A. (28)
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Therefore in that case both results are equivalent.
Moreover, condition (3) together with (28) implies that if
p is slowly varying at infinity, then the condition

Pτ >1, (29)

guarantees the oscillation of all solutions to Eq. (2)
Consequently, if instead of (27) the stronger condition
(29) is assumed, then the uniform positivity condition p>
0 can be omitted.

Note the analogy of the conditions (29), (3) also (27),
(23), (19), (4), (20) and (5).

Remark 4.2 The conclusion of Theorem 4.1 does not hold
if (27) is replaced by (21). Indeed, if

p(t) =
1

τe
,

is identical for t ≥ t0, then the function p is slowly varying
at infinity with p=P = 1

τe
so that Pτ = 1

e
. Observe that

in this case Eq. (2) admits a non-oscillatory solution given

by x(t) = e−t/τ for t ≥ t0. Furtheremore in the case that

p=P = 1
τe

so that Pτ = 1
e

and

p(t)→ 1

τe
as t → ∞,

although p is slowly varying at infinity, Theorem 4.1 does
not apply because in this case the oscillation of all
solutions depends on the rate of convergence of p(t) to

the limit 1
τe

as t → ∞ (see Theorems 3.1, 3.2).
Let’s also recall that, according to the condition (5), for

the oscillation of Eq. (2) it is necessary that

A = limsup
t→∞

∫ t

t−τ
p(s)ds ≧

1

e
. (30)

Thus, if all solutions of Eq. (2) are oscillatory, then A can
not be less than

1

e
≈ 0.367879441

See, for example, the values of A in the tables at the end
of Section 2 and in [29]. It is therefore of great interest to
find a sufficient condition for all solutions to Eq. (2) such
that the value of A is as close as possible to 1

e
. Indeed, A.

Garab et al. [12] showed the following.

Theorem 4.2 ([12]) Let p : [t0,∞) → R
+ be a

nonnegative, bounded and uniformly continuous function
such that

liminf
t→∞

∫ t

t−τ
p(s)ds > 0. (31)

Assume that the function A(t) =
∫ t

t−τ p(s)ds is slowly
varying at infinity and

A = limsup
t→∞

∫ t

t−τ
p(s)ds >

1

e
. (32)

Then all solutions of Eq. (2) oscillate.

Remark 4.3 It is noteworthy to observe that under
mild additional assumptions the ”almost necessary”
condition A > 1

e
is sufficient for the oscillation of all

solutions to Eq. (2). Moreover it is clear the essential
improvement of the condition (32) over (3) and (4) and of
course over all the known conditions (6-15).

As noted above, if p is an S-asymptotically
τ−periodic continuous function, then the function A(t) is
slowly varying at infinity and Theorem 4.2 yields the
following corollaries.

Corollary 4.1 ([12]) Let p : [t0,∞) → R
+ be a

nonnegative, bounded and uniformly continuous function
such that Eq. (31) holds. If p is S-asymptotically
τ−periodic, then Eq. (32) implies that all solutions of Eq.
(2) oscillate.

Corollary 4.2 ([12]) Assume that p : [t0,∞)→R
+ is a

nonnegative bounded function which can be decomposed
into a sum

p(t) = q(t)+ r(t), t ≥ t0, (33)

where q : [t0,∞)→ R is a continuous τ−periodic function
and r : [t0,∞) → R is continuous and slowly varying at
infinity. If

∫ t0+τ

t0

q(s)ds+ τ liminf
t→∞

r(t)> 0,

∫ t0+τ

t0

q(s)ds+ τ limsup
t→∞

r(t)>
1

e
, (34)

then all solutions of Eq. (2) oscillate.

5 Examples

In this section we present examples which illustrate the
significance of the results.
Example 5.1 ([12]) Consider the delay equation

x′(t)+

(
1

2πe
+ δ (cost + cos

√
t)

)

x(t − 2π) = 0, t ≥ 0,

(35)
where δ ∈ (0, 1

4πe
). Observe that this equation is a special

case of Eq. (1) with τ = 2π , t0 = 0, and

p(t) =
1

2πe
+ δ (cost + cos

√
t).

Note that the function cos
√

t is slowly varying at infinity,
because its derivative vanishes there. Therefore the
decomposition Eq. (33) holds where q(t) = 1

2πe
+ δ cost

and r(t) = δ cos
√

t. The conditions in (34) reduce to
1/e− 2πδ > 0 and 1/e+ 2πδ > 1/e respectively. By
the choice of δ both inequalities are satisfied and
therefore by Corollary 2 all solutions of Eq. (35) oscillate.
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We are going to see, however, that neither the conditions
Eq. (4-15) nor the conditions of Theorem 4.1 are satisfied.
Indeed, taking into consideration that p is
S-asymptotically τ-periodic and combining the
periodicity of q with [[28], Lemma 2] we find,

liminf
t→∞

∫ t

t−2π
p(s)ds =

∫ 2π

0

(
1

2πe
+ δ coss

)

ds

+ 2π liminf
t→∞

(δ cos
√

t) =
1

e
− 2π (36)

and

limsup
t→∞

∫ t

t−2π
p(s)ds =

∫ 2π

0

(
1

2πe
+ δ coss

)

ds

+ 2π limsup
t→∞

(δ cos
√

t) =
1

e
+ 2πδ . (37)

From (36) it follows that condition (4) is not satisfied.
Moreover, from (37) we see that choosing δ > 0 small
enough none of the conditions (6-15) is satisfied.

As far as the conditions of Theorem 4.1 is concerned,
note that the function cos

√
t is slowly varying at infinity

and so cos
√

t +π −cos
√

t → 0 as t → ∞ and therefore

p(t +π)− p(t) =−2δ cost + δ [cos
√

t +π − cos
√

t 9 0

as t → ∞. This implies that p is not slowly varying at
infinity and therefore Theorem 4.1 cannot be applied.
Example 5.2 ([12]) Consider the delay equation

x′(t)+

(
1

π
+ δ cost

)

e−1−2δ sintx(t −π) = 0, t ≥ 0,

(38)
where δ ∈ (0, 1

π ). Observe that this equation is a special
case of Eq.(1) with τ = π , t0 = 0 and

p(t) = (
1

π
+ δ cost)e−1−2δ sin t .

Here it is easy to see that Eq. (38) has a positive solution
given by

x(t) = e−
t
π −δ sin t .

In this case we are going to see that all the assumptions of
Theorem 4.2 are satisfied except that the function A(t) is
not slowly varying at infinity.

Observe that p is nonegative and bounded. Further it is
2π−periodic and continuous and therefore it is uniformly
continuous on [t0,∞).

Since p(t)≥ ( 1
π − δ )e−1−2δ for t ∈ R, we have that

liminf
t→∞

∫ t

t−π
p(s)ds ≥ (1−πδ )e−1−2δ > 0,

that is, the condition (31) of Theorem 4.2 is satisfied. Also,
since p is 2π−periodic, we have

A((2n+ 2)π) =

∫ (2n+2)π

(2n+1)π
p(s)ds =

∫ 2π

π
p(s)ds = A(2π)

for all n ∈ N. Taking into account that sint < 0 for t ∈
(π ,2π), we find that

A(2π) =
∫ 2π

π
p(s)ds =

1

πe

∫ 2π

π
(1+πδ coss)e−2δ sint ds

>
1

πe

∫ 2π

π
(1+πδ coss)ds =

1

e
.

Thus, A((2n + n)π) = A(2π) > 1/e for all n ∈ N and
therefore

limsup
t→∞

∫ t

t−π
p(s)ds = limsup

t→∞
A(t)≥ A(2π)>

1

e
,

that is, the condition (32) of Theorem 4.2 is also satisfied.
Finally it is shown that the function A(t) is not slowly
varying at infinity, that is there exists s0 ∈ R and a
sequence tn → ∞ such that A(tn + s0)− A(tn) 9 0 as
t → ∞. Thereto, note that the function p is 2π−periodic
and so is A(t). Thus, it is sufficient to show that A(t) is
nonconstant. Indeed, if there exist t0 ≤ s1 ≤ s2 < ∞ such
that A(s1) 6= A(s2), then letting s0 = s2 − s1 and
tn = s1 + 2nπ , we get A(tn + s0) − A(tn)
= A(s2) − A(s1) 6= 0 for all n ∈ N Since A(t) is
continuously differentiable and periodic, in order to see
that it is nonconstant, it suffices to find a t ∈ R such that
A′(t) 6= 0. Choosing t = π/2 we have

A′(
π

2
) = p(

π

2
)− p(−π

2
) =

e1−2δ − e−1+2δ

π
6= 0.

This completes the proof that A(t) is not slowly varying at
infinity.

It is to be pointed out that this example shows that in
Theorem 4.2 the assumption that A(t) is slowly varying at
infinity cannot be ommited.

6 Applications

6.1 Nicholson’s blowflies

The delay differential equation

·
N(t) =−δN(t)+PN(t − τ)e−aN(T−τ), t ≥ 0

was used by Gurney et al. [[14], p.51] to describe the
dynamics of Nicholson’s blowflies. Here P is the
maximum per capita daily egg production rate, 1/a is the
size at which the population reproduces at its maximum
rate, δ is the per capita daily adult death rate, τ is the
generation time and N(t) is the size of the population at
time t.

6.2 Delay-logistic equation

The delay differential equation

·
N(t) = τN(t)[1−N(t − τ)/K],

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 417-425 (2019) / www.naturalspublishing.com/Journals.asp 423

where r,τ,K ∈ (0,∞), is known as delay-logistic equation

and has been investigated by numerous authors [[14],
p.85]. This equation is a prototype in modelling the
dynamics of single-specie population systems whose
biomass or density is denoted by a differentiable function
N of the time variable t. The constant r is called the
growth rate and the constant K is called the carrying

capacity of the habitat.

6.3 The Lasota-Wazewska model for the

survival of red blood cells

The delay differential equation

·
N(t) =−µN(t)+ pe−γN(T−τ), t ≥ 0

has been used by Wazewska-Czyzewska and Lasota [[14],
p.89] as a model for the survival of red blood cells in an
animal. Here N(t) denotes the number of red blood cells
at time t, µ is the probability of death of a red cell, p and
γ are positive constants related to the production of red
blood cells per unit of time, and τ is the time required to
produce a red blood cell.

6.4 Slowly varying functions

These classes of functions (introduced by Karamata) have
found several important applications, for example in
probabiliy theory, in particular in game theory and in the
theory of stochastic branching processes (see [32] and the
references cited therein).

7 Perspective

We conclude that under mild additional assumptions the
almost necessary condition A > 1

e
is sufficient for the

oscillation of all solutions to Eq. (2). Moreover it is clear
the essential improvement of this condition over all the
known sufficient oscillation conditions (3)-(15).
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