
Appl. Math. Inf. Sci. 13, No. 3, 401-410 (2019) 401

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/130312

Secure and Efficient Deduplication Scheme based on

Ownership Challenge for Mobile Cloud Environment

Sebastian Annie Joice1,∗ and M. A. Maluk Mohamed2

1 Department of Computer Science and Engineering, Government College of Engineering,Srirangam,Tiruchirappalli, India
2 Department of Computer Science and Engineering, M.A.M College of Engineering,Tiruchirappalli, India

Received: 20 Nov. 2018, Revised: 3 Feb. 2019, Accepted: 6 Feb. 2019

Published online: 1 May 2019

Abstract: Cloud Computing plays a vital job in providing storage, infrastructure, and processing services. The demand for storing

data in cloud is increasing day by day due to the large number of users. To protect the data stored in the cloud, data is often stored in an

encrypted form. Cloud storage includes a large amount of duplicated data under different encryption schemes by different users. Existing

solutions that deal with encrypted deduplication do not support controlled access, ownership revocation and file modification require

uploading the entire file in encrypted form. In this paper, a scheme based on Incremental Proxy Re-Encryption (IPRE) scheme for

deduplication with ownership challenge integrated with improved file modification operation in mobile cloud environment is proposed.

The proposed scheme is compared with Proxy Re-Encryption (PRE) scheme based on turnaround time and energy consumption. During

file modification operation, the proposed scheme shows remarkable improvement in results using the restricted storage and processing

speed of mobile devices.

Keywords: Cloud Computing, Deduplication, Incremental Proxy Re-encryption, Mobile Cloud, Proof of Ownership

1 Introduction

With the advent of smartphones and social networking,
data is generated and updated every second. The storage
problem arising due to the exponential growth of data is
solved by the storage services provided by cloud
computing. Still there exists a problem of data replication
on multiple servers, which increases the cost of storage
space. Data deduplication technique in cloud computing
helps to increase storage efficiency in cloud computing.
Hadoop Distributed File System (HDFS) plays a vital role
in cloud computing providing data reliability, with the
burden of increased storage space.

Data privacy [1,2] is also important while storing
users’ data in the cloud. In order to protect the private
data from adversaries as well as from Cloud Service
Providers (CSP), the companies and customers may
encrypt and store encrypted data in the cloud [3,4,5].
Encrypting the data stored in the cloud by different cloud
users by using different keys and encryption techniques
results in different ciphertext which is proved to be
difficult to identify duplicates by the cloud server.
Client-side encryption techniques to encrypt the file using

the private key can be used to perform deduplication but
increase the cost of key management issues [6].Another
method to encrypt the file using a public key can be
provided by CSP. This is not suitable if the cloud server is
semi-trusted or untrusted.

Convergent encryption [7] is a cryptosystem that
solves the problem of key management as the key to
encrypt file is obtained from the file itself. The encryption
key is the hash value generated from the file. The user
encrypts the file using the hash value obtained from the
file, uploads the file to the cloud server and retains the
encryption key. Convergent encryption technique
provides identical cipher text from an identical plain text
file. The cloud storage performs deduplication over the
ciphertext stored and any owner of the file can able to
download the file from the cloud storage and decrypt
using the encryption key obtained from the file.
Convergent encryption provides better privacy and is
open to file attacks.

Data deduplication is used to reduce the storage cost
[8] and processing overhead. Due to the changing need of
users, usage of data in cloud varies. To cope with the need
of users, a dynamic deduplication scheme that supports

∗ Corresponding author e-mail: anniejoicegce@outlook.com

c© 2019 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/130312

402 S. A. Joice, M. A. M. Mohamed: Secure and efficient dedup MCC

data ownership challenge is needed. Deduplication
scheme should be independent of the size of data so that it
is applicable for big data as well.

Deduplication can be performed in two ways. One
that can be done on the server side. Server-side
deduplication is easy to perform. The cloud server
receives the file from the user and checks whether a
duplicate of the file is already stored or unavailable in
cloud. If it is available in the cloud server, it discards the
file, otherwise it keeps the file in the cloud storage. On the
other hand, deduplication is performed on the client side,
in which the user calculates the hash value from the file.
The client sends the hash value computed from the file to
the cloud server. The cloud server verifies whether the
hash value is already available or not. If it is available, the
cloud server links the user with the existing file.
Otherwise, the user is asked to upload the file. Client-side
deduplication plays a vital role in mobile cloud
computing environment, in which the mobile client
accesses the cloud storage. Most of the public cloud
storage services adapt client-side deduplication technique
to reduce storage and bandwidth rate.

An important security threat in deduplication is the
attacker gaining the hash value of the file and the cloud
server adds the attacker as an additional owner of the file.
This is due to the claim of ownership by the attacker with
a single piece of gained hash value. Proof of Ownership
(PoW) plays a vital role and the user should prove file
ownership in addition to possession of file.

The contribution of the proposed scheme is to provide
dynamic deduplication scheme for encrypted data in cloud
storage that supports ownership management.

The organization of the paper is as follows. Section 2
gives a brief overview about related work. Section 3
discusses system architecture and security model. Section
4 describes the incremental proxy re-encryption Scheme
for deduplication. System implementation and testing
environment are discussed in section 5.

2 Related Work

2.1 Deduplication over encrypted data

To preserve the privacy of data stored in the cloud, and
protect it from adversaries, users encrypt the data and
store in cloud [9]. If the client encrypts the data and stores
in the cloud server, deduplication cost will increase. This
is due to the problem of using different encryption keys
by different users. Message-Locked Encryption (MLE)
[10] can solve this problem where the key used to encrypt
and decrypt the file is generated from the file to be stored
in cloud. Using cryptographic hash function, the user
computes the hash value of the file to be stored and
encrypts the file using the hash generated from that file.
This technique is called Convergent Encryption (CE)
introduced by Douceur et.al [7]. In CE technique,

identical ciphertext is generated from identical plain text.
The CE function is deterministic so that any user
encrypting the plain text generates the same hash and
encrypted data. CE is susceptible to brute-force attacks.
ClouDedup [11] achieves confidentiality and performs
block-level deduplication based on CE. It focuses mainly
on two main operations: storing file or block and
retrieving file or block. The operations such as removal,
modification, and update were not taken into
consideration. Bellare et.al [12] proposed DupLESS to
overcome brute-force attacks in CE by using Key Server
(KS) to derive keys. The secret key is generated by KS
and other users are inaccessible to the key. The user
obtained the message-derived key from KS by sending
the hash computed from the file. An Oblivious Pseudo
Random Function (OPRF) protocol is used to ensure that
cloud server learns nothing about user input or resulting
output and user learns nothing about secret key. Li et al.
[13] proposed Dekey, a convergent key management
mechanism using Ramp Secret Sharing Scheme (RSSS)
and the computation overhead for encoding and decoding
is less. In this method, the convergent key is distributed
across multiple cloud servers. The key space overhead is
high as the number of users increases. Data integrity is
also an important consideration in cloud storage [14].

2.2 Proof of Ownership Verification and Others

Harnik et al. [6] proposed a randomized solution that does
not reveal more facts about the file stored on the server. In
randomized solution method, deduplication is performed
on the stored file, when the number of duplicates of the
file exceeds a threshold value. Client-side deduplication is
a very effective mechanism that can be used in mobile
devices that reduces storage cost and bandwidth usage.
Due to the security vulnerability in client side
deduplication, the user should prove the cloud storage
server in which he/she owns the file rather than holding a
hash value of the file. Halevi et al. [15] introduced the
scheme of proof of ownership (PoW) using Merkle tree.
The user computes the encoding X=E(F), by applying
erasure coding E on the file F. Then the Merkletree(MT)
is constructed over the encoded file MT(X) . The root of
the Merkle tree and the total number of leaves in the tree
is kept with the user. By examining the sibling paths of all
the leaf nodes the PoW is verified. By using Merkle tree
method Proof of Ownership (PoW) is achieved by
sending the path of all leaf nodes to the cloud resulting in
more computation and communication overhead. Yu et al.
[16] proposed a probabilistic data structure, the bloom
filter [17] which reduces the computation cost and
overhead due to communication. The rate of growth of
bloom filter may increase with the number of files stored
in the cloud. A cryptographically secure and efficient
scheme for Proof of Ownership is proposed by Yang et. al
[18]. In this method, the client reveals only partial
information about it to the server without uploading the

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 3, 401-410 (2019) / www.naturalspublishing.com/Journals.asp 403

file, to prove the ownership. Dynamic spot checking
technique is used to generate proof of ownership which
reduces the computation overhead and communication
cost between data uploader (holder) and CSP. A unique
evidence is produced in each ownership challenge by
consolidating the parts of original file which is
randomly-sampled with the dynamic coefficients.
Approved data deduplication is performed in hybrid cloud
architecture [19].

3 Problem Formulation

3.1 System and Network Model

We propose a system to achieve deduplication of
encrypted data at CSP based on ownership challenge.
Even in the absence of data holders the proposed scheme
can be able to perform deduplication. The system model
of the proposed scheme is shown in figure 1.

Fig. 1: System Model

The proposed system consists of three entities. (i) a
semi-trusted CSP that offers storage services. (ii) data
uploader is a user that can upload and store its data at
CSP. One user is designated as data owner who creates
the file. Data owner has a higher priority than other data
uploaders. It is possible to have a number of data
uploaders who are mobile users ui,i=A,B,..... The data
uploaders in the system could store the encrypted data in
CSP. (iii) A fully-trusted third party (TTP) to verify data
ownership and performs data deduplication. Data
uploaders make the encrypted hash codes available to
TTP for ownership verification.

4 Scheme for Deduplication

The various notations used in the proposed system are
presented in table 1.

Table 1: System Notations

Notation Description

G Random number g belonging to group G1 of prime order q

Z Random number e(g,g) belonging to group GT

(PkA,SkA) Public key and secret key of user A

MACF Hash value of the file F

r A random number

R Proxy Re-Encryption algorithm

C Encrypted File F

CA Number representing gxAr

rkA→B Re-encryption key from user A to user B

B File Block

K Total number of blocks

F File F

¬ Binary Negation

∧ Bitwise AND

∨ Bitwise OR

4.1 System Setup

The proxy re-encryption [?] works on two cryptographic
groups G1 and GT of prime order q with a bilinear map e:
G1 X G1 →GT symmetric pairing with the property of
bilinearity. The random generators are g∈ G1 and
Z=e(g,g)∈ GT that can be used for encrypting the
message M, decrypting the message C and re-encryption
of the message. During system setup, the TTP generates a
key pair for every data holder uA on the cloud storage for
proxy re-encryption.

SkA=xA, PkA=gxA , where xA ∈ Zq*
The re-encryption key is generated for data holder uA

at TTP by using the public key PkA. We select an elliptic
curve H(a,b) of genus g ≥ 2 over a finite field GF(p),
where p is a prime number and its base point G of order q.
The private key DA∈R {0,...., 2σ -1}, and public key
PA=¬DA ∧ G are generated and σ is a security
parameter. To verify the identity of the mobile user the
keys (PkA,SkA) and (PA, DA) are crucial and the values
are bound to the unique identity of the user. The TTP also
generates (PKTTP, SKTTP) independently for proxy
re-encryption and broadcasts its public key PKTTP to CSP
and mobile users.

4.2 Token Generation

The mobile user generates data token (MAC) for the file F
as follows: MACF=H (H(F)∧G).

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

404 S. A. Joice, M. A. M. Mohamed: Secure and efficient dedup MCC

4.3 Encrypted Data Upload

Let’s assume mobile user (data owner) A wants to store
file F on the cloud. To encrypt the file, the mobile user A
generates random number r∈ Zq*. Then the mobile user
encrypts the file F using the private key as below:

CA = gxAr (1)

C = F · r (2)

During encryption, the file F is divided into blocks of
fixed size and encryption is performed on each block and
finally, all the blocks are concatenated to get the original
file.

F = ‖n
k=1Bk (3)

The mobile user sends (C, CA, MACF) to CSP.

4.4 Ownership Challenge Verification using

Re-encryption

The scheme to verify data ownership challenge is
depicted in figure 2. To download the file F from the
cloud, the mobile user B requests the TTP. TTP
challenges the mobile user B for data ownership by
randomly choosing s∈R {0,...., 2σ -1} and sends the
value to B. The mobile user checks the value s such that 0
≤ s ≤ 2σ -1 and computes y=H(F) ∨ (DB ∧ s). To
protect H(F), if y is known by a malicious node
encrypting y using PkTTP E(y,PkTTP) and sends y and PB

to TTP. TTP computes H(y ∧G ∧s ∧PB) and computes
MAC of file F. If H(y∧ G ∧ s ∧PB) =MACF, the TTP
will download and re-encrypt the message CA as follows:

CB = e(gxAr
,g

xB
xA)

= e(g,g)rxB

= ZrxB

(4)

TTP sends the re-encrypted message (C, CB) to mobile
user B.

4.5 Decryption

By using CB, the mobile user B decrypts the message as
below:

(ZrxB)
1

xB = Zr (5)

F = (
F.Zr

Zr
) (6)

Fig. 2: Ownership Challenge and Verification

4.6 Duplication Check

The deduplication procedure is depicted in figure 3. Let’s
say mobile user A wishes to upload a file F. CSP verifies
PkA and searches the cloud storage for existence of the
file using MACF. If the duplication check is negative, it
requests the mobile user to upload the file F. Mobile user
A encrypts the file F using the private key CA to get C.
A sends (C, CA, MACF) to CSP. If the duplication check
is proved to be positive and the pre-stored file is from the
same mobile user, the prevailing situation is informed to
the mobile user. If the file upload request is from a different
mobile user B, duplication is performed as follows:

CB = e(gxAr
,g

xB
xA)

= e(g,g)rxB

= ZrxB

(7)

The mobile user receives the secret key SkB=xB and
confirms the success of deduplication to CSP. Now, both
the mobile users A and B can access the same file F stored
at CSP.

4.7 Data Deletion

Let’s assume the mobile user A (data owner) wants to
delete the file F from CSP. The mobile user sends deletion

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 3, 401-410 (2019) / www.naturalspublishing.com/Journals.asp 405

request to CSP along with (PkA, xA, MACF). CSP verifies
the validity of the request, removes the file F and blocks
the mobile user A from later access to the file F. CSP
deletes the encrypted file and related records if the
deduplication record is empty.

Fig. 3: Deduplication Procedure

4.8 Data Owner Management

Let’s say the real data owner (mobile user A) stores the
file later than the data holder (mobile user B). CSP can be
able to store the encrypted file by data owner and share the
cloud storage.

To verify the data ownership CSP contacts TTP by
sending all mobile users public key PKi, i=1,2,.....n, if
CSP does not know the re-encryption key of a particular
mobile user. TTP issues the re-encryption key by
downloading the file and re-encrypts the message and
sends it to CSP if the result of ownership challenge is
proved to be positive. CSP deletes the encrypted file of
mobile user B and replaces it with the encrypted file of
mobile user A and updates the deduplication records
corresponding to file F.

4.9 Encrypted Data Update

Let’s say mobile user B (data holder) could update
encrypted file stored at CSP by downloading (C, CB,

MACF) from the cloud storage. Mobile user B sends an
update request to CSP: { xB, Update C}. CSP contacts
TTP for ownership challenge and the mobile user B
performs update operation as follows:

(CB,g
1

xB) = (
gxBr

CB

,g
1

xB)

= (g,g)
xBr· 1

xB

= (g,g)r

= Zr

(8)

CU pdate = FU pdate · r (9)

The mobile user computes the new MAC for the file F and
sends (C, CB, MACF) to CSP.

5 Results and Discussion

5.1 Implementation and Test Environment

The mobile application (mobile cloud client) is
developed, tested and debugged using Android SDK. The
mobile cloud client is deployed on the hardware
specification in Table 2. Google App Engine (GAE) is
used to host a web instant with 2.4GHz processing and
512MB RAM capacity.

Table 2: Hardware Specification

Hardware Specification

(Sony Xperia S smartphone) CPU: Dual Core 11.5 GHz

RAM: 1GB

Storage: 32GB

Operating System: Android OSV4.0.4

Battery: 1750mAh

Mobile Application Development

toolkit: Android SDK

Software Environment Library Java Pairing Based

Cryptography Library (JPBC)

5.2 Security Analysis

The proposed scheme provides a secure way to
deduplicate and store data in the cloud by preventing the
CSP and TTP to access the original file. The security is
achieved through incremental proxy re-encryption
scheme and Elliptic Curve Cryptography (ECC).

Proposition 1: The proposed scheme guarantees that
only the legitimate users can access the original file F from
the cloud and the file F can be deduplicated and stored in
a secure manner and free from collusion attack.

Proof: The file to be stored in the cloud is always in
encrypted form, so it is not possible for CSP to access the

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

406 S. A. Joice, M. A. M. Mohamed: Secure and efficient dedup MCC

file content. Although TTP gains encrypted file C and the
public key of the user, TTP is prevented from accessing F,
since access to file F is blocked by CSP.
Confidentiality is achieved by incremental proxy
re-encryption. The original file F is impossible to obtain
from the hash function H (H (F)∧ G). Another way to
disclose F is through obtaining from ciphertext C, which
is impossible for incremental proxy re-encryption. To
achieve integrity, the MAC of the downloaded file is
compared with the calculated MAC.
CSP cannot gain the number representing to get the file F,
because it does not know anything about the secret key of
any mobile user. Only the authorized mobile user can be
able to obtain the file F from the re-encrypted message
from TTP. This guarantees that F can be accessed only by
legitimate users.

Proposition 2: The deduplication check is performed
with the hash code H (H (F)∧ G) and it cannot be obtained
by any unauthorized cloud users.

Proof: H (H (F)∧ G) plays a key role for data
deduplication check. When the token is captured by some
malicious mobile clients, H(F) is still secured due to
elliptic curve discrete logarithmic problem. CSP can be
able to get information about the token but nothing else.
Though TTP can be able to know the value y=H (F) ∨
(DB ∧ s), it cannot obtain DB and H(F). H(F) cannot be
transmitted between any unauthorized mobile users and is
not obtained by any other mobile users. Even when CSP
conspires with any malicious mobile clients, the
malicious mobile user can only obtain H (H (F)∧ G), not
H(F) and thus it is impossible to access the file F stored at
cloud by succeeding the ownership verification performed
by TTP.

Proposition 3: A mobile cloud user should have the
file F to succeed the ownership verification of TTP.

Proof: The mobile user can generate H(F) with the
original file F and compute y=H (F) ∨ (DB ∧ s) with DB

and s provided by TTP. TTP computes H(y∧G ∧ s ∧
PB) =H((H (F) ∨ (DB ∧ s) ∧ G ∧ s ∧ PB)=H((H(F)∧
G) ∨ DB ∧ s∧ G ∧ s ∧ ¬ DB ∧ G =MACF, which
completes the ownership verification of TTP.

5.3 Computational Complexity

In the proposed system, the mobile user (data owner) is
responsible for system setup, encryption, and token
generation. ECC key generation needs one-point
multiplication, and system setup is performed only once
for all file storage operations. The time taken to compute
hash of the file depends on the file size and it is very fast,
so it cannot be considered. Token generation involves two
hash operation and one-point multiplication. Thus the
computation complexity for both setup and file upload is
O(1).
A mobile user uploads a file to CSP by generating token
H (H (F)∧ G). The CSP saves the file only if the token

Table 3: Data set used to calculate the total number of operations

(Block size-64 bytes)

S.No. File Size(in bytes) No.of Files Total No.

of operations

1. 5120 50 4000

2. 10240 50 8000

3. 15360 50 12000

4. 20480 50 16000

5. 25600 50 20000

does not exist already. If a mobile user (data holder)
uploads the same file, CSP re-encrypts the message with
the help of TTP to verify ownership challenge. The
re-encryption operation requires one pairing. The
computation complexity is O(n) if the same file is
uploaded by n mobile users (data holders).
A mobile user (data holder) wants to upload the same file
that has been stored already in the cloud, a token is
generated by the data holder H (H (F)∧ G). During
ownership challenge, the data holder computes y=H (F)
∨ (DA ∧ s). It is not necessary for the data holder to
encrypt the file for upload. The encryption E(PkTTP,y)
requires 2 exponentiations. So the computation
complexity of data holder is O(1).
TTP is responsible for re-encrypting the message by
challenging the data ownership. TTP randomly selects the
value s and compares H(y∧ G ∧ s ∧ PB) =MACF which
requires two-point multiplications. TTP re-encrypts the
message which requires one pairing. TTP re-encrypts the
message for all authorized mobile users (data holders)
and the computational complexity is O(n).

5.4 Encryption and Decryption

Java Pairing-Based Cryptography Library (JPBC) is used
by the mobile client to encrypt the files. During
encryption, file is divided into blocks and F ·Zr

multiplication operations is performed and to decrypt a
file (F ·Zr/Zr) division operation is performed and
presented in table 3. The pairing operation is constructed
on the curve y2=x3+x over the prime field Fq. The time
taken for each basic operation is presented in table 4. The
computation complexity of the proposed scheme is
compared with Yan Zheng et al. [23] and the comparison
is presented in table 5. The proposed scheme is evaluated
and its performance is tested based on the algorithms for
deduplication, encryption, and decryption. The time taken
to perform encryption and decryption on different file size
is shown in figure 4 and 5 respectively. The encryption
operation on the dataset and uploading operation
consumes more time on the mobile device; however, the
proposed scheme significantly improves file modification
operation. The turnaround time is calculated for a various

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 3, 401-410 (2019) / www.naturalspublishing.com/Journals.asp 407

Table 4: Time taken for basic operation

S.No. Basic Operation Time Taken (millisecond)

1. Pairing 5.87

2. EXP(G1) 3.86

3. EXP(GT) 0.67

4. Point Multiplication 0.6

5. Multiplication 0.31

6. Division 0.27

Fig. 4: Time taken to encrypt file

Fig. 5: Time taken to decrypt file

number of block insertion/modification operation and it
includes the time taken to read the file and the time taken
to encrypt the file. The uploading and downloading time
are not taken into account. The operation is performed on
blocks of various size 1,2,3,4,5, and 6 and compared with
Proxy Re-encryption (PRE) scheme and the results are
presented in figure 6. The energy consumption for a
various number of block insertion/modification operation

Fig. 6: Turnaround time-Block Modification/Insertion

is calculated and presented in figure 7. The energy
consumption for file uploading and downloading
operation is not considered.

5.5 CPU Utilization and Memory Utilization

During the encryption of 30 files of size 1,024,000 bytes,
the utilization of CPU is evaluated in percentage, Private
Memory (PM) used is evaluated in kilobytes (KB) and
Proportional Set Size memory (PSS) is measured in
kilobytes. PM is the memory that is used by a process
completely on its own and it is used in resident memory.
Proportional set size is the portion of memory (Random
Acess Memory) used by a process and it includes the
amount of private memory used by a process and
proportion of memory shared by one or more processes.
PSS can be calculated as

PSS =
SM

N
(10)

SM is the memory shared among at least one process on
the mobile device and N represents the total number of
processes utilizing the shared memory. A mobile
application to evaluate the utilization of resources that
executes android top command for each second is used to
get the information about the utilization of resources for
each of the running processes in the mobile device. The
experiment setup is repeated four times and the same
system configuration is used. The average results of the
experiment are presented in table 6.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

408 S. A. Joice, M. A. M. Mohamed: Secure and efficient dedup MCC

Table 5: Computation complexity of data owner, CSP, data holder by comparing with (Yan Zheng et al., [23])

System Entity Procedure Proposed Scheme Zheng et al. Scheme Complexity

Mobile user Setup 1Pt.M+1Exp 1Pt.M+1Exp O(1)

(Data Owner) File Upload 1Pt.M+1Exp+1mult 2Exp+1Pt.M

CSP Re-encryption 1Pair 1Pair O(n)

System Setup 1Pt.M+1Exp 1Pt.M+1Exp

Mobile User Ownership Challenge Bitwise AND and 2Exp+1Pt.M O(1)

(Data Holder) Response Bitwise OR

Data Upload - -

Decryption 1 Division 1Exp

TTP System setup 1Exp 1Exp O(n)

Ownership Challenge Bitwise AND and 2Exp+2Pt.M

Bitwise OR

Fig. 7: Energy consumption- Block Modification/Insertion

6 Conclusion

Deduplication plays a significant role in reducing the
storage cost, network resources, and bandwidth. In this
paper, encrypted data with deduplication based on
ownership challenge is proposed for mobile cloud
environment. The incremental proxy re-encryption
provides a significant improvement in block
insertion/modification operations. The incremental proxy
re-encryption is also compared with proxy re-encryption
based on utilization of CPU, memory usage in terms of
primary memory and shared memory, turn around time,
and energy consumption on the mobile device. The
performance improvement is evaluated based on the
number of blocks the mobile user (data owner) updates in
the cloud. Mobile users can securely access encrypted
data stored in the cloud because only authorized data
holders can decrypt the file.

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 3, 401-410 (2019) / www.naturalspublishing.com/Journals.asp 409

Table 6: CPU utilization and memory usage - to encrypt 30 files

of size 1,024,000 bytes

CPU Time Private Shared

Utilization (msecs) Memory(KB) Memory (KB)

PRE-30 files of size 1,024,000 bytes

53.00 105,382.60 16,422.31 22,580.14

54.13 105,335.86 14,818.54 20,932.57

52.82 105,094.24 16,027.52 21,856.15

53.76 105,238.42 15,756.12 21,789.61

IPRE-30 files of size 1,024,000 bytes(8)

54.47 106,948.83 16,243.62 18,209.18

53.45 106,942.71 16,977.31 18,837.03

54.15 106,944.87 17,424.85 19,281.43

54.02 106,945.47 16,881.93 18,775.87

IPRE-30 files of size 1,024,000 bytes(64)

55.34 107,044.67 16,975.63 17,967.52

55.40 107,059.61 16,920.35 17,985.95

54.83 106,991.52 17,028.10 18,136.30

55.19 107,031.93 16,974.69 18,029.92

IPRE-30 files of size 1,024,000 bytes(128)

56.41 107,160.68 17,076.51 18,009.23

56.37 107,155.13 17,071.73 18,012.82

57.07 107,166.89 17,106.92 19,192.10

56.61 107,160.90 17,085.06 18,404.71

IPRE-30 files of size 1,024,000 bytes(256)

57.38 107405.51 17,266.30 19270.90

57.39 107506.53 17,133.32 18398.16

58.04 107559.36 17,351.68 19260.63

57.60 107490.47 17,250.43 18976.57

References

[1] Y. Shin, D. Koo, and J. Hur, A Survey of Secure Data

Deduplication Schemes for Cloud Storage Systems, ACM

Computing Surveys, Vol.49, No.4, pp.1-38 (2017).

[2] K. Hashizume, D. Rosado, E. Fernandez-Medina, and

E. Fernandez, An analysis of security issues for cloud

computing, Journal of Internet Services and Applications,

Vol.4, No.5, pp.1-13 (2013).

[3] N. Baracaldo, E. Androulaki, J. Glider, and A. Sorniotti,

Reconciling End-to-End Confidentiality and Data Reduction

In Cloud Storage, Proceedings of the 6th Edition of the ACM

Workshop on Cloud Computing Security - CCSW-14, pp.21-

32 (2014).

[4] W.K. Ng, Y. Wen, and H. Zhu, Private data deduplication

protocols in cloud storage, ACM Symposium on Applied

Computing, pp.441-446 (2012).

[5] M.W. Storer, K. Greenan, D.D.E. Long, and E. L. Miller,

Secure data deduplication, 15th ACM Conference on

Computer and Communications, pp.1-10 (2008).

[6] D. Harnik, B. Pinkas, and A. Shulman-Peleg, Side channels in

cloud services: Deduplication in cloud storage, IEEE Security

and Privacy, Vol.8, No.6, pp.40-47 (2010).

[7] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon, M.

Theimer, and P. Simon, Reclaiming space from duplicate

files in a serverless distributed file system, ICDCS 2002:

Proceedings of the 22nd International Conference on

Distributed Computing Systems, pp.617-624 (2002).

[8] D.T. Meyer, and W.J. Bolosky, A study of practical

deduplication, ACM Transactions on Storage, Vol.7, No.4,

pp.1-20 (2012).

[9] M.Ali, R. Dhamotharan, E. Khan, S.U. Khan, A.V. Vasilakos,

K. Li, and A.Y. Zomaya, SeDaSC: Secure Data Sharing in

Clouds, IEEE Systems Journal, Vol.11, No.2, pp.395-404

(2017).

[10] M. Bellare,S. Keelveedhi, and T. Ristenpart, Message-

Locked Encryption and Secure Deduplication, Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, pp.296-312 (2013).

[11] P. Puzio, R. Molva, M. Onen, and S. Loureiro, ClouDedup:

Secure deduplication with encrypted data for cloud storage,

Proceedings of the 5th International Conference on Cloud

Computing Technology and Science, CloudCom, pp.363-370

(2013).

[12] M. Bellare, S. Keelveedhi, and T. Ristenpart, DupLESS:

Server-Aided Encryption for Deduplicated Storage, IACR

Cryptology ePrint Archive, Report No.2013/429 (2013).

[13] J. Li, X. Chen, M. Li, J. Li, P.P.C. Lee, and W. Lou, Secure

deduplication with efficient and reliable convergent key

management, IEEE Transactions on Parallel and Distributed

Systems, 25(6), 1615-1625 (2014).

[14] Q. Zheng, and S. Xu, Secure and efficient proof of

storage with deduplication. Proceedings of the Second ACM

Conference on Data and Application Security and Privacy -

CODASKY’12, pp.1-12 (2012).

[15] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-

Peleg, Proofs of Ownership in Remote Storage

Systems,Proceedings of the 18th ACM Conference on

Computer and Communications Security, pp.491-500

(2011).

[16] C. M. Yu, C. Y. Chen, and H. C. Chao, Proof of ownership

in deduplicated cloud storage with mobile device efficiency.

IEEE Network, Vol.29, No.2, pp.51-55 (2015).

[17] J. Blasco, R. Di Pietro, A. Orfila, and A. Sorniotti, A

tunable proof of ownership scheme for deduplication using

Bloom filters, 2014 IEEE Conference on Communications

and Network Security, CNS 2014, 481-489 (2014).

[18] J.R. Chao Yang, Jian Ren, and Jianfeng Ma, Provable

ownership of files in deduplication cloud storage, Security

and Communication Networks, Vol.8, No.14, pp.2457-2468

(2015).

[19] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P. C. Lee,

W. Lou, A Hybrid Cloud Approach for Secure Authorized

Deduplication, IEEE Transactions on Parallel and Distributed

Systems, Vol.26, No.5, pp.1206-1216 (2015).

[20] G. Ateniese, K. Fu, M.Green, and S.Hohenberger, Improved

proxy re-encryption schemes with applications to secure

distributed storage, ACM Transactions on Information and

System Security, Vol.9, No.1, pp.1-30 (2006).

[21] A.N. Khan, M.L.M. Kiah, S.A. Madani, M. Ali, A.

Khan, R. ur and S. Shamshirband, Incremental proxy re-

encryption scheme for mobile cloud computing environment,

The Journal of Supercomputing, Vo.68, No.2, pp.624-651

(2014).

[22] P.K. Tysowski, and M.A. Hasan, Re-Encryption-Based

Key Management Towards Secure and Scalable Mobile

Applications in Clouds, IACR Cryptology ePrint Archive,

Report No.2011/668 (2011).

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

410 S. A. Joice, M. A. M. Mohamed: Secure and efficient dedup MCC

[23] Z. Yan, W. Ding, X. Yu, H. Zhu, and R.H. Deng,

Deduplication on Encrypted Big Data in Cloud. IEEE

Transactions on Big Data, Vol.2, No.2, pp.138-150 (2016).

Sebastian Annie Joice
is a part-time Ph.D. student
and working as Assistant
Professor in the Department
of Computer Science and
Engineering in Government
College of Engineering,
Srirangam. She received
B.E Computer Science
and Engineering from

Bharathidasan University, Tiruchirappalli and received
M.E. Computer Science and Engineering from Anna
University, Chennai. Her research interests include
Security, Cloud Computing,and Automata Theory.

M. A. Maluk Mohamed
obtained his Ph.D. degree
from IIT Madras, Chennai
in the year 2006. He
is a Professor of M.A.M.
College of Engineering,
Affiliated to Anna University,
Chennai. He has(co-)authored
over 80 research articles
published in refereed journals

and conferences, and is a frequent invited speaker
at conferences and institutions all over India. His
current research focus is on Distributed Computing,
Mobile Computing, wireless Sensor Networks, Cluster
Computing, Grid Computing, etc. He is a member of the
ACM, IEEE, ISA, IARCS and life member of the
Computer Society of India.

c© 2019 NSP

Natural Sciences Publishing Cor.

	Introduction
	Related Work
	Problem Formulation
	Scheme for Deduplication
	Results and Discussion
	Conclusion

