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Abstract: In the era of globalization, integrated planning for production, workforce, and capacity is the key factor for attaining success

in any industry. This paper provides a mathematical model to determine the best possible combination of required capacity, workforce,

and lot size for a multi-product, multi-stage, and multi-model production system. The model provides a blueprint of a detailed workforce

distribution plan to optimize the available capacity and determine the ideal lot size based on the ways (i.e. tray/trolley) of handling

material to control the space required for setup and floor area. This model uses linear programming to reduce the manufacturing cost.

A real-world numerical illustration proves the competency of this model, which - for an industry - serves as a practical guide to achieve

the best combination of capacity, workforce, and lot size.

Keywords: Mathematical model, linear programming, one-piece flow, capacity planning, workforce planning.

1 Introduction

Since the beginning of the 21st century, many industries
has only on the means to reduce the production cost.
Later, instead of using a dedicated line, manufacturing
industries used the concept of multi-product in
multi-model production line to enhance other resources
and the equipment level. The main objective of the
multi-model line is to reduce both production and setup
cost. In a multi-model production line, different products
(i.e. A, B, C, etc.) pass through various process
cells/stages/machines (i.e. main and sub-assembly) that
have a mix of dedicated and shared resource facility
(Figure 1). A majority of computational and practical
concepts of production and capacity-planning factors are
independent [1]. However, in real-world production
planning, factors of workforce flexibility and machine
flexibility impact capacity and utilization. Similarly,
capacity-planning factor for forecast demand, overtime,
and under time is significantly influenced by the
production-planning elements of production cost,
inventory-holding cost, back-order cost, lead time, and
delivery time. Integrated planning to reduce cost has not
been adopted in many real-world approaches. Thus for
many manufacturers, integrating strategies of production

and other related operations appear to be a prerequisite
for ensuring performance excellence.

The research scope of integration is still vast as many
researchers have proposed different concepts for
production capacity planning and workforce planning
models separately for the objective function of
minimizing the overall production cost in the Production
Planning Control (PPC) framework. Most of the
production capacity planning and workforce planning
models are deterministic and use either Linear
Programming (LP), Integer Programming (IP), or Mixed
Integer LP (MILP) [2–12]. Optimization approaches
based on pure simulation or simulation-based
experimental designs propose and consider the
uncertainties associated with production capacity
planning in the PPC framework [13–16]. Capacity and
workforce planning problems considered are dynamic in
nature [17, 18] and heuristics [19].

Multi-criterion Production Capacity and Workforce
Planning (PCWFP) models with objectives of cycle time
minimization, the number of setup/setup time
minimization, profit maximization, overtime
minimization, and maximizing resource utilization, along
with cost minimization have been also resolved [20, 21].
Very few authors suggested that handling the capacity
problems is oversimplified using the non-traditional
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Fig. 1: Multi-Product, Multi-Stage, and Multi-Model with

Shared Resource Facility

search techniques such as genetic algorithm, Simulated
Annealing (SA), tabu search, swarm intelligence, and
pattern search [22]. These methods mostly use CPLEX,
LINGO, LINDO, MATLAB (i.e. MATrix LABoratory),
C/C++ programming language. The main purpose of
search techniques is the multi-directional search to find
the global optimum.

In this paper, we develop a PCWFP model to
distribute the optimal workforce for performing a set of
tasks with the main objective function of the
manufacturing cost minimization in an automobile
manufacturing industry with multi-period, multi-stage,
and multi-product system. Many worthwhile thoughts
have been developed on lean production. The remaining
paper is organized as follows. Section 2 provides a
detailed literature review on the model development and
techniques based on capacity-workforce planning
optimization. Section 3 deals with the problem
description and assumptions made for the model
development. The mathematical model and details of
constraints are provided in Section 4. Section 5 describes
practical implementation of the model and managerial
insights in detail.

2 Literature Review

The workforce planning is one of the most complex
managerial tasks in the PPC network when calculating the
capacity and aggregate planning. It becomes more
complex when capacity is the most sensitive factor to the
product mix and process sequence, and new bottleneck
tools would enter the system as the demand changes due
to uncertainties. Hopp et al. [23] clearly explained the
relationship between strategic PPC tasks of the forecast,
capacity plan, and workforce plan, which formed the
basis of the aggregate plan to achieve the determined

production. In real-world problem, there is a gap in the
calculation of workforce planning factors of workforce
assignment and workforce utilization with overtime and
hiring/firing being the crucial elements in the
performance of a manufacturing system. Therefore, the
workforce planning is a productive pathway to continue
further study. Many research articles have been published
on the PCWFP; with various capacity and demand
fluctuations [2, 4, 6, 11, 16, 19, 24–33]. Mathematical
model and programming techniques have been used
extensively for solving capacity-planning problems
compared to static-, simulation-, and queuing-based
analysis [26].

Few studies have solved capacity-workforce-type
problem with the advanced mathematical tools such as
goal programming, dynamic programming, non-LP, and
various search techniques. Leung et al. [21] address the
aggregate production planning problem with diverse
functioning constraints, including workforce level,
production capacity, factory locations, machine
utilization, storage space, and other resource limitations,
which are solved by a pre-emptive goal. Chen [8] mainly
focused on the product mix problem and order selection
based on the optimal set of work/customer to maximize
the operational profit over a planning horizon with mixed
IP (MIP) using CPLEX solver. Lot-sizing and sequencing
of multiple products on capacity-constrained resources is
the significant decision in the capacitated-lot-sizing
problem [34] formulated by the MILP. Ryu [35] proposes
an integrated planning framework for production capacity
and supply chain capacity formulated by the MILP. Mula
et al. [36] proposed a fuzzy mathematical programming
model for the capacity and material requirement planning
problem. Lee et al. [37] considered the decomposition
approach for solving the capacity problem in the flexible
assembly system. Kim and Uzsoy [19] represented
models for capacity planning problem that clearly
distinguish the relationship between capability levels and
functional performance criteria such as work in progress
and throughput. The problem is solved using two
constructive heuristic and extent of the Lagrangian
heuristic to resolve the multi-stage problem. Hsu and
Le [38] studied mixed integer non-linear programming
model based on the SA for the capacity optimization
problem to enhance the supply chain network in a
high-tech manufacturing industry. Mokhtari et al. [31]
produced an integrated model between production
capacity planning and operational scheduling, and then a
two-phase genetic algorithm approach for solving the
crashing and sequencing functions.

Most of the above-mentioned paper deals with
planning approaches used over the years, which are
relevant to the proposed production capacity workforce
and still have one or more following limitations:

–Most of the suggested mathematical models consider
single-stage/assembly with single-product,
multi-stage/assembly with single-product, or
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single-stage/assembly with multi-product, but rarely
discussed multi-stage/assembly with multi-product
and multi-period system. In addition, solving real-life
problems involves using various
production-associated variables (i.e. production
capacity, product flow, volume, lot size, machine
capacity, processing time, setup time, and line
stoppage and maintenance downtime).

–However, many research models provide application
potential, but research implementation in real-life
problems is still lacking. Incorporation of production
capacity, workforce, and its level of utilization and
then lot-size determination based on the material
handling size are rare decision variables for cost
minimization.

We have developed the mathematical model for
PCWFP for multi-model production line in various
process types of an industry. Note that comparing the
competence of different optimization technique is not in
the scope of this paper.

3 Problem description and assumptions

Our aim is to develop a mathematical model that
completely integrates production in regular time,
contingency production of the overtime/holiday working
(i.e. lay-off/hiring workforce), inventory, back-order, and
setup cost of multi-product, multi-period stages of a
real-world manufacturing situation. Thus, the
optimization models that consider the objectives such as
the change in capacity level maximize the shared resource
utilization, but other than total cost minimization these
models rarely solve detailed setup cost based on lot-size
optimization. Such models are also oversimplified (i.e.
not comprehensive to study multi-period, multi-stage, and
multi-product system). Therefore there has been the need
to develop a flexible mathematical model dealing with
production capacity-workforce planning problems for
fluctuated demand scenarios. Most real-world problems
are non-linear to solve [39] and linear relationship
between all variables does not always supply the best
results; but too much of non-linear relationships makes
the problem very difficult to solve.

To solve the model, first we define the indices, input
variables (i.e. parameter), and decision variables, then
provide the detailed problem formulation in Section 4.

Indices

i: Index for time periods (i = 1, . . . , I)
c: Index for manufacturing cells (c = 1, . . . ,C)
m: Index for stations/machines (m = 1, . . . ,M)
v: Index for product varieties (v = 1, . . . ,V )
x: Index for production channel (x = 1, 2, and 3)
If x = 1 ⇒ Normal production channel (i.e. consider

1st and 2nd shift)
If x = 2 ⇒ Contingency-overtime production channel

(i.e. consider 3rd shift)
If x = 3 ⇒ Contingency-lay-off production channel

(i.e. Holiday shifts)
n: Index for number of material handling

(n = 1, . . . ,N)

Input variables

FDiv: Forecast demand
Cc,max: Maximum available capacity of all three shifts

in cell c (i.e. Civ +C′
iv)

Civ: Available (i.e. working day) capacity in all shifts
during the period i for product v

C′
iv: Additional (i.e. holiday) capacity in all shifts

during the period i for product v

Ci: Capacity during the period i

For production cost

T : Total working hours/day (i.e. total number of
shifts per day × working hours per shift)

h: Total working time per shift
S: Total number of shifts
TOCtcv: Total operator cycle time
BNtcv: Bottleneck time
WDi: Number of working days
HDi: Number of holidays
γc: Overall Equipment Efficiency (i.e. OEE)
ρc: Number of additional facilities (i.e. parallel)
∂i: Absenteeism and other delays
OPcv: Average productivity per man per shift
Wicv,min: Minimum number of workforce
Wicv,max: Maximum number of workforce (i.e. including

holidays)
Wi: Required workforce based on demand
Wi∂ Required workforce based on demand with delay
CPcvx: Production cost per unit channel × for product v

in cell c

For setup cost

αc: Material handling (i.e. container) size in cell c

Ptcv: Processing time in cell c for product v

Stcv: Average setup time in cell c for product v

Lt(n,αc): Current n number of material handling

operation time in cell c

Ltrdcv: Operation time ratio in cell c

CSv: Average setup cost/unit time of cells for product v

For inventory cost

PUicv: Customer priority and uptime decision factor
during the period i in cell c for product v

(i.e. PUicv ≤ 1)
Hi: Inventory carrying cost of semi-finished product

per unit in period i

CIiv: Inventory carrying cost of finished product per
unit in period i for product v

NPv: Number of partitions for each product v

NVp: Number of products in each partition p

CPcv: Production cost per unit for product v in cell c
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For back-order cost

CBiv: Average penalty cost per unit of unfulfilled
demand in period i for product v

Decision variables:

For production cost

Wic1: Total workforce for normal production during
the period i in cell c

Wic2: Total workforce for contingency overtime
production during the period i in cell c

WFic: Total workforce for contingency lay-off
production during the period i in cell c

(i.e. lay-off/hiring workforce)
Picvx: Total units produced through channel x during

the period i in cell c for product v

For setup cost

Ncv: Total quantity of materials handling in cell c

for product v

βcv: Lot-size in cell c for product v

SNicv: Number of setup during the period i in cell c

for product v

For inventory cost

Btcv: Batch processing time in cell c for product v

PRcv: Production rate in cell c for product v

APRicv: Average production rate in cell c for product v

Wticv: Waiting time during the period i in cell c for
product v

Iicv: Total finished product inventory during the
period i in cell c for product v (i.e. c = 1 always)

PAiv: Number finished unit dispatched to customer
dispatch center (CDC) during the period i for
product v

For back-order cost

Biv: Total unfulfilled demand in period i for
product v

4 Problem formulation

The main objective of our mathematical model is to find
the best possible capacity required and lot-sizes at each
production stage by minimizing the Total Manufacturing
Cost (TMC). TMC includes production, setup,
inventory-holding (including main and sub-assembly),
and back-order cost. The motive of the objective function
is to balance the production rates at successive production
stages of multi-product through a concurrent adjustment
of the capacity, workforce, and lot-size, and considering
the trade-off between the capacity cost and savings in
setup, inventory and back-order costs. We’ve used two
following main novel approaches: (1) Distributing the
workforce regarding normal, overtime, and lay-off
production channels based on available capacity and
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Fig. 2: The Decision Framework Flow of the PCWFP Model

required demand and (2) Reducing the production and
setup cost by determining lot-size based on the floor
space and the number of material handled. Figure 2 shows
the decision framework flow of the PCWFP model. On a
receipt of an order, the available capacity and the
workforce level within available resource facility are
checked to know when the required workforce level (Wi)
is less than or equal to usual production workforce
(Wi ≤ Wic1), and whether the usual production channel is
activated. However, when the required workforce level
(Wi) is greater than the normal production workforce (i.e.
Wi > Wic1), the contingency overtime production channel
would be activated along with the ordinary channel
(Wic1 +Wic2). When the need to satisfy the upcoming
high/uncertain demand from more than two channels of
workforce levels (Wi > (Wic1 + Wic2)) arises, the
contingency lay-off production channel would be
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activated along with the other two channels
(Wic1 +Wic2 +WFic). The details of the objective function
and constraints are provided in the following subsections.

4.1 The objective function

The objective function of total cost minimization is
provided in Equation (1);

Total Cost (Z) Minimization = {[Production Cost of
(Normal channel + Contingency-overtime channel +
Contingency-lay-off channel)]a + [Setup cost]b +
[Inventory-Holding Cost (Main assemblyc1 +
Sub-assemblyc2)] + [Back-order Cost]d}

MinZ =
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(1)

where
a = production cost of (normal channel +
contingency-overtime channel + contingency-lay-off
channel)
b = setup cost
c1 = inventory-holding cost (main assembly)
c2 = inventory-holding cost (sub-assembly)
d = Back-order Cost

The required product quantities produced during
normal, overtime, and lay-off production are calculated
using equations (2)-(4), respectively. Equation (2)
calculates the number of normal production workforce,
equation (3) calculates the number of overtime workforce
in case of upcoming high demand/irregular order/priority
changes, setting off the overtime channel. Equation (4)
calculates the lay-off workforce whenever any delay such
as machine breakdown, material delay, capacity shortage
due to uncertain demand occurs in the process flow,
activating the lay-off channel.

If x = 1 (normal channel) Picv1 = OPcv ×Wic1∀ i,c, and v

(2)

If x = 2 (contingency-overtime channel)

Picv2 = OPcv ×Wic2∀ i,c, and v (3)

If x = 3 (contingency-lay-off channel)

Picv3 = OPcv ×WFic∀ i,c, and v (4)

Workforce planning: The maximum level of workforce
design in three shifts, including of working on a holiday,
required demand workforce, and additional delay during
all the demand periods is calculated using equations (5)-
(8), respectively, based on efficient workforce scheduling
[40].

Wicv,min = [(TOCtcv/BNtcv)×WDi × S× γc×ρc]

∀ i,c, and v (5)

Wicv,max = [(TOCtcv/BNtcv)× (WDi +HDi)

× S× γc×ρc] ∀ i,c, and v (6)

Wi = FDiv/OPcv∀ i,c, and v (7)

W∂ i = (Wi + ∂i×Wi)∀ i,c, and v (8)

The novel approach from equations (5) to (11) is a
detailed workforce distribution plan based on the
maximum available capacity and the expected demand. In
general, demand increase results in immediate increases
in the number of workforce to achieve the essential result;
but after a certain level/point, even increasing the number
of workforces does not achieve the desired output, and
that level/point is called Workforce Break Even Point
(WBEP). Figure 3 provides a detailed understanding of
the WBEP. The chart represents increasing the number of
workforce to reach the maximum level of cell/machines
capacity of 1859 parts/day with 11 workforce/day; if the
deployed workforce is more than the design workforce
(i.e. 11 workforces/day), the output level (1859 parts/day)
will be the same, that point is WBEP. Based on this
strategy, a detailed workforce distribution plan is
calculated from equations (9) to (11). Equation (9)
calculates the normal production workforce and Equation
(10) calculates the overtime production workforce from
the total number of available shifts per day (i.e.
decision-making process). Equation (11) relates to
selecting contingency lay-off production workforce when
the capacity and another shortfall occur as evident from
equation (11), which shows that lay-off workforce is
permitted only when the normal workforce is absent or
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when workforce requirement is more than the maximum
workforce for each cell and other reasons for delays.
Nowadays industries, more particularly the automobile
manufacturing industry, maintain a contingent workforce
based on the hiring/firing/lay-off concept instead of
permanent workforce [41] when the demand is uncertain.
Workforce distribution is one of the challenging processes
in a shared workforce and in an uncertain workforce
environment [42, 43].
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Fig. 3: Workforce Break Even Point (WBEP)

For selecting normal production workforce:
If
Max([2/3×Wicv,min], [2/3× (Wi+ ∂i ×Wi)])
≤ (Wi + ∂i ×Wi)
Select
Wic1 = Min([2/3×Wicv,min], [2/3× (Wi+ ∂i ×Wi)])
Else If
Max([2/3×Wicv,min], [2/3× (Wi+ ∂i ×Wi)])
≤ 2/3× (Wi+ ∂i ×Wi)
Select
Wic1 = Max([2/3×Wicv,min], [2/3× (Wi+ ∂i ×Wi)])
Else

Wic1 = (Wi + ∂i ×Wi)])∀ i,c, and v (9)

For selecting contingency overtime production
workforce

Wic2 = Min([1/3×Wicv,min], [(Wi + ∂i ×Wi)−Wic1])

∀ i,c, and v (10)

For selecting contingency lay-off production workforce

WFic ≤ min(WCiW Bi)∀ i,c, and v (11)

where

WCi = HDi × ((Wi + ∂i×Wi)/WDi)

W Bi = (Wi + ∂i ×Wi)−WCic1 −WCic2

An illustrative example is presented for better
understanding the workforce distribution (equations
9-11), decision variables, and condition. Here the primary
underlying assumption is that 2/3 of shifts/day considered
normal production, 1/3 of shifts/day is considered
overtime production, and lay-off work is found on an
available holiday time. Select the normal production
workforce (Wic1) value; if the maximum of 2/3 design
workforce or 2/3 required demand workforce is less than
or equal to the required workforce. Select value Wic1 if it
is equal to minimum of 2/3 design workforce or 2/3
required demand workforce. Else, maximum of 2/3
design workforce or 2/3 required demand workforce
should be less than or equal to the 2/3 required demand
workforce. Select the value Wic1 if it is equal to maximum
of 2/3 design workforce or 2/3 required demand
workforce, otherwise select the required demand
workforce. The main objective is to select a workforce
limit, within the available capacity and not beyond the
WBEP. Similarly, we decide the level of the contingent
overtime production workforce (Wic2) and contingent
lay-off production workforce (WFic) from the available
capacity and not beyond the WBEP.

Setup and lot-size: The need for setup time and setup
reduction becomes increasingly important in production
lines with an extensive product variant [44]. The benefit
of controlling the setup time process is not only the
increased production capacity without buying the new
facility, but other significant positive impacts on quality,
scrap and rework, inventory along with the system
flexibility and responsiveness to the customer.
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Equations (12)-(16) employ a novel approach for
estimating the number of setup from the lot-size.
Lot-sizes are derived from equation (15); when we
increase the lot-size, the operation time ratio differences
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are significantly reduced (i.e. production-operation time).
After attaining the optimal value (i.e. breakeven point)
even increasing the lot-size has no/small impact on
production-operation time [45]. From Figure 4 it can be
observed that after 1.33 sec there is no greater impact on
operation time. Thus, the optimal value of lot-size is 200.
Based on this strategy, the number of material-handling
containers has been calculated by applying equation (14),
the operation time ratio selection depends on production
supervisor.

Lt(n,αc) = Ptcv +(Stcv/(n×αc))∀ i,c, and v (12)

Ltrdcv = (Lt(n,αc)−Lt(n+1,αc))/Lt(n,αc)∀ i,c, and v (13)

Ncv =

{

(n+ 1)cv if Ltrdcv ≥ 4%

ncv otherwise
∀ i,c, and v (14)

βcv = Ncv ×αc∀ i,c, and v (15)

SNicv =
V

∑
v=1

C

∑
c=1

I

∑
i=1

FDiv/βcv∀ i,c, and v (16)

Adjustment of the workforce plan and output rate
maximization based on bottleneck/non-bottleneck process
plan is conceived while controlling and estimating the
capacity planning [46]. Here the capacity planning of
available capacity is computed from the bottleneck of
each cell using equation (17). Additional capacity
includes working on holiday and the maximum available
capacity calculated, respectively, from equations (18) and
(19).

Civ = min{([WDi ×T ×ρc]/BNtcv)cells}∀ i,c, and v

(17)

C′
iv = min{([HDi ×T ×ρc]/BNtcv)cells}∀ i,c, and v

(18)

Cc,max = min{([WDi +HDi)×T ×ρc]/BNtcv)cells}

∀ i,c, and v (19)

Inventory and unmet demand: Equations (20)-(25)
are used for calculating the inventory and unmet demand
for main and sub-assembly in each production stage
during all the periods. Equation (20) calculates the
processing time for a batch size. The production rate is
inversely proportional to the processing time (21). In
equation (22), average production rate and uptime
decision factor mainly depend on the customer priority
and product variety, respectively. Equation (23) is applied

for estimating the mean waiting time [47] for the
production rate, the quantity of lot-size, and waiting time
mainly used for semi-finished product/sub-assembly
inventory value calculation. This type of problem is rarely
solved and is especially meant for cellular-type
manufacturing industry. Equation (24) deals with the total
CDC capacity, while equation (25) is used for calculating
the finished units dispatched to CDC based on
available/customer-defined CDC capacity. In equation
(26), the inventory units equal the divergence between the
initial stock, a total number of finished goods (i.e. main
assembly), and the total number of goods sent to CDC
from the main assembly during each period. Here we
assume that the initial inventory equals the available
capacity (Civ). Equation (27) calculates the unmet demand
(i.e. back-order) found by subtracting the initial
back-order, total number of goods transported from the
main assembly to CDC, and forecast demand.

Btcv = βcv ×TOCtcv∀ i,c, and v (20)

PRcv = 1/Btcv∀ i,c, and v (21)

APRicv = PRcv ×PUicv∀ i,c, and v (22)

V

∑
v=1

C−1

∑
c=2

I

∑
i=1

Wticv =
APRicv

APRi(c+1)v × (APRi(c+1)v−APRicv)

∀ i,c, and v (23)

CDC inv = NPv ×NVp∀ i,c, and v (24)

PAiv =CDC inv×WDi∀ i,c, and v (25)

V

∑
v=1

∑
c=1

I

∑
i=1

Iicv = [Ii−1v +[Piv1 +Piv2 +Piv3]

− [
V

∑
v=1

I

∑
i=1

PAiv ×WDi]]∀ i,c, and v

(26)

V

∑
v=1

∑
c=1

I

∑
i=1

Biv = [Bi−1v +FDiv − (
V

∑
v=1

I

∑
i=1

PAiv ×WDi)]

∀ i,c, and v (27)

4.2 The constraints

In the real-world scenario, production capacity-workforce
planning problems face several constraints related to
production or recourses shortfall (e.g. cost, labour,
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production capacity, and floor constraint), so this section
presents the formulations for some real-world constraints.

Linear equality/inequality constraints: Equation
(28) provides means to control the deployed normal,
contingency overtime, and lay-off production workforce
level that should be within the maximum design working
day workforce level. The number of materials handled is
controlled by the factory floor space constraint. It depends
on the required demand and management decision on the
lot-size determination as expressed in equation (29). The
setup process optimization constraints are added for
controlling the setup time and lot-size (equation 30). Each
lot-size operation time is greater than the setup time of
each lot-size for reducing/eliminating the machine idle
time arising out of large setup time. This constraint is
optimal when setup time is more than normal hours [48].
Equations (31) and (32) are used for determining
inventory control (i.e. production quantity should be less
than the forecast demand) and waiting time between the
cells, respectively.

Wic1 +Wic2 +WFic ≤Wicv,min∀ i,c, and v (28)

Nicv ≤ 7∀ i,c, and v (29)

βicv ∗TOCtcv > Sticv∀ i,c, and v (30)

V

∑
v=1

C

∑
c=1

I

∑
i=1

SNicv ×βicv ≤ FDicv∀ i,c, and v (31)

V

∑
v=1

C

∑
c=1

I

∑
i=1

Wticv ≤
V

∑
v=1

I

∑
i=1

Wtiv∀ i,c, and v (32)

Bound constraints and non-negative constraints:

These constraints are used for obtaining faster and more
reliable solutions. Equations (33)-(36) are bound
constraints used for restricting the decision variables. For
example, equation (33) is used for controlling the normal,
overtime, and lay-off workforce within the minimum and
maximum level of design workforce.

Wicv,min ≤Wic1 +Wic2 +WFic ≤Wicv,max∀ i,c, and v

(33)

0 ≤ SNicv ≤ FDicv/βicv∀ i,c, and v (34)

Wticv,min ≤Wtiv ≤Wticv,max∀ i,c, and v (35)

Wic1,Wic2,WFic,SNicv ≥ 0∀ i,c, and v (36)

5 Practical implementation and managerial

insights

The previous section indicated the importance of the
integrated PCWFP model, problem formulation, and
constraints. In this section, the problem is solved by the
LP methodology and coded in the MATLAB. The result
focuses on minimizing the overall manufacturing cost.
Therefore, the proposed PCWFP model provides a
balance between normal production and contingency
production. Inventory and back-order level consider both
the assembly and sub-assembly of the production line.
The lot-size depends on the number of setup and the
number of material handling size (i.e. space constraint). A
great deal of workforce level is required for all
manufacturing stages. One of the main approaches is
representing the bound constraints for capacity expansion
processes when the demand is more than available
capacity. The most significant performance of the
recommended model is to evaluate and minimize the
yield variability of lot-size (Figure 4), batch size,
processing time, setup time, line stoppage time, and
maintenance downtime in order to maximize the
organization operations, leading to minimization in the
manufacturing price.

Real-world data have been collected on auto-electrical
parts manufacturing industry, accommodating
multi-model, multi-product, and multi-stage Cellular
Manufacturing System (CMS) with JIT (i.e. Just In Time)
environment under volatile market conditions. The
proposed mathematical model aims to bring down the
manufacturing cost and helps the decision maker of the
company in efficient allotment of workforce in various
sub-assembly levels for several customer requirements
considering available facilities. The model concurrently
generates the production capacity-workforce plan to
oversee the resources available at all the levels and
effectively controls the lot-size.

5.1 Input Variables

The demand pattern for all the product varieties, the
number of planned production days for 12 periods
(months), input variables (i.e. parameter), and average
setup cost/unit time are shown in Tables 1-4, respectively.
It should be noted that the value of zero for any input
variable means that the concerned process is not suitable
for a particular variety of product. For example, Table 3
shows that variety 1does not pass through processes 4 and
19.
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Table 1: Demand Pattern

Period, i Product Variety, v

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 19712 7414 6336 22572 6952 4994 7414 12166 1540 1892 6094 7106 154 418

2 20608 7751 6624 23598 7268 5221 7751 12719 1610 1978 6371 7429 161 437

3 23296 8762 7488 26676 8216 5902 8762 14378 1820 2236 7202 8398 182 494

4 22400 8425 7200 25650 7900 5675 8425 13825 1750 2150 6925 8075 175 475

5 21504 8088 6912 24624 7584 5448 8088 13272 1680 2064 6648 7752 168 456

6 22598 8500 7264 25876 7970 5725 8500 13947 1766 2169 6986 8147 177 480

7 16800 6319 5400 19238 5925 4257 6319 10369 1313 1613 5194 6057 132 357

8 17472 6572 5616 20007 6162 4427 6572 10784 1365 1677 5402 6299 137 371

9 21728 8173 6984 24881 7663 5505 8173 13411 1698 2086 6718 7833 170 461

10 16948 6375 5448 19407 5978 4295 6375 10461 1325 1627 5240 6111 133 360

11 19990 7519 6426 22891 7050 5065 7519 12338 1562 1919 6180 7207 157 424

12 20268 7623 6515 23209 7148 5135 7623 12509 1584 1946 6266 7307 159 430

Table 2: Number of Planned Production Days

Planning Period, i 1 2 3 4 5 6 7 8 9 10 11 12

WDi 22 23 26 25 26 24 25 26 25 24 24 25

HDi 8 8 4 6 5 6 6 4 6 7 4 6

Table 3: Input Variables (i.e. parameter) to the Model

Cell, c Product variety, v = 1

OPcv γc ρc TOCtcv BNtcv Stcv αc CP cv1 CP cv2 CP cv3

1 35 0.75 1.88 12.29 1.12 20 36 138.2 161.7 183.8

2 373 0.70 0.75 1.15 0.45 90 120 13.0 15.2 17.3

3 919 0.70 0.56 0.47 0.40 22 120 5.3 6.2 7.0

4 0 0 0 0 0 0 0 0.0 0.0 0.0

5 1470 0.70 0.38 0.29 0.25 15 120 3.3 3.9 4.4

6 1050 0.70 0.75 0.41 0.35 30 120 4.6 5.4 6.1

7 290 0.70 0.40 1.48 0.33 23 120 16.7 19.5 22.2

8 2205 0.70 0.38 0.20 0.17 32 120 2.2 2.6 2.9

9 551 0.70 0.94 0.78 0.67 15 48 8.8 10.3 11.7

10 401 0.70 1.00 1.07 0.92 25 48 12.1 14.1 16.0

11 298 0.70 0.94 1.44 1.23 20 48 16.2 19.0 21.6

12 848 0.70 0.94 0.51 0.43 20 48 5.7 6.7 7.6

13 67 0.70 1.13 6.42 0.72 15 48 72.2 84.5 96.0

14 490 0.70 1.29 0.88 0.87 10 48 9.9 11.6 13.1

15 538 0.70 0.75 0.80 0.68 10 48 9.0 10.5 12.0

16 441 0.70 1.32 0.98 0.83 30 48 11.0 12.8 14.6

17 2005 0.80 0.38 0.21 0.35 15 120 2.4 2.8 3.2

18 1696 0.80 0.38 0.25 0.22 15 120 2.9 3.3 3.8

19 0 0 0 0 0 0 0 0.0 0.0 0.0

20 171 0.80 0.94 2.51 0.85 13 40 28.3 33.1 37.6

21 1161 0.80 0.38 0.37 0.32 15 40 4.2 4.9 5.5

22 0 0 0 0 0 0 0 0.0 0.0 0.0

23 52 0.80 1.13 8.27 1.18 35 40 93.0 108.9 123.7

5.2 Computational results and discussion

The problem using MATLAB-R2013a is iterated using
Intel(R) Core (TM) i3-5005U CPU 2.00 GHz, 4GB RAM

computer. The detailed production-workforce distributed
plan (i.e. Wic1, Wic2, and WFic) and the number of setup
based on lot-size (i.e. SNcv) for the best output solution
generated using LP for the 14th cell are shown in Tables
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Table 4: Average Setup Cost/Unit Time/Variety

Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Variety, v

CSv 11.3 9.8 17.6 13.5 28.5 10.4 11.7 18.2 35.7 16.7 22.5 15.2 31.8 15.0

Table 5: Normal Production - Workforce Distributed Plan (Wic1)

Period, i Product Variety, v for cell c = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 27.62 0 10.26 46.99 10.82 0 11.01 17.05 2.4 3.06 0 0 0 0

2 28.88 0 10.73 49.12 11.32 0 11.51 17.82 2.51 3.2 10.96 13.9 0.3 0.75

3 32.65 0 12.13 55.53 12.79 0 13.01 20.15 2.83 3.62 12.38 15.71 0.34 0.85

4 31.39 0 11.66 53.39 12.3 0 12.51 19.37 2.72 3.48 11.91 15.11 0.32 0.81

5 44.76 0 11.19 51.26 11.81 0 13.01 18.6 2.62 3.34 12.38 14.5 0.31 0.85

6 31.67 0 11.76 36.26 12.41 0 12.01 18.66 2.63 3.51 11.43 15.24 0.31 0.78

7 34.97 0 8.75 40.05 13.7 0 10.23 14.53 2.04 2.61 9.72 11.33 0.25 0.67

8 36.37 0 9.10 41.65 14.25 0 10.64 15.11 2.13 2.72 10.11 11.79 0.26 0.69

9 45.23 0 11.31 51.79 11.93 0 12.51 18.79 2.64 3.38 11.91 14.66 0.32 0.81

10 35.28 0 8.82 40.4 9.31 0 10.32 14.66 2.06 2.63 9.80 11.43 0.25 0.67

11 41.61 0 10.41 47.65 10.98 0 12.01 17.29 2.43 3.11 11.43 13.48 0.29 0.78

12 42.19 0 10.55 48.31 11.13 0 12.35 17.53 2.47 3.15 11.72 13.67 0.30 0.8

Table 6: Contingency Overtime Production - Workforce Distributed Plan (Wic2)

Period, i Product Variety, v for cell c = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 13.41 0 4.98 0 5.25 0 5.5 8.28 1.16 1.49 0 0 0 0

2 14.02 0 5.21 0 5.49 0 5.75 8.65 1.22 1.56 5.48 6.75 0.15 0.37

3 15.85 0 5.89 0 6.21 0 6.5 9.78 1.38 1.76 6.19 7.63 0.17 0.42

4 15.24 0 5.66 0 5.97 0 6.25 9.4 1.32 1.69 5.95 7.33 0.16 0.41

5 0 0 5.43 0 5.73 0 6.45 9.03 1.27 1.62 6.09 7.04 0.15 0.42

6 15.37 0 5.71 17.6 6.02 0 6 9.33 1.32 1.71 5.72 7.4 0.16 0.39

7 0 0 4.25 0 0 0 4.97 7.05 0.99 1.27 4.72 5.5 0.12 0.32

8 0 0 4.42 0 0 0 5.17 7.34 1.03 1.32 4.91 5.72 0.12 0.34

9 0 0 5.49 0 5.79 0 6.25 9.12 1.28 1.64 5.95 7.11 0.15 0.41

10 0 0 4.28 0 4.52 0 5.01 7.12 1 1.28 4.76 5.55 0.12 0.33

11 0 0 5.05 0 5.33 0 6 8.39 1.18 1.51 5.72 6.55 0.14 0.39

12 0 0 5.12 0 5.4 0 5.99 8.51 1.2 1.53 5.69 6.64 0.14 0.39

5-7, respectively. Similarly, we’ve got the final decision
variables for all the cells (i.e. 23 cells), from that values
we’ve derived the main function of TMC. Here the
normal, overtime and lay-off workforce distribution plan
are derived from the WBEP, such that workforce
breakeven point is considered as maximum limit of the
workforce allocation.

The PCWFP model tends to prefer the normal
production workforce (Wic1) and then contingency
overtime production (Wic1) when the required workforce
(Wi) is more than both channels (Wic1 +Wic1), and when
only the contingency lay-off production channel is
activated (i.e. Tables 5-7). Due to this, the laying-off
workers reduce expenses. The number of setup is (i.e.
Table 8) also controlled based on the required demand,

according to the available floor space and material
handling size (equations 12-16). Table 9 shows the level
of the main assembly (i.e. finished product) inventory and
unmet demand (i.e. back-order) across all the periods.
The level of unmet demand is zero in the 7th and 8th
period. Even in the other period the unmet demand is very
less. Therefore, the penalty cost and the loss are reduced
to the maximum extent due to the unmet demand.

As mentioned, a problem has 12 periods, 14 product
varieties, and 23 sub-assembly cells, thus each decision
factor handles the 12 × 14 × 23 variables for every
iteration. The integrity constraints of the mathematical
model are mentioned in subsection 4.2; constraints are
relaxed and the problem makes some of the assumptions
referred in Section 3 to find the globally optimal solution.
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Table 7: Contingency Lay-off Production - Workforce Distributed Plan (WFic)

Period, i Product Variety, v for cell c = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 1.33 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1.39 0 0 0 1.27 0 0 0.09

3 0 0 0 0 0 0 1.57 0 0 0 1.44 0 0 0.1

4 0 0 0 0 0 0 1.51 0 0 0 1.38 0 0 0.1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 2.44 1.04 0.14 0 2.27 0 0.02 0.16

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0.9 0 0 0 0.81 0 0 0.06

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0.08 0 0 0 0.03 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8: Number of Setup Based on Lot-Size (i.e. SNcv)

Period, i Product Variety, v for cell c = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 58.67 0 18.86 67.18 20.69 0 22.07 36.21 4.58 5.63 0 0 0 0

2 61.33 0 19.71 70.23 21.63 0 23.07 37.85 4.79 5.89 18.96 22.11 0.48 1.3

3 69.33 0 22.29 79.39 24.45 0 26.08 42.79 5.42 6.65 21.43 24.99 0.54 1.47

4 66.67 0 21.43 76.34 23.51 0 25.07 41.15 5.21 6.4 20.61 24.03 0.52 1.41

5 64 0 20.57 73.29 22.57 0 24.07 39.5 5 6.14 19.79 23.07 0.5 1.36

6 67.26 0 21.62 77.01 23.72 0 25.3 41.51 5.26 6.46 20.79 24.25 0.53 1.43

7 50 0 16.07 57.26 17.63 0 18.81 30.86 3.91 4.8 15.46 18.03 0.39 1.06

8 52 0 16.71 59.54 18.34 0 19.56 32.1 4.06 4.99 16.08 18.75 0.41 1.1

9 64.67 0 20.79 74.05 22.81 0 24.32 39.91 5.05 6.21 19.99 23.31 0.51 1.37

10 50.44 0 16.21 57.76 17.79 0 18.97 31.13 3.94 4.84 15.6 18.19 0.4 1.07

11 59.49 0 19.13 68.13 20.98 0 22.38 36.72 4.65 5.71 18.39 21.45 0.47 1.26

12 60.32 0 19.39 69.07 21.27 0 22.69 37.23 4.71 5.79 18.65 21.75 0.47 1.28

Table 9: Total Inventory, Unmet Demand for Main Assembly from the LP Solutions

Period, i 1 2 3 4 5 6 7 8 9 10 11 12

Ii 14268 32927 30646 25362 34582 33766 18482 35493 34582 32241 35636 35617

Bi 2226 2328 2631 2530 1679 3011 0 0 2173 8 1625 1397

The problem has non-integer decision variables by
default. The problem is also converged to a global
optimum solution of TMC for all the cells,
INR1592965258.6833. After adding the bound
constraints, the TMC reduced from an initial solution and
the final optimal solution is INR1570726175.2189,
detailed manufacturing cost breakup for all the cells is
shown in Table 10. Having added the bound constraints
and one of the primary notifications of the solution, when
the required capacity is beyond the design capacity (i.e.
capacity expansion), the setup constraint (equation 31)
gives the near-optimal global solution comparable to
workforce constraint (equation 28); since the setup and
setup cost control the other cost factors of inventory and
waiting for time variables [49].

6 Conclusion and future research

LP-based PCWFP distribution model has evolved and
considered three different types of production costs
(regular, overtime, and lay-off production cost) along
with inventory-holding cost, unmet demand cost, and
detailed setup cost. This statement is true when the
temporary workforce is used instead of the permanent
workforce, especially in the automobile manufacturing
sector. The PCWFP model is a better way of handling all
constraints, especially the setup and inventory constraints,
to find the global optimal solution. The mathematical
model is the most appropriate tool to solve the capacity
planning-type problem. In addition WFBP is one of the
best practical strategies for controlling the workforce
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Table 10: Total Manufacturing Cost (TMC) - Cellwise From the LP Solutions

Cell Manufacturing Cost Manufacturing Cost Remarks

(No bound constraints) (With bound constraints)

1 307177980.0012 307177980.0012 No change

2 91529307.9333 80409766.2011 The required capacity beyond the design capacity

3 49788327.7843 49788327.7843 No change

4 74086680.7309 74086680.7309 No change

5 37295760.0927 37295760.0927 No change

6 8900220.8589 8900220.8589 No change

7 9961272.0959 9961272.0959 No change

8 6123388.3232 6123388.3232 No change

9 17036626.7647 17036626.7647 No change

10 3363123.8120 3363123.8120 No change

11 28156168.4969 17036626.7647 The required capacity beyond the design capacity

12 68229566.4577 68229566.4577 No change

13 130063719.9663 130063719.9663 No change

14 22549253.7934 22549253.7934 No change

15 87221325.1559 87221325.1559 No change

16 38568003.2724 38568003.2724 No change

17 75111956.5212 75111956.5212 No change

18 5426322.7832 5426322.7832 No change

19 295154081.7937 295154081.7937 No change

20 91779256.6446 91779256.6446 No change

21 8346477.3271 8346477.3271 No change

22 10388080.5918 10388080.5918 No change

23 121556472.5355 121556472.5355 No change

Cost(I,B) 5151884.9465 5151884.9465 No change

TMC 1592965258.6833 1570726175.2189 Up to 1.40% Total manufacturing cost reduced

distribution in a practical manner. Future studies may
extend the proposed model by altering or adding to the
following points. Some of the input variables (γc,ρc, and
αc) should be considered deterministic and known factors
so that the model extension may be stochastic in
nature [50]. Unfortunately, the significant key decision
variables such as Wic1, Wic2, WFic, and SNcv assume
decimal values, rounding off those variables leads to an
infeasible solution and requires total recalculation of the
variables. Thus currently, we have restricted the integer
value for the significant key decision variables. Compared
to linear value, a mixed integer value may provide the
ideal solution for the PCWFP model. Further extension of
this research to develop a meta-heuristic solution
approach to solve the model with the focus on solving
large-scale problems is under progress by an author. Here
we have considered only linear relations as constraints,
but most of the problems seen in practice are non-linear in
nature [39]. The non-linear relationship must be added
(i.e. inventory and setup cost constraints) among the
constraints, maybe it would play a role for a strong
PCWFP model.
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