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Abstract: A continuous review of single-product stochastic inventory system is considered in which an adjustable reorder can be

placed only after the expiry of a Compulsory Waiting Period (CW P) even if the inventory position of the system demands an earlier

placement of a reorder. Compulsory waiting period follows an exponential distribution with mean 1/γ . The maximum capacity of the

inventory is M. It is assumed that replenishment is instantaneous. Customers arrive to the inventory system according to a Poisson

process with rate λ . There is a single server attached with the inventory and the job of the server is to serve each customer one at a time

with one item from the inventory according to First-In-First-Out (FIFO) policy. The server takes a random time to serve each customer

and this service time follows an exponential distribution with mean 1/µ. When the server serves a customer, all other customers queue-

up in a waiting room to meet out the FIFO policy. The capacity of the waiting room is assumed to be M − 1. All arriving demands

are assumed to be lost when the waiting room is full. By a numerical illustration, the steady-state joint probability distribution for

the number of customers in the queueing system and the number of items in inventory is obtained and performance measures such as

stationary mean number of replenishment, mean number of demand satisfied and mean number of demand lost are analysed.

Keywords: queueing system, inventory system, compulsory waiting period, replenishment

1 Introduction

Quite extensive research has been done on inventory
systems modulated by queueing systems (see Schwarz et
al. [1]). In such systems, inventory systems are integrated
with queueing systems in the sense that a positive service
time is required for satisfying a demand and while serving
a demand, all other arriving demands have to wait before
being served with items from the inventory. Sigman and
Simchi-Levi [2] were the first to introduce positive
service time in the study of inventory systems. A huge
variety of research on queueing-inventory systems has
emerged in the past two decades (see for example, [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17]). Krishnamoorthy et al. [18] have provided a
brief survey of queueing-inventory systems.

In continuous review of inventory systems, it is
usually assumed that the product under consideration is
always available in plenty for meeting out the demands
and an order for replenishment can be made at any epoch
of time. However there are situations where this

assumption may not be true. When the availability of the
product becomes scarce, restrictions on placement of
reorders may be imposed by the supplier. For example,
after the replenishment of stock in the inventory for an
order, the system may have to wait compulsorily for some
time because of rationing of supply of items before the
placement of next order. In several organizations, the
manpower management is a big concern. Wastage of
employees is a stochastic phenomenon and the vacancies
arising due to wastage are not filled up immediately; in
addition the work is executed by recruiting casual
labourers on temporary basis. The organization waits
compulsorily for a random amount of time till recruitment
process is initiated. As another real-time situation where
CWP is encountered, we come across several big
industries where the manufacturing of the main product
such as truck or car requires several sub-components. The
manufacturing of sub-components is let to be
manufactured by external small industries in competitive
market. From the view point of an outside vendor, it has
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to wait compulsorily for some period of time till getting
another order by the main company even though the
vendor might have completed the job-order on hand.
Generally, the compulsory waiting period begins from the
instant of replenishment. Hence a reorder for
replenishment can be placed only after the expiry of this
Compulsory Waiting Period (CWP) even if the inventory
position of the system demands an earlier placement of a
reorder. The compulsory waiting period is considered as a
random variable. This random variable cannot be clubbed
with the lead-time random variable in the sense that the
lead-time random variable can be taken as the sum of the
two random variable namely the compulsory waiting
period and the actual lead time. This implies that the lead
time commences as soon as the compulsory waiting
period is over. This is not always true; suppose that in a
realization the compulsory waiting period is over and the
inventory position of the system at that epoch may not
require the placement of reorder and hence the lead time
may not commence at that epoch. Hence the two random
variables are to be dealt with separately. The concept of
CWP in the study of stochastic inventory systems has
been introduced by Udayabaskaran et al. [19, 20] when
they analysed continuous-review stochastic inventory
systems subject to rationing of supply due to scarcity of
commodities. They have analysed continuous review
stochastic inventory systems subject to CW P together
with the restriction that the replenishment is
instantaneous without lead time. Recently, Yadavalli and
Udayabaskaran [21] have analysed a single-product
perishable inventory system with CWP for reordering and
with stochastic lead time.

In the present paper, a stochastic model of an
inventory-queueing system subject to CWP is studied. For
this model, the stationary probability distribution of the
inventory level, the stationary mean rate of (i) the
demands satisfied; (ii) the demands lost; and (iii) the
reorders are analysed.

The organization of the paper is as follows: In Section
2, we describe the model. Section 3 derives the governing
equations for the model. In Section 4, we provide the
steady-state equations. Performance measures are
analysed in Section 5 by a numerical illustration.

2 Model Description

Customers arrive to a single-product inventory system
according to a Poisson process with rate λ . There is a
single server attached with the inventory and the job of
the server is to serve each customer one at a time with one
item from the inventory according to a FIFO policy. The
maximum capacity of the inventory is M. The server
takes a random time to serve each customer and this
service time follows an exponential distribution with
mean 1/µ . When the server serves a customer, all other
arriving customers queue-up in a waiting room and follow
the FIFO policy. The capacity of the waiting room is

M− 1. All arriving customers are lost when the waiting is
full. A reorder can be placed only after the expiry of a
CWP even if the inventory position of the system
demands an earlier placement of a reorder. It is assumed
that replenishment is instantaneous. Compulsory waiting
period follows an exponential distribution with mean 1/γ.

3 Governing equations

Let X(t) be the number of items in the inventory system X
and Y (t) be the number customers in the queueing system
at time t. We define

J(t) =

{

1 if the inventory system is in CWP;
0 otherwise.

Let Z(t) = (X(t),Y (t),J(t)). Then the vector process
{Z(t)|t ≥ 0} is Markov. The state space of the process is
given by

Ω = {(i, j,k)|i = 0,1,2, · · · ,M; j = 0,1,2, · · · ;k = 0,1}.

At time t = 0, the queueing-inventoryprocess is in the state
(M,0,1). We define the state probabilities as follows:

p(i, j,k, t) = Pr{Z(t) = (i, j,k)|Z(0) = (M,0,1)}.

By the description of the model, it is easily seen that

p(0, j,0, t) = 0, j = 0,1,2, · · · .

By using probability laws, we obtain integral equations for
the other state probabilities as follows:
Case (i) State (i,0,0), where i = 1,2, · · · ,M − 1 :

Using Fig. 1, we get

P(i,0,0, t) = [µP(i+1,1,0, t)+ γP(i,0,1, t)] c©e−λ t . (1)

Fig. 1: Flow diagram at (i,0,0)
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Case (ii) State (M,0,0) :

Using Fig. 2, we get

P(M,0,0, t) = γP(M,0,1, t) c©e−λ t . (2)

Fig. 2: Flow diagram at (M,0,0)

Case (iii) State (1, j,0), where j = 1,2, · · · ,M − 1 :

Using Fig. 3, we get

P(1, j,0, t) = [λ P(1, j− 1,0, t)+ µP(2, j+ 1,0, t)

+γP(1, j,1, t)] c©e−(λ+µ)t . (3)

Fig. 3: Flow diagram at (1, j,0)

Case (iv) State (1,M,0) :

Using Fig. 4, we get

P(1,M,0, t) = [λ P(1,M− 1,0, t)+ γP(1,M,1, t)] c©e−µt .
(4)

Fig. 4: Flow diagram at (1,M,0)

Case (v) State (i, j,0),
where i = 2,3, · · · ,M− 1; j = 1,2, · · · ,M− 1 :

Using Fig. 5, we get

P(i, j,0, t) = [λ P(i, j− 1,0, t)+ µP(i+ 1, j+ 1,0, t)

+γP(i, j,1, t)] c©e−(λ+µ)t . (5)

Fig. 5: Flow diagram at (i, j,0)

Case (vi) State (i,M,0), where i = 2,3, · · · ,M :
Using Fig. 6, we get

P(i,M,0, t) = [λ P(i,M− 1,0, t)+ γP(i,M,1, t)] c©e−µt .
(6)

Fig. 6: Flow diagram at (i,M,0)

Case (vii) State (M, j,0), where j = 1,2, · · · ,M− 1 :
Using Fig. 7, we get

P(M, j,0, t) = [λ P(M, j− 1,0, t)

+γP(M, j,1, t)] c©e−(λ+µ)t . (7)

Fig. 7: Flow diagram at (m, j,0)

Case (viii) State (0,0,1) :
Using Fig. 8, we get

P(0,0,1, t) = µP(1,1,1, t) c©e−(λ+γ)t . (8)
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Fig. 8: Flow diagram at (0,0,1)

Case (ix) State (0, j,1), where j = 1,2, · · · ,M− 1 :
Using Fig. 9, we get

P(0, j,1, t) = [λ P(0, j− 1,1, t)

+µP(1, j+ 1,1, t)] c©e−(λ+γ)t . (9)

Fig. 9: Flow diagram at (0, j,1)

Case (x) State (0,M,1) :
Using Fig. 10, we get

P(0,M,1, t) = λ P(0,M− 1,1, t) c©e−γt . (10)

Fig. 10: Flow diagram at (0,M,1)

Case (xi) State (i,0,1), where i = 1,2, · · · ,M− 1 :
Using Fig. 11, we get

P(i,0,1, t) = µP(i+ 1,1,1, t) c©e−(λ+γ)t . (11)

Fig. 11: Flow diagram at (i,0,1)

Case (xii) State (M,0,1) :

Using Fig. 12, we get

P(M,0,1, t) = [µP(1,1,0, t)+ γP(0,0,1, t)] c©e−(λ+γ)t .
(12)

Fig. 12: Flow diagram at (M,0,1)

Case (xiii) State (i, j,1),
where i = 1,2, · · · ,M− 1, j = 1,2, · · · ,M− 1 :

Using Fig. 13, we get

P(i, j,1, t) = [λ P(i, j− 1,1, t)

+µP(i+ 1, j+ 1,1, t)] c©e−(λ+µ+γ)t . (13)

Fig. 13: Flow diagram at (i, j,1)

Case (xiv) State (i,M,1), where i = 1,2, · · · ,M − 1 :

Using Fig. 14, we get

P(i,M,1, t) = λ P(i,M− 1,1, t) c©e−(µ+γ)t . (14)

Fig. 14: Flow diagram at (i,M,1)
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Case (xv) State (M, j,1), where j = 1,2, · · · ,M − 1 :
Using Fig. 15, we get

P(M, j,1, t) = [λ P(M, j− 1,1, t)

+µP(1, j+ 1,0, t)] c©e−(λ+µ+γ)t . (15)

Fig. 15: Flow diagram at (M, j,1)

Case (xvi) State (M,M,1) :
Using Fig. 16, we get

P(M,M,1, t) = [λ P(M,M− 1,1, t)

+γP(0,M,1, t)] c©e−(µ+γ)t . (16)

Fig. 16: Flow diagram at (M,M,1)

4 Steady-state solution

We define the steady-state probabilities as follows:

π(i, j,k) = lim
t−→∞

p(i, j,k, t).

By applying the final value theorem of Laplace transform,
we get

π(i, j,k) = lim
θ−→0

θ p∗(i, j,k,θ ),

where p∗(i, j,k,θ ) is the Laplace transform of p(i, j,k, t).
By applying Laplace transform on both sides of (1)-(16),
we get

(θ +λ )P∗(i,0,0,θ ) = µP∗(i+ 1,1,0,θ )

+γP∗(i,0,1,θ ), i = 1,2, · · · ,M− 1. (17)

(θ +λ )P∗(M,0,0,θ ) = γP∗(M,0,1,θ ). (18)

(θ +λ + µ)P∗(1, j,0,θ ) = λ P∗(1, j− 1,0,θ )

+µP∗(2, j+ 1,0,θ )+ γP∗(1, j,1,θ ),

j = 1,2, · · · ,M− 1. (19)

(θ + µ)P∗(1,M,0,θ ) = λ P∗(1,M− 1,0,θ )

+γP∗(1,M,1,θ ). (20)

(θ +λ + µ)P∗(i, j,0,θ ) = λ P∗(i, j− 1,0,θ )

+µP∗(i+ 1, j+ 1,0,θ )+ γP∗(i, j,1,θ ),

i = 2,3, · · · ,M− 1; j = 1,2, · · · ,M − 1. (21)

(θ + µ)P∗(i,M,0,θ ) = λ P∗(i,M − 1,0,θ )

+γP∗(i,M,1,θ ), i = 2,3, · · · ,M. (22)

(θ +λ + µ)P∗(M, j,0,θ ) = λ P∗(M, j− 1,0,θ )

+γP∗(M, j,1,θ ), j = 1,2, · · · ,M− 1. (23)

(θ +λ + γ)P∗(0,0,1,θ ) = µP∗(1,1,1,θ ). (24)

(θ +λ + γ)P∗(0, j,1,θ ) = λ P∗(0, j− 1,1,θ )

+µP∗(1, j+ 1,1,θ ), j = 1,2, · · · ,M− 1. (25)

(θ + γ)P∗(0,M,1,θ ) = λ P∗(0,M− 1,1,θ ). (26)

(θ +λ + γ)P∗(i,0,1,θ ) = µP∗(i+ 1,1,1,θ ),

i = 1,2, · · · ,M − 1. (27)

(θ +λ + γ)P∗(M,0,1,θ ) = µP∗(1,1,0,θ )

+γP∗(0,0,1,θ ). (28)

(θ +λ + µ + γ)P∗(i, j,1,θ ) = λ P∗(i, j− 1,1,θ )

+µP∗(i+ 1, j+ 1,1,θ ),

i = 1,2, · · · ,M− 1; j = 1,2, · · · ,M − 1. (29)

(θ + µ + γ)P∗(i,M,1,θ ) = λ P∗(i,M − 1,1,θ ),

i = 1,2, · · · ,M − 1. (30)

(θ +λ + µ + γ)P∗(M, j,1,θ ) = λ P∗(M, j− 1,1,θ )

+µP∗(1, j+ 1,0,θ ),

j = 1,2, · · · ,M− 1. (31)
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(θ + µ + γ)P∗(M,M,1,θ ) = λ P∗(M,M − 1,1,θ )

+γP∗(0,M,1,θ ). (32)

By applying Final value theorem with (11)-(20), we get
the steady state balance equations as follows:

λ π(i,0,0) = µπ(i+ 1,1,0)+ γπ(i,0,1),

i = 1,2, · · · ,M − 1. (33)

λ π(M,0,0) = γπ(M,0,1). (34)

(λ + µ)π(1, j,0) = λ π(1, j− 1,0)+ µπ(2, j+ 1,0)

+γπ(1, j,1), j = 1,2, · · · ,M − 1. (35)

µπ(1,M,0) = λ π(1,M− 1,0)+ γπ(1,M,1). (36)

(λ + µ)π(i, j,0) = λ π(i, j− 1,0)+ µπ(i+ 1, j+ 1,0)

+γπ(i, j,1), i = 2,3, · · · ,M−1; j = 1,2, · · · ,M−1. (37)

µπ(i,M,0)=λ π(i,M−1,0)+γπ(i,M,1), i= 2,3, · · · ,M.
(38)

(λ + µ)π(M, j,0) = λ π(M, j− 1,0)+ γπ(M, j,1),

j = 1,2, · · · ,M− 1. (39)

(λ + γ)π(0,0,1) = µπ(1,1,1). (40)

(λ + γ)π(0, j,1) = λ π(0, j− 1,1)

+µπ(1, j+ 1,1), j = 1,2, · · · ,M− 1. (41)

γπ(0,M,1) = λ π(0,M− 1,1). (42)

(λ + γ)π(i,0,1) = µπ(i+ 1,1,1), i = 1,2, · · · ,M− 1.
(43)

(λ + γ)π(M,0,1) = µπ(1,1,0)+ γπ(0,0,1). (44)

(λ + µ + γ)π(i, j,1) = λ π(i, j− 1,1)

+µπ(i+1, j+1,1), i= 1,2, · · · ,M−1; j = 1,2, · · · ,M−1.
(45)

(µ + γ)π(i,M,1) = λ π(i,M− 1,1), i = 1,2, · · · ,M− 1.
(46)

(λ +µ + γ)π(M, j,1) = λ π(M, j−1,1)+µπ(1, j+1,0),

j = 1,2, · · · ,M− 1. (47)

(µ + γ)π(M,M,1) = λ π(M,M− 1,1)+ γπ(0,M,1).
(48)

The system of equations (33)-(48) can be solved and the
steady-state distribution {π(i, j,k)} can be obtained.

5 Measures of system performance

In this section, we study some performance measures of
the queueing-inventory system. These performance
measures manifest the effects of the CWP. We specifically
study the following measures:

(i) The mean of the stock-out period per unit time;

(ii) The mean rate of lost demands;

Mean stationary rate of events:

Let E be the event that a replenishment has just
occurred at an epoch and the CWP has just commenced at
that epoch. Then E events constitute a renewal process.
For any state ω of the system, we can obtain the
proportion or fraction of mean-time that the system stays
in the state ω in the long run. To achieve this, we define

φω(t) =

{

1 if the system is in the state ω at time t;
0 otherwise.

Let Pω(t) denote the probability that the system is in the
state ω at time t. Then we get

Pω(t) = Pr{φω(t) = 1|E at t = 0}.

The total sojourn time that the system is in the state ω in
the interval (0, t] is given by the stochastic integral

Uω(t) =

∫ t

0
φω (u)du.

The expected value of Uω(t) is given by

E [Uω(t)] = E

[

∫ t

0
φω (u)du

]

=
∫ t

0
E[φω (u)]du =

∫ t

0
Pω(u)du.

Then the proportion or fraction of mean sojourn time per
unit time is given by

1

t

∫ t

0
Pω(u)]du.

Consequently the proportion or fraction of mean sojourn
time per unit time in the long-run is given by

lim
t−→∞

1

t

∫ t

0
Pω(u)du = lim

t−→∞
Pω(t) = Pω ,

where Pω is the steady-state probability that the system is
in the state ω .

If ε represents the event that the system is in the stock-
out period, then the proportion or fraction of mean stock-
out period per unit time in the long-run is given by

ε =
M

∑
j=0

π(0, j,1). (49)
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If ω represents the event that replenishment takes
place at an epoch, then the stationary mean rate E(r) of
replenishment is given by

E(r) =
M

∑
j=0

π(1, j,0)λ +
M

∑
j=0

π(0, j,1)γ. (50)

If l represents the event that a demand is lost, then the
stationary mean rate E(l) of lost demands is given by

E(l) =
M

∑
i=0

π(0,M,1)λ . (51)

6 A Numerical Illustration

In this section, we illustrate the behaviour of the model by
controlling the parameters of the system.

6.1 Steady-state probability distribution

We compute the steady-state probabilities by assuming the
following values:

λ = 10.0; µ = 20.0;γ = 5.0;M = 3. (52)

The steady-state probabilities are listed in table 1.

Table 1: Steady-state probabilities π(i, j,k)

π(0,0,1)= 0.037341 π(1,1,1)= 0.028006 π(2,1,0) = 0.03369 π(3,0,1)= 0.080237

π(0,1,1)= 0.044943 π(1,2,0)= 0.030324 π(2,1,1)= 0.027348 π(3,1,0)= 0.020082

π(0,2,1)= 0.037981 π(1,2,1)= 0.015037 π(2,2,0)= 0.026457 π(3,1,1)= 0.040253

π(0,3,1)= 0.075963 π(1,3,0)= 0.016666 π(2,2,1)= 0.030778 π(3,2,0)= 0.010198

π(1,0,0)= 0.085612 π(1,3,1) = 0.0060146 π(2,3,0)= 0.016306 π(3,2,1)= 0.021024

π(1,0,1)= 0.036465 π(2,0,0)= 0.066999 π(2,3,1)= 0.012311 π(3,3,0)= 0.015146

π(1,1,0)= 0.050843 π(2,0,1)= 0.053671 π(3,0,0)= 0.040119 π(3,3,1)= 0.040187

6.2 Mean-state stationary rate of stock-out

period

The mean stationary rate of stock-out period is given by

∑M
j=0 π(0, j,1). We analyse the behaviour of the proportion

or fraction ε of mean stock-out period per unit time in the
long-run by varying γ from 1.1 to 6.0. We fix the other
parameters as in (52). The variation of ε as a function of γ
is depicted in Fig. 17.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

ε

Fig. 17: Variation of ε versus γ

The values of ε are provided in table 2.

Table 2: Variation of ε versus γ

γ ε γ ε γ ε γ ε γ ε

1.1 0.80146 2.1 0.59439 3.1 0.413 4.1 0.2792 5.1 0.1888

1.2 0.78093 2.2 0.57446 3.2 0.39741 4.2 0.2684 5.2 0.18167

1.3 0.76021 2.3 0.55484 3.3 0.38232 4.3 0.25802 5.3 0.17485

1.4 0.73936 2.4 0.53559 3.4 0.36773 4.4 0.24805 5.4 0.16831

1.5 0.71843 2.5 0.51673 3.5 0.35363 4.5 0.23849 5.5 0.16204

1.6 0.69748 2.6 0.49829 3.6 0.34004 4.6 0.22931 5.6 0.15604

1.7 0.67657 2.7 0.48029 3.7 0.32693 4.7 0.22051 5.7 0.15029

1.8 0.65575 2.8 0.46274 3.8 0.3143 4.8 0.21207 5.8 0.14477

1.9 0.63509 2.9 0.44568 3.9 0.30214 4.9 0.20398 5.9 0.13949

2.0 0.61462 3.0 0.42909 4.0 0.29045 5.0 0.19623 6.0 0.13443

We find that as the mean of CWP decreases, the mean
stationary rate of stock-out period decreases. This
behaviour is quite expected.

6.3 Mean-state stationary rate of replenishment

The stationary mean rate E(r) of replenishment is given

by E(r) = ∑3
j=0 π(1, j,0)λ +∑3

j=0 π(0, j,1)γ.

We analyse the behaviour of E(r) by varying γ from
1.1 to 6.0. We fix the other parameters as in (52). The
variation of E(r) as a function of γ is depicted in Fig. 18.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

γ

E
(r)

Fig. 18: Variation of E(r) versus γ
The values of E(r) are given in table 3.

Table 3: Variation of E(r) versus γ
γ E(r) γ E(r) γ E(r) γ E(r) γ E(r)

1.1 1.4189 2.1 2.1126 3.1 2.2573 4.1 2.0877 5.1 1.8069

1.2 1.5167 2.2 2.1486 3.2 2.2504 4.2 2.0622 5.2 1.7775

1.3 1.6081 2.3 2.1791 3.3 2.2406 4.3 2.0358 5.3 1.7481

1.4 1.6933 2.4 2.2043 3.4 2.2283 4.4 2.0086 5.4 1.7189

1.5 1.772 2.5 2.2247 3.5 2.2136 4.5 1.9809 5.5 1.6897

1.6 1.8444 2.6 2.2403 3.6 2.1968 4.6 1.9526 5.6 1.6608

1.7 1.9104 2.7 2.2514 3.7 2.178 4.7 1.9239 5.7 1.6321

1.8 1.9701 2.8 2.2585 3.8 2.1575 4.8 1.8949 5.8 1.6037

1.9 2.0236 2.9 2.2616 3.9 2.1356 4.9 1.8657 5.9 1.5755

2.0 2.071 3.0 2.2611 4.0 2.1122 5.0 1.8364 6.0 1.5477

We find that the stationary mean rate of replenishment
increases for lower values of γ and decreases for higher
values of γ. This is because of the fact that the impact of
CWP becomes dominant for larger values of γ.

6.4 Stationary mean rate of lost demands

The stationary mean rate E(l) of lost demands is given by
E(l)=∑M

i=0 π(0,M,1)λ . We analyse the behaviour of E(l)
by varying γ from 1.1 to 6.0. We fix the other parameters as
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in (52). The variation of E(l) as a function of γ is depicted
in Fig. 19.
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Fig. 19: Variation of E(l) versus γ
The values of E(l) are furnished in table 4.

Table 4: Variation of E(l) versus γ

γ E(l) γ E(l) γ E(l) γ E(l) γ E(l)

1.1 0.69327 2.1 0.46583 3.1 0.30182 4.1 0.19524 5.1 0.12923

1.2 0.66796 2.2 0.44651 3.2 0.28883 4.2 0.18711 5.2 0.12422

1.3 0.64316 2.3 0.42785 3.3 0.2764 4.3 0.17935 5.3 0.11946

1.4 0.61891 2.4 0.40985 3.4 0.26453 4.4 0.17197 5.4 0.11492

1.5 0.59521 2.5 0.39251 3.5 0.25318 4.5 0.16493 5.5 0.11059

1.6 0.5721 2.6 0.37581 3.6 0.24235 4.6 0.15823 5.6 0.10646

1.7 0.54959 2.7 0.35977 3.7 0.23201 4.7 0.15185 5.7 0.10253

1.8 0.52769 2.8 0.34436 3.8 0.22215 4.8 0.14578 5.8 0.098775

1.9 0.50643 2.9 0.32957 3.9 0.21275 4.9 0.13999 5.9 0.095196

2.0 0.4858 3.0 0.3154 4.0 0.20379 5.0 0.13448 6.0 0.091781

We find that the mean-stationary rate of lost demands
decreases as γ increases. This is also quite expected, since
as the mean 1/γ of CWP decreases, the mean rate of lost
demands should decrease.

7 Conclusion

We considered a single-product inventory-queueing
system subject to a compulsory waiting period for
re-ordering. We assume instantaneous replenishment,
Poisson arrival of demands, exponentially-distributed
service time and exponentially-distributed compulsory
waiting period. We wrote down the steady-state equations
for the state probabilities. We’ve not been able to obtain
analytical solution for the steady-state probabilities.
However, we’ve studied the model by a numerical
illustration. We obtain numerical results for some of the
performance measures of the system. We’ve analysed the
impact of CWP on the measures of performance and
concluded that CWP vastly changes the behaviour of the
stationary mean rate of demands satisfied, the lost
demands and the number of replenishments.
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