
Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) 379

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/130304

A Model-Driven Engineering Approach for Automating

the Portability of User Interfaces in Native Mobile

Applications

Riham Abdel Kader∗ and Wassim El Hajj Chehade

Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon

Received: 15 Jul. 2018, Revised: 12 Feb. 2019, Accepted: 23 Feb. 2019

Published online: 1 May 2019

Abstract: In the last decade, mobile applications have been on the rise. When developing an app, and because of the wide variety

of existing mobile devices and operating systems, developers need to support several target platforms. Designing, and developing a

mobile app on several platforms require from the developer to invest a considerable amount of extra time and effort, which delays the

introduction of the app to the market. The aim of this paper is to propose a technique that takes the user interface developed for one

platform as input and generates its equivalent interface for the other platform. In simple terms, our approach translates an iOS interface

into its equivalent Android interface and vice versa. Our approach is based on a model-driven solution that proposes a generic UML

profile that builds the link between the different resources in Android and iOS. Using this profile, the framework can map any iOS

resource to its correct counterpart in Android, and vice versa. Experiments have shown that our approach is feasible, fast, easy to use

by developers, and does not require any interference from their side.

Keywords: UML, Mobile Application Development, MDD, Platform Modeling, Application Migration, Cross-Platform Development

1 Introduction

In the last several years, there has been an explosion in
the number of mobile apps in the market. Google Play
Store leads with 2.2 million apps and Apple App Store
follows with 2 million, while Windows Store has 669
thousand apps as of June 2016 [1]. The total number of
apps downloaded in 2016 reached almost 225 million and
is projected to increase to 268 million in 2017. With a
revenue amounting to 88.3 billion dollars in 2016 from
app sales and a projected 92 billion dollars in 2018 [1];
there is an increase in competition between companies in
the field, pushing the industry to focus on finding ways to
develop apps in a faster manner without jeopardizing the
quality of the software.

To reach a wide audience, and since the mobile device
market is divided among mainly iOS and Android,
developers need to build apps that support these two
target platforms. Developing an app for both platforms
requires double time and effort, especially that these two
platforms differ greatly from each other. The aim of this
research is to propose a model-driven solution that
minimizes the time and effort of the programmer when

developing the user interfaces of an app on both
platforms.

Model-driven development (MDD) is a development
paradigm that aims at offering solutions to reduce the
development cost of software while increasing its quality.
Perhaps the most mature formulation of this vision is the
Model-Driven Architecture (MDA) initiative [2],
undertaken by the Object Management Group (OMG).
MDA is based on using models to represent on one hand
the essence of an application and on the other hand the
resources of the target platforms. Given a Platform
Independent Model (PIM) or a Platform Specific Model
(PSM) and a Platform Description Model (PDM), code is
automatically generated using a predefined Mapping
Model (MM). Such models can be described using the
Unified Modeling Language (UML) [3].

Many model-driven approaches have been proposed
to address the challenge of a cost effective, portable
mobile applications development [4]. These approaches
propose new frameworks and languages that must be used
to build the app. Although, this is one way to achieve
portability, the application developer must, on the first

∗ Corresponding author e-mail: r.abdelkader@bau.edu.lb

c© 2019 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/130304


380 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

hand, learn a new language and how to use these new
frameworks; and on the second hand, the new frameworks
do not encapsulate all the richness that the native
development frameworks such as Android studio and iOS
Xcode offer.

In this approach, we are not going to propose to the
developer to use a new development framework or
language, but we offer him a solution in which he /she
uses the existing native IDEs to build his user interfaces.
Once the GUI is built on one platform, our approach
allows the developer to port it without extra effort to a
new target platform. Our approach is based on model
transformations that realize the mapping of an iOS user
interface to its Android counterpart, and vice versa. We
propose two platform description models for each of the
iOS and Android platforms, and a mapping algorithm that
links these two models together. Our framework takes a
user interface (say iOS) as input, and using the PDM and
the mapping algorithm, generates the code for the
Android interface. The solution presented in this paper
targets the modeling and code generation of the user
interface, as part of the whole application. In fact, the
average time spent on implementing the user interface of
a program is usually 50% of the whole application [5],
which is a considerable amount of time.

The solution we propose is general and can be easily
extended to incorporate new resources as well as target
platforms beyond iOS and Android. The addition of any
of the above requires minimal extra implementation
efforts. It is worth noting that our approach can also be
used as a basis for application migration. Moreover, we
realize that every new version of iOS and Android might
introduce some new attributes while some other attributes
might become deprecated. Our approach can easily
handle these kinds of updates, by either adding new
attributes or resources for the newly-added attributes or
removing the attributes and resources corresponding to
the deprecated ones.

In the next section, we examine the domain model of
Android and iOS and we define the Mobile Resource
Modeling profile (MRM). Section 3 describes the
mapping from one platform to the other. In Section 4, we
present a case study to illustrate our approach. Section 5
overviews the related work and we conclude in section 6.

2 Mobile Platform Modeling

As shown in Figure 1, the mapping from one interface to
the other requires the existence of mobile Platform
Description Models (PDM) for both Android and iOS. In
this section, we describe our approach for modeling these
two platforms which is conducted in two steps. The first
step aims at enumerating all the concepts required to
cover the iOS and Android GUI domain. The output of
this stage is called the domain model of the profile. It is
considered as a specification of the domain-specific
language. The second stage then consists of implementing

Fig. 1: Proposed framework

and modeling this specification in terms of UML
extensions, i.e. defining UML stereotypes and their
related properties and constraints.

2.1 The Domain Model of Android and iOS

The domain models have been built on the basis of a
detailed analysis of the iOS and Android mobile
application API standards. As a result of the graphical
user interface analysis, we have classified the GUI
elements into two groups:

•Windows represent an area on the screen that displays
information, with its contents being displayed
independently from the rest of the screen such as view
and relative layout.
•Widgets are software components with which a mobile
user interacts through direct manipulation to read or
edit information about an application. Widgets can be
divided into four categories:
◦display of collections of related items (various list

and canvas controls),
◦initiation of actions and processes within the

interface (buttons and menus),
◦navigation within the space of the app (links, tabs

and scrollbars),
◦representing and manipulating data values (labels,

check boxes, radio buttons, sliders, spinners, etc.).

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 381

Fig. 2: Extract of the MRM Profile with the Android and iOS

platform description models

2.2 MRM Profile

Using the above extracted domain model, we have
implemented the domain view as a UML 2.0 profile.
Profiles, such as SRM profiles, have been previously
designed and used for modeling multitasking and
embedded applications [6]. We call our suggested UML
profile an MRM. MRM is not a new API for mobile
applications such as Android or IOS, but a language to
describe those APIs.

The MRM profile is based on the “Resource-Service”
pattern. That pattern allows describing resources that own
properties and provide services. Some properties and
services play roles. Such roles are modeled as resources
attributes. Each concept in the windows and widgets
groups of the domain model is modeled as a resource
with a stereotype. Figure 2 provides an overview of the
profile architecture and platform models showing the
Button resource. In the MRM profile, a button is modeled
as a gButton stereotype. A button resource owns some
attributes. Among those attributes, the g height attribute
plays the role of the height characteristic of the button. A
button resource provides also services, such as the create

service. Due to space limitations, it is out of the scope of
the paper to describe in very details the MRM profile. A
more thorough description of the Android and iOS
platform description models is given in Section 3.3.

The main goal of MRM profile is to be used in a
generative mobile application development process
context. Therefore, MRM provides finely-detailed
artifacts modeling capabilities which allow the
description of mobile device GUI in a detailed way. It
also builds a bridge between the description models of the

different platforms and thus facilitates the mapping
between the platforms.

3 Mapping and Code Generation

The aim of our approach is to make it easier and faster for
the developer to implement the user interfaces of an app
on different target platforms. Currently, if a user interface
has been developed for an iOS app, the developer has to
redo the whole interface development for Android, hence
doubling the implementation effort, time and money.
Alternatively, the developer can use a cross platform
development approach, but in this case, he/she has to
learn and deal with a new technology that has its
advantages and drawbacks. Using our approach shown in
Figure 1, the developer can feed the implemented iOS
interfaces to our framework which automatically
generates the code for the Android interfaces. Platform
Description Models (PDM) for the iOS and Android as
well as a mapping algorithm are needed to achieve this
translation. The PDMs model the resources in each of the
platforms while the mapping algorithm is a bijective
mapping that links the components in the two platforms.
In the next sections, we present our running example and
then give a detailed description of the platform
description model and the mapping algorithm.

3.1 Running Example

To explain and demonstrate our technique, we use a
running example throughout this section. In the example,
we assume the developer has created a simple iOS user
interface and uses our approach to automatically generate
the equivalent android interface. The interface consists of
a textfield and a button. Figure 3 shows an extract of the
user interface that codes the button resource in iOS. The
same interface developed for the android OS is shown in
Figure 4. The objective of this research is to develop an
automatic mapping that can generate the content of
Figure 4 when the content of Figure 3 is given as input. It
is worth noting that our running example is kept short for
ease of presentation and explanation; however, our
approach covers other aspects in user interfaces, like
textfields, labels, checkboxes, etc. We show a more
thorough example in Section 4.

3.2 Preprocessing Step

Before delving into the details of our approach, we
describe our starting point. First, the user needs to create
an interface on either Android or iOS. This can be done in
two ways; either by writing directly the XML code or for
an easier option, by using a drag and drop tool. In fact,
both of the Android Studio or Apple Xcode IDEs provide

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


382 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

Fig. 3: An extract of the iOS interface coding a button resource

Fig. 4: An extract of the Android interface coding a button

resource

the possibility to build an interface by drag and drop. If
the interface is built using the easier drag and drop option,
the IDE generates simultaneously the XML code for the
interface.

Given the XML code of the iOS interface, our
approach starts by parsing the fragments into the
corresponding XML tree. Then we traverse through the
tree to generate the Android interface. To do so, we need
a way to map between the resources in iOS and the
resources in Android. For that, we have designed platform
description models for both iOS and android. The
common description of these models using the MRM
profile allows the creation of a mapping between the
operating systems.

The next section describes the platform description
models we have designed and then we describe how the
mapping takes place.

3.3 Platform Description Model

A Platform Description Model (PDM) displays all the
resources that a given platform offers. For example,
Android offers, among others, a Button and a Textview
resources. In iOS, these same resources are called Button
and TextField. A PDM also lists the attributes each
resource has. Figure 2 shows the Android and iOS
modeling of the Button resource. A complete PDM also
includes a model of the other resources, e.g. TextField,

TextBox, Label . . . . Extensive PDMs for the iOS
resources and the Android resources are shown in
Figures 5 and 6.

Every resource in a PDM contains its corresponding
list of attributes. We define these attributes by examining
and analyzing the XML API of the Android and iOS
interfaces. Figure 4 shows that a node Button in the
Android XML contains several attributes called
layout width, layout height, text, id, layout below,
layout centerHorizontal, each one with its own String
value. We map each of the XML attribute names to
attributes in the Android Button resource model as shown
in Figure 6. Other Android resources and their attributes
are depicted in Figure 6. However, the button node in the
iOS XML specification contains not only attributes but
also children nodes like rect, autoresizingMask, and state.
Each of the children node is modeled as a separate
resource that is associated with the Button resource.
Figure 5 shows the Rect child node modelled as a separate
resource linked to the Button resource (in this case it is
associated to the Widget class and by inheritance to the
Button resource).

As can be seen in Figures 5 and 6, the two models
differ in many aspects, the number of attributes, the name
of the attributes, as well as the structure of the attributes.
For example, the height size of a button in Android is
called layout height while in iOS the height is encoded
within a Rect class that is associated with the Button
resource. These differences between the two platforms
pose a challenge for automatic mapping. To overcome
this difficulty, we use the UML stereotypes defined in
MRM as a way to link together resources or attributes that
represent the same thing while having different names
and structures. A stereotype allows extendibility in UML
by permitting designers to create new model elements
derived from existing ones. These elements are assigned a
specific property that renders them suitable for a specific
domain or usage. A stereotype is denoted as a name
enclosed by guillemets (<<>>). The MRM profile
illustrated in Figure 2 defines the stereotype
<<GButton>> to represent the button resource. The
same stereotype is then used in the Android and iOS
PDM to annotate the button resources.

The MRM profile shown in Figure 2 specifies that the
GButton stereotype has a g height property. Therefore,
the Button resource in the two PDMs needs to implement
the g height property. That is another major difference
between the two PDMs: the g height property in Android
corresponds to the layout height attribute as part of the
Button resource, while in iOS it is modeled as a height
attribute in another resource Rect which is associated to
the Button resource. To facilitate the mapping between
the two different structures, we annotate the PDMs with
extra information. As shown in Figures 5 and 6, the
attributes of the Button resource in the iOS and Android
PDM are referenced by the attributes of the GButton
stereotype. For example, in the Android PDM, the
layout height attribute in the class Button is referenced by

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 383

Fig. 5: Extract of the iOS platform description model

the g height attribute of the Gbutton stereotype (“g height
= [layout height]”). While the attribute height in the iOS
PDM, which is inside the Rect class, is referenced to the
g height attribute of the GButton stereotype (“g height =
[rect:height]”). This common description of the resources
as well as their attributes using the stereotypes in the
MRM profile help us perform a generic mapping between
iOS and Android platforms.

3.4 The Mapping

Our approach takes the XML parse tree of an interface for
a given platform (say iOS) as input and generates the
equivalent interface for the other platform (Android)
making use of the PDMs we have designed. In this
section, we describe how the mapping takes place.

Algorithm 1: The mapping algorithm is shown in
Algorithm 1. The algorithm MAPINTERFACE takes the
XML tree T as input, the name of the source platform for
which the interface is designed (in our case it is iOS), and
the name of the target platform for which we wish to
generate the new interface (in our running example it is
Android).

The algorithm starts by extracting the PDMs of the
source and target platforms (lines 2-3). It then traverses
the XML tree in a depth-first fashion. For every

Algorithm 1 - Map an interface from one platform to
another.

1: procedure MAPINTERFACE(Tree T, String sourcePlatform,

String targetPlatform)

2: sourcePDM← getPDM(sourcePlatform);

3: targetPDM← getPDM(targetPlatform);

4: for all nodes n in T do

5: st← getStereotype(n, sourcePDM);

6: if st != null then

7: resource← getResource(targetPDM, st);

8: output(“<” + resource + “ ”);

9: for all attribute attr in n do

10: st property← getStereotypeProperty(attr,

sourcePDM);

11: newAttr← getAttribute(targetPDM, resource,

st property);

12: if newAttr != null then

13: OUTPUTATTRIBUTE(newAttr, attr, resource,

SourcePDM, TargetPDM);

14: for all Attributes attr in resource do

15: if attr is not output yet then

16: output(attr + “ = \“” + defaultValue() + “\“”);

17: output(“>”);

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


384 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

Fig. 6: Extract of the Android platform description model

encountered node, the algorithm examines the source
PDM and gets the stereotype corresponding to that
resource node (line 5). If the node has an associated
stereotype, the algorithm searches for the resource that
has the same stereotype in the target PDM (lines 6-7).
Then the target resource is output inside an XML tag “<”
(line 8). If the node of the tree has no associated
stereotype, this means that this node is not shared among
the different platforms. For example, the rect node is not
assigned any stereotype since its corresponding rect
resource exists in iOS but not in Android. When
translating an iOS interface to Android, if a rect node is
encountered in the tree, it will be ignored and omitted
from the XML output.

After mapping a node in the tree, the algorithm maps
its attributes (lines 9-13). Even if the node has no
stereotype and is not output into the XML code, its
attributes will still be mapped. Taking again the rect node
example, although the node is not mapped, some of its
attributes (e.g., width, height) must be mapped. For each
attribute, the algorithm extracts its property from the
source PDM and finds the corresponding attribute in the

target PDM (lines 9-11). If the target attribute exists, it
will be output by calling Algorithm 2 (lines 12-13).

Algorithm 2: Algorithm 2 outputs the attributes of a
resource as XML code. There are several attribute types
whose output should be handled differently.

•If the target attribute is of type id, then the value of
the attribute is generated using the function
generateID() that generates a unique random id for the
resource (lines 2-3).
•If the target attribute is of the form class:attribute then
we need to output a new XML node of type class and
within it the target attribute and its value which is the
same value specified in the source attribute
(lines 4-5). To demonstrate this case, we consider the
example of mapping the layout height attribute of a
button from Android to iOS. The property of the
layout height attribute is g height which corresponds
to the attribute rect:height in the iOS PDM, which
means that the property g height is mapped to the
attribute height in the class rect. In this case, the
Android attribute layout height does not map to a
single attribute but to the height attribute within the

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 385

rect class, and therefore “<rect height = someValue”
becomes an output in the XML code. We also need to
output all attributes that belong to the class. This is
accomplished by calling Algorithm 3 which will be
explained shortly (line 6). Finally at line 7, the
algorithm closes the tag for the XML node class.
•Attributes might also be of type position, meaning
that this attribute specifies the position of the widget
on the GUI screen. Example of position attributes are:
layout below, layout centerHorizontal, x, y. In this
case (lines 8-10), the algorithm extracts the absolute
position of the source attribute and then outputs the
target attribute with the value of the extracted
position. We need to do this because positioning of
widgets differs greatly between Android and iOS. In
iOS, positions are absolute numbers relative to the
screen dimensions, while in Android positions are
specified relative to other widgets placed on the
screen. The absolute position is extracted and
computed in the preprocessing phase when building
the XML parse tree of the source GUI code (Section
3.2). We omit the details of the absolute position
extraction mechanism as it is beyond the scope of this
paper. However, we would like to note that android
has recently launched the “ConstraintLayout”
attribute that allows to create large and complex
layouts without the need to use nested view groups. It
is similar to “RelativeLayout”, however; it is more
flexible and easier to use. The introduction of
constraintLayout makes it easier for our tool to map
positions between iOS and Android. Using the
absolute position allows our tool to handle different
screen sizes and resolutions, increasing the portability
of our approach. Moreover, the iOS XML code uses
the unit “dp” for the position of its widgets, which is a
density-independent pixel, making the position
independent of the resolution of the screen.
•Finally, for all other types of attributes, the attribute is
output with a value equal to the value specified in the
source attribute (lines 11-12).

Algorithm 3: Algorithm 3 loops over all attributes in
a class (line 2), and if the attribute is not the same as the
attribute that is already output in Algorithm 2 (line 3), it
will retrieve the property of the attribute from the target
PDM (line 4). In line 5, the algorithm searches for the
corresponding attribute in the source PDM. If the source
attribute exists, Algorithm 2 is called to output the target
attribute attr with the value in the sourceAttr (lines 6-7).
Otherwise the target attribute is output with its default
value (lines 8-9). Once an attribute of a resource is output
as XML code, it will be flagged so it does not get output
again.

So far Algorithm 1 has mapped every attribute in one
platform to its corresponding attribute in the other
platform. However, if we compare the XML code in
Figures 3 and 4 and the two PDMs in Figures 5 and 6, we

Algorithm 2 - The Algorithm that handles the output of
attributes.

1: procedure OUTPUTATTRIBUTE(String newAttr, String attr,

String resource, PDM SourcePDM, PDM TargetPDM)

2: if newAttr == “id” then

3: output(newAttr + “ = \“” + generateID() + “\“”);

4: else if newAttr hasForm class:attribute then

5: output(“<” + class + “ ” + newAttr + “ = \“” +

attr.value + “\“”);

6: OUTPUTALLATTRIBUTES(class, resource, newAttr,

SourcePDM, TargetPDM);

7: output(“>”);

8: else if newAttr is a position attribute then

9: int pos = extractAbsolutePosition(attr);

10: output(newAttr + “ = \“” + pos + “\“”);

11: else

12: output(newAttr + “ = \“” + attr.value + “\“”);

Algorithm 3 - Output all attributes in a class.

1: procedure OUTPUTALLATTRIBUTES(String class, String

resource, String attribute, PDM SourcePDM, PDM

TargetPDM)

2: for all attributes attr in class do

3: if attr != attribute then

4: property← getProperty(attr, TargetPDM);

5: sourceAttr← getAttribute(SourcePDM,

resource, property);

6: if sourceAttr != null then

7: OUTPUTATTRIBUTE(attr, sourceAttr,

resource);

8: else

9: output(attr + “ = \“” + defaultValue() + “\“”);

realize that the iOS Button has more attributes than that of
Android. For example, the iOS attributes opaque,
contentMode, FixedFrame do not have counterpart
Android attributes. Therefore, if our starting point is an
Android interface and we want to generate its
corresponding iOS interface, the algorithm omits
generating those extra iOS attributes. Lines 14-16 of
Algorithm 1 handle this issue by looping over all the
attributes of the resource of the target platform and if any
of these attributes has not been output yet as XML code,
it will be output with a default value. The default value of
an attribute is taken as the value that gets assigned to the
attribute when the resource is dragged and dropped in the
IDE. For example, when a button is dragged and dropped
in iOS the default value of the attributes opaque,
contentMode, FixedFrame is respectively “NO”,
“scaleToFill”, “YES”. When all attributes are mapped, the
algorithm outputs a closing tag for the XML node
(line 17).

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


386 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

Fig. 7: The iOS page that is ported to Android

Algorithm complexity: Our proposed algorithms are
efficient. Algorithm 3 contains one for loop that iterates
over the attributes in a given class, so its complexity is
proportional to the number n of attributes in a given class.
Based on the Android and iOS specification documents,
the number n is small and limited. As a result, we can say
Algorithm 3 has a constant complexity of O(1).
Algorithm 2 contains no iterations but calls Algorithm 3,
therefore its complexity is equal to that of Algorithm 3.

Algorithm 1 contains a nested for loop with two inner
loops. The outer loop (line 4) iterates over the nodes in
the XML tree while the first inner loop (line 9) iterates
over the attributes of each source node and the second
inner loop (line 14) iterates over the attributes of the
target node. Therefore the complexity of Algorithm 1 is
O(mn) where n is the number of nodes in the XML tree
and m is the sum of the number of attributes in the source
and target nodes. The number n varies with the size of the
tree which depends on the complexity of the screen we
are mapping. The number m is small as it represents the
number of attributes a certain widget can have which,
based on the Android and iOS specification documents, is
limited.

4 Case Study

To demonstrate the applicability of our approach, we have
applied it on a case study that consists of developing the
pages of a mobile application in iOS using Xcode and
trying to port these pages to Android using our tool. The
case study is about a school management system that can
be used by teachers, students and parents of the students
to interact with each other. It was developed in iOS, then

Fig. 8: The equivalent Android page generated by our framework

using our tool the pages of this application are mapped to
android pages. This application consists of 31 pages, and
took around 100 working hours to develop. Each page
contains a different set of widgets. To develop these pages
on Android, it requires other 100 hours of development.
Using our tool, we automatically generate the Android
pages with zero cost and effort.

Figure 7 shows one of the 31 pages we have
developed. The page consists of the “Create Account”
page and includes two labels, five text fields, one switch
and one button. All the widgets of the page are included
in a view. Figure 9 depicts the XML source code
corresponding to the create account page shown in
Figure 7. The source code shows some of the widgets’
properties. For example, we can see that all the text fields
have values for the placeholder attributes. We can see also
that all the widgets are positioned in specific places
defined by the attribute x and y in the rect node. The idea
is to show that these values are preserved when we use
our tool to port the page.

Figures 8 and 10 show respectively the generated user
interface of the create account page on the Android
platform and its corresponding XML source code. We can
see clearly that our approach has preserved the position
and the properties of the widgets as they have been
specified in the iOS version (i.e. placeholders, widget
size, position). For example, the text field ‘first name’ in
iOS has an absolute position at x= 37 and y=100 as
shown in Figure 9. This position is conserved after
porting the page on Android using our tool. We can see in
Figure 10 that the edit text ‘first name’ has the
layout marginLeft property set to 37dp and
layout marginTop property set to 100dp.

We suppose now that the application developer has
started by creating the Android version of the “create

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 387

Fig. 9: The XML code of the iOS GUI

Fig. 10: The XML code of the Android GUI generated by our framework

account” page in Figure 8. The source code of this page is
shown in Figure 11. When, we have developed the
Android version of the page, we have not imposed any
constraints on the developer on how to build the page. We
have allowed the developer to build the page freely to
have a native Android page. We can see, in this figure,
that the widgets of the page are positioned relative to each
other. For example, the editText “first name” with
id=“@+id/editText” is below the textView
(layout below=“@+id/textView”). Furthermore, it has a
marginTop and its left edge matches the left edge of the
“last name” edit text.

When using our approach to generate the iOS version
of the page, we get the same page presented in Figure 7.

This is possible due to the “compute absolute positions”
phase of our approach that is presented in Section 4,
Algorithm 2 and that translates the relative positions of
the widgets into absolute positions with specific x and y
values.

It is worth to mention here that the generation of the
XML files for android and iOS using our tool conforms
the XSD android and iOS formats respectively. Therefore,
in order to run or to view the generated user interfaces we
need simply to import the generated xml files into the
layout folder of an android project if we are porting an
application from iOS to android and run the project. If we
are targeting iOS from android, one xml file called
Main.storyboard will be generated that aggregates all the

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


388 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

Fig. 11: The XML code of the Android GUI created by the developer

generated user interfaces. This file is then imported into
an iOS project to be run.

5 Related Work

No related work has been identified in the literature
review that uses model driven engineering to
automatically and directly port native mobile applications
user interfaces from one platform to another. However, all
the existing approaches require the use of a third party
tool (instead of the native android and iOS platforms) to
model and generate the user interface. These approaches
can be classified into cross platform approaches and
model-driven development approaches [7].

Cross Platform Approaches
Cross-platform approaches fall into four different
categories [8]: mobile Web app, hybrid apps, interpreted
environments, or generative approaches. Web apps are
built with Web technologies (HTML, CSS, and
JavaScript) and are accessed via mobile browsers. They
lack access to device-specific features, except for a
limited set that is made available with HTML5 [9].
Hybrid apps, as the ones created with Apache
Cordova [10] (formerly known as PhoneGap), package a
Web site with a native component that provides access to
device features. Both Web apps and hybrid apps look and
behave like Web sites, because the browser engine is
responsible for rendering the UI.

Interpreted apps that are built using approaches such
as Titanium [11] uses a separate runtime environment.
They are, in principle, able to build up the UI with native
components. On each target platform, an interpreter at
runtime interprets the source code of the app written in a
scripting language.

Generative approaches create completely native apps
out of a common code base. They are based on the

implementation of mobile applications by using the
common programming languages. The developers can
write the source code in a common programming
language and the cross compiler compiles the source code
into a particular native code by converting the source
code into native binaries. Examples of tools based on this
approach include Xamarin [12] that uses C# as the
common programming language.

The cross platform approaches can be used to target
multiple platforms. The user interface in these approaches
is built using programming languages such as Javascript
or C#. They offer new development environments instead
of using the existing native environments such as Android
studio, Xcode or Visual studio. Proposing new
environments means, on one hand, additional cost in
terms of maintainability and portability for the cross
platform framework providers and, on the other hand, the
application developers are forced to learn new
technologies. While, in our proposed approach, the
application designer builds the user interface using the
native environment that he / she is familiar with (i.e.,
Android studio, Xcode or Visual studio). Then using our
tool, and without any extra effort from the developer’s
side, the user interface is generated for the specified target
platform.

Model-Driven Development Approaches
Many model-driven frameworks have been proposed for
cross-platform application development. Previous work
in [13,14,15,16,17,18] focuses on mobile application
development, while other previous work [19,20,21]
focuses on the development of real-time embedded
systems.

Heitkotter et al. presented a framework [13] called
MD2 which allows to describe the application in a
platform-independent model using a textual domain
specific language. The language allows also the

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 389

description of the data model, the views and the behavior
of the mobile application. A code generator specific for
each target platform is used to transform the application
model into source code. The MD2 framework provides in
addition a code generator which creates a server-backend
based on the data model of the application.

Usman et al. presented a model-driven development
approach [14] to generate mobile apps for multiple
platforms based on UML. The application requirements
are modeled through use-case diagrams, UML class
diagrams are used to model the structure of the app while
UML state machine diagrams are used for behavioral
modeling. In this approach, they have focused on the
business logic code of the app and they did not deal with
the user interface development.

JUSE4Android [15] is a model-driven tool that allows
the automatic generation of Business Information
Systems (BIS) for Android. The apps are specified
through annotated UML class diagrams from which the
running code is generated.

The model-driven applause [16,17] provides a DSL
for creating cross platform applications. The framework
applause is based on a DSL to describe mobile apps and a
set of code generators for iOS, Android, Windows Phone
7 and Google App Engine.

AXIOM [18] is a model-driven approach for the
development of cross platform mobile apps. In AXIOM,
the requirements of the application are first described in
platform-independent intent models (interaction and
domain perspective) using AXIOM’s DSL. Those intent
models are then enriched with structural decisions and
refined with platform-specific elements during a
multi-phase transformation process to produce the source
code for native apps: from requirements models to
Platform Independent Model (PIM), from PIM to
Platform Specific Models (PSMs), and finally from PSMs
to running code.

Generic Application Migration Approaches

A generic approach for migrating real-time embedded
applications was proposed [19] and it was extended
in [20] and [21] to support code generation and
verification. It is based on the SRM profile [6] which
allows the description of platform resources in a common
way. As a result generic transformations are proposed to
migrate real-time embedded applications from one
platform to another. Although this approach provides a
generic and effective way to migrate real-time embedded
applications, it could not be applied to migrate mobile
applications as the resources of the mobile application
operating systems differ from real-time operating
systems. In fact, mobile application platform resources
cannot be modeled using the SRM profile.

All the presented MDD approaches start by describing
the mobile application model in a platform independent
way (PIM). Each approach relies on its own DSL, either
defined from scratch or by using UML profiles. Then, in

order to generate executable code, they use code
generators specific for each target platform. The user
interface of the app is also described using DSLs. So, in
order to build a user interface, the application developer
must learn how to use this new DSL. In addition, the DSL
must be rich enough to describe all the user interface
properties. And this is usually not the case; the proposed
DSLs lack the richness of the native development
environments (i.e., Android studio and Xcode). Moreover,
as these approaches use specific code generators, this
means they are not portable. So, if a new platform is
introduced, new code generators must be developed
which require from the tool-chain provider dual skills in
the new platform and in model driven engineering.

Our approach tackles all the above concerns. First, the
developer does not need to learn new modeling
techniques to model the user interfaces. In fact, the
developer does not need to model the user interfaces but
he/she will build them using the native environment that
he/she is familiar with. Second, our mapping technique is
not based on generators specialized to a specific platform,
but on a generic profile that links resources of different
platforms together. Therefore, any introduction of a new
platform does not require the development of a new
generator, but the addition of the Platform Description
Model (PDM) that we recommend to be designed by the
platform provider given their high knowledge in their
platform. We note, however; that our current tool deals
only with porting user interfaces from one platform to the
other. It does not yet support the transition between user
interfaces which are one of our future work.

6 Perspective

In this paper, we have described a new model-driven
framework for the development of mobile applications.
Our goal is to offer a development process that
incorporates systematic strategies in order to achieve
portability. We have sought to achieve portability by
relying on the native development processes such as
Android Studio and iOS XCode. Hence, the application
developer is not forced to learn a new technology as it is
the case with the approaches that have been previously
suggested to achieve portability.

Our proposed approach is based on a common
description of the mobile application platforms using the
UML profile MRM that we have introduced. Then, based
on this common description, we have proposed a generic
transformation framework that takes the mobile
application user interface implemented on a specific
platform and generates the equivalent user interface on
the target platform. Our solution is general and can be
easily extended to incorporate new resources as well as
target platforms beyond iOS and Android.

We have demonstrated our approach using a case study
where we have successfully ported a mobile application

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


390 R. Abdel Kader, W. Chehade: A Model Driven Engineering Approach for Automating ...

user interface from iOS to Android and vice versa with
relatively no cost.

Future research will focus on extending our
framework to support porting complex user interfaces
then porting complete mobile applications. This will be
done by extending the platform description model that
was presented in this paper to model behavioral features
of the mobile resources.

Acknowledgement

The authors are grateful to the anonymous referees for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] Mobile App Usage. Report by Statista.

[2] Object Management Group, MDA Guide Revision 2.0, June

2014, OMG document number: ormsc/14-06-01.

[3] Object Management Group, OMG Unified Modeling

Language (OMG UML), Superstructure, V2.5, March 2015,

OMG document number: formal/15-03-01.

[4] E. Umuhoza and M. Brambilla, Model driven development

approaches for mobile applications: A survey, International

Conference on Mobile Web and Information Systems. pp. 93

- 107, (2016).

[5] B. Myers and M. Rosson, Survey on user interface

programming, Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pp. 195-202 (1992).

[6] Object Management Group, A UML profile for MARTE

(V1.1), June 2011, OMG document number: formal/2011-06-

02.

[7] A. Charland and B. Leroux, Mobile application development:

web vs. native, Communications of the ACM, Vol. 54, No. 5,

pp. 49 - 53 (2011).

[8] H. Heitkotter, S. Hanschke and T. A. Majchrzak, Evaluating

cross-platform development approaches for mobile

applications, International Conference on Web Information

Systems and Technologies, pp. 120 - 138, (2012).

[9] A. Boehm, Z. Ruvalcaba, Murach’s HTML5 and CSS3, Mike

Murach & Associates, 4th edition.

[10] Apache Cordova, 2015. Apache Cordova.

[11] Appcelerator Titanium, 2017. Appcelerator Titanium.

[12] Xamarin, 2019. Xamarin.

[13] H. Heitkotter, T. A. Majchrzak and H. Kuchen, Cross-

platform model-driven development of mobile applications

with md2, Proceedings of the 28th Annual ACM Symposium

on Applied Computing, pp. 526 - 533 (2013).

[14] M. Usman, Z. Iqbal and M. Khan, A model-driven

approach to generate mobile applications for multiple

platforms, Proceedings of the 2014 21st Asia-Pacific

Software Engineering Conference, Vol. 2, pp. 111 - 118

(2014).

[15] L. P. Da Silva and F. Brito e Abreu, Model-driven

GUI generation and navigation for android BIS apps, 2nd

International Conference on Model-Driven Engineering and

Software Development, pp. 400-407 (2014).

[16] H. Behrens, MDSD for the iPhone: developing a

domain-specific language and IDE tooling to produce real

world applications for mobile devices, Proceedings of

the ACM international conference companion on Object

oriented programming systems languages and applications

companion, pp. 123 - 128 (2010).

[17] R. Fielding and R. Taylor, Principled design of the modern

web architecture, ACM Transactions on Internet Technology,

Vol. 2, No. 2, pp. 115-150 (2002).

[18] X. Jia and C. Jones, AXIOM: A model- driven approach

to cross-platform application development, ICSOFT

Communications in Computer and Information, Vol. 1, pp.

24 - 33 (2012).

[19] F. Thomas, J. Delatour, F. Terrier and S. Gerard, Towards a

framework for explicit platform-based transformations, 11th

IEEE International Symposium on Object and Component-

Oriented Real-Time Distributed Computing (ISORC), pp.

211-218 (2008).

[20] W. E. H. Chehade, A. Radermacher, F. Terrier, B.

Selic and S. Gerard, A model-driven framework for the

development of portable real-time embedded systems, 16th

IEEE International Conference on Engineering of Complex

Computer Systems, pp. 45-54 (2011).

[21] W. E. H. Chehade and R. Abdel Kader, A Model-Driven

Approach for the Validation of RTOS Constraints in Real-

time Application Models, International Journal of Applied

Engineering Research, Vol. 12, No. 5, pp. 622-631 (2017).

Riham Abdel Kader
received her Bachelor and
Masters degrees in Computer
Science from the American
University of Beirut in
Lebanon in respectively
2003 and 2006, and her PhD
degree in the optimization
of XQueries in the context
of relational database systems

from the University of Twente in The Netherlands in
2010. She then worked as a Senior Software Engineer
at ASML, a leading international company in the
lithography industry. Since 2014, she is an assistant
professor at the Faculty of Science at Beirut Arab
University. Her research interests are in model driven
engineering, image processing, and database management
systems.

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 379-391 (2019) / www.naturalspublishing.com/Journals.asp 391

Wassim El Hajj
Chehade received his
Bachelor degree in Computer
and Communication
Engineering from the
Lebanese University and
his PhD degree in Computer
Science from Paris XI
University in 2011 where he
worked at the Laboratory of

Model Driven Engineering for Embedded Systems at
CEA LIST. After obtaining his PhD, he worked at
PodBox, a start-up company based in Brittany, France.
Currently, he is an assistant professor at the Faculty of
Science at Beirut Arab University since 2014. His
research interests are in image processing, model driven
engineering, real-time embedded systems and mobile
application development.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Mobile Platform Modeling
	Mapping and Code Generation
	Case Study
	Related Work
	Perspective

