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Abstract: We have found some new Ostrowski-type inequalities for functions whose derivative module is relatively
(m,hy,hy)—convex. From the main results some corollaries refereeing to relative convexity, relative P—convexity, relative
m—convexity, relative s—convexity in the second sense and relative (s,m)—convexity are deduced. Also some inequalities of Hermite-

Hadamard type are obtained.
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1 Introduction

The Ostrowski inequality is known in the classical
literature since 1938 [18], when A. Ostrowski gave an
upper bound for the approximation of the integral average
= I f(t)dr by the value f(x) at the point x € [a,b] as
follows: Let f : I C [0,4) — R a differentiable function
in 1°, the interior of the interval /, such that ' € Z[a,b],
where a,b € I and a < b. If |f'(x)] < M, then the
following inequality holds

1 b M [(x—a)*+(b—x)?
b—a/a flu)du Sb—a[ 2 :

e -

The growing development of the concept of convex
function is observed in several studies in which the field
of inequalities has a special attention [13,19]. In the area
of stochastic processes, these generalizations have been
applied with the use of mean square integrals inequalities
[11,12]. Also it is studied the  classical
Hermite-Hadamard  inequality = and  Jensen-type
inequalities on fractal sets related with A—convex
functions as showed in [22]. Recently, many
generalizations of the Ostrowski inequality for functions

of bounded variation, Lipschitzian, monotone, absolutely
continuous, convex functions, s-convex and /h-convex
functions,  (m,h;,hy)—convex  functions, n-times
differentiable mappings with error estimates with some
special means together with some numerical quadrature
are done [1,2,3,4,6,10,21].

Another famous integral inequality is named after
those who studied it, J. Hadamard and Ch. Hermite in the
years 1893 and 1883, respectively [8,9].

Using a particular convex function generalization
established by M. Noor [16], called relative convexity
with respect to a function and the so-called s—convexity
in the second sense, we introduce the definition of
(m, hy,hy)—convexity relative to a function and find some
Ostrowski type inequalities, and from these results we
deduce some Hermite-Hadamard type inequalities.

2 Preliminaries

As is known in the literature, the classical concept of
convex function is as follows.
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Definition 1. Let I be an interval in R. A function f: I —
R is said to be convex, if for every x,y € I and every t €
(0,1), the inequality

flex+(1T=1)y) <tf(x)+(1=1)f(y),
holds.

If the inequality in (1) holds in the opposite sense, then we
say that f is concave.

One of the generalizations of this concept, called
s—convexity in the first and second sense, is established
by W. Orlicz [17], later used by W.W. Breckner [5] and
widely studied in applications by M. Alomari et. al. in
[3].

Definition 2. Let 0 < s < 1. A function f : [0,4e) — R
is s-convex in the first sense or si-convex if

flax+By) < o f(x)+B°f(y),

Sorevery x,y € [0,+00) and o, € (0,1) and o® + B* = 1.
The function f is s-convex in the second sense or sy-convex
if

flax+By) < o f(x) + B*F(3),

forevery x,y € [0,4) and o, € (0,1) and .+ = 1.

If the inequalities in (2) holds in the opposite sense,
then we say that f is s-concave.

Theorem 1. Let f : 1 C Ry — R, a differentiable
function in I° such that f' € ZL|a,b] where a,b € I with
a < b. If |f'] is s-convex in the second sense in |a,b] for
some fixed s € (0,1] and |f'(x)| < M, x € |a,b], then the
Sollowing inequality holds for each x € [a, D).

s [ st < A

neE
The proof of that theorem can be found in [3].

Theorem 2. Let f : 1 C Ry — R, a differentiable
mapping in I° such that f' € Z|a,b] where a,b € I with
a < b. If |f'|7 is s-convex in the second sense in [a,b] for
some fixed s € (0,1], p,qg > 1, %Jré =1land|f'(x)] <M,
X € |a,b], then the following inequality holds

705 [ s

M ( 2

Var(x—a)?+ (b—x)?

b—a ’
for eachx € [a,b].

The proof of that theorem can be found in [4]

Theorem 3. Let f: 1 C Ry — Ry a differentiable
mapping in I° such that [’ € £[a,b] where a,b € I with
a < b. If | f'|? is s-convex in the second sense in [a,b] for
some fixed s € (0,1], g > 1, and |f'(x)| <M, x € [a,b],
then the following inequality holds

79— 5 [
x—a)? —x)?
() o)

foreach x € [a,b).

The proof of that theorem can be found in [4].

In [15], M.A. Noor introduced and studied a new class
of convex set and convex function with respect to an
arbitrary function; which are called relative convex set
and relative convex function respectively, as follows. Let
K be a non-empty closed set in a real Hilbert spaces H.

Definition 3.  Let K, a subset of H. K, is said to be
relatively convex with respect to the function g : H — H if

igv)+(1-tueck,
Vu,v € H :u,8(v) € Kg, andt € [0,1].

Definition 4. Let I be an interval in R. A function f :
K, C R — R is said to be relatively convex with respect to
function g : R — R if the inequality

Jg()+ (1 =0)y) <tf(g(x)+(1-1)f(y) (1)
holds for all g(x),y € K,, x,y € Randt € [0,1].

If the inequality (1) holds in the opposite sense, then
we say that f is relatively concave.

Definition 5. A function f : Ky — [0,+00) is said to be

relatively P-convex with respect to function g : H — H,
where s € (0, 1], if the inequality

fleg(x)+ (1 —1)y) < f(g(x)) + £ () ()
holds for each x,y € [0,+e0), g(x),y € K, and t € [0,1].

If the inequality (2) holds in the opposite sense, then we
say that f is relatively P-concave.

Definition 6. Ler m € (0,1]. A function f: Kz — [0,4-0)

is said to be relatively m-convex with respect to function
g:H — H, if the inequality

fleg(x) +m(1—1)y) <tf(g(x)) +m(1—=1)f(y)  (3)
holds for each x,y € [0, +e0), g(x),y € Kg and t € [0,1].

If the inequality (3) holds in the opposite sense, then we
say that f is relatively m-concave.
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Definition 7. A function f : Ky — [0,+00) is said to be
relatively s-convex in the second sense with respect to
function g : H — H, where s € (0,1], if the inequality

fltgx)+ (1 =1)y) <£°f(g(x) + (1 =2)'f(y) (4
holds for each x,y € [0,4c0), g(x),y € Kg and t € [0,1].

If the inequality (4) holds in the opposite sense, then we
say that f is relatively s-concave in the second sense.

Definition8. Let s,m € (0,1. A function
f: Ky — [0,400) is said to be relatively (s,m)-convex in
the second sense with respect to function g : H — H, if the
inequality

feg(x) +m(1 —1)y) <°f(g(x)) +m(1 —1)’f(y)  (5)
holds for each x,y € [0,4c0), g(x),y € Kg and t € [0,1].

If the inequality in (5) holds in the opposite sense, then we
say that f is relatively (s,m)—concave in the second sense.

Definition9. Let h : [0,1] — R*. A function
f Ky — [0,400) is said to be relatively h—convex with
respect to function g : H — H, if the inequality

flrg(x) + (1 =1)y) <h(0)f(g(x)) +h(1 =) f(y)  (6)
holds for each x,y € [0,4c0), g(x),y € Kg and t € [0,1].

If the inequality in (6) holds in the opposite sense, then we
say that f is relatively A—concave in the second sense.
In this work we introduce the following definition.

Definition 10. Ler hy,h; : [0,1] = R be non-negative and
not identically zero functions and m € (0,1]. A function f :
K, — [0,+00) is said to be relatively (m,hy,hy)—-convex
with respect to function g : H — H, if the inequality

f(tg(x)+m(1 —1)y) < i (0)f(g(x)) +mha(t)f(y) (7
holds for each x,y € [0,4c0), g(x),y € Kg and t € [0,1].

To obtain our main results we need the following
Lemmas whose proofs are found in [20].

Lemma 1. Let f:1 C R — R a differentiable function
in I° where a,b €1, a < b and g : R — R is a function. If
f' € Zla,b), then the next equality holds

16 - 3 [ rega:

x)—a)?® [

= B0 gty + (1
) —b)>

N @S))Tb)/o' tf (tg(x) + (1 —1)b)dt,

for every x € g7 (I).

Lemma 2. Let f:1 CR — R be a differentiable function
in I° where a,b € I witha < b and g : R — R be a function.
if [’ € ZL|a,b], then the following equality

10— [

b—g(a) Jg(a) ()

1
= (8@ =b) | p(0f (t5(a) + (1 =1)b)r
holds for every x € [a,b], where

t7 re [Oa bf;{;)]
p(t)_{tl,te( box ]

b—g(a)’

foreveryt € [0,1] and any x € [a,b].

Using the technique applied in the work of W.D. Jiang
et. al. [14] it is easy to prove the following Lemma.

Lemma 3. If f")(x) exists and is integrable on [a,g(b)]
forn €N, then

S(a,g(b);k,n, f)

= O [ 20) 0+ (1~ 1)g(0))e

where

S(a,g(b):k,n, f) =

_ fla)+f(g®)) 1 2(b)
-2 ‘g<b>—a/a Flu)du
"= (k=1)(g(b) —a)
,k:l 2(k+])! f(k)(a)
3 Main Results

Theorem 4. Let f: 1 C [0,4+00) — R be a differentiable
function on I° such that f' € Z[a,b], where a,b € I with
a < b. If |f'] is relatively (m,hy,hy)—convex with respect
to a function g : R — R in [a,b] and |f'(x)| < M, the
inequality

e~ 5 [y

M

<
“b—a

[(80) = @)+ (8(x) = b)?] (A1 +mA2),

where
1 1
A :/ thy(t)dt and AQ:/ thy(t)dt
0 0

holds for all x € g~ '(I).
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Proof. Using Lemma 1 we have

_bia/abf(u)du‘

[£(g(x))

X faz .
%./Olt fte(x)+(1 —t)a)‘dt

(g(x) —b)* [!
+7gbia /ot

<

fgx) +(1 —t)b)’dt.

Now, since | f'| is relatively (m,hy,hy)—convexy | f(x)] <
M we get

1
|
0

1 .1
SM/ thl(t)dt+mM/ thy(t)dt
JO JO

f(tg(x)+ (1 =1)a)ar

and similarly
1
|
0

-1 -1
gM/ thl(t)dt—i—mM/ thy(t)dt
JO JO

F(tg(x) + (1 =)p)ar

So we have

o)~ 5 [ ryan

M
< [ (8(x) =@+ ((x) — b)) (A1 + ma2)
—da
where
-1 1
Ay :/ thy(t)dt and Azz/ thy(t)dt
Jo 0
and the proof follows. 0

Remark.Letting m = 1, hy(t) = ¢, and hy(t) = 1 —1¢ for all
t € [0, 1] in Theorem 4 it follows that

1 1 ! 1
A,:/ dt = — and AQ:/ t(1—1t)dt = -
0 3 0 6

s0, by replacement we have

o)~ 5 [ rtyan

<M [(g(X) —a)® +(g(x) - b)z} 7
b—a 2

making coincidence with Theorem 5 in [20]
Theorem 5. Let f:1 C Ry — Ry a differentiable

function in I° such that f' € £[a,b] where a,b € I with
a < b. If |f'|1 is relatively (m,hy,hy)—convex with respect

to function g : R — R for some q > 1, %Jré =1 and
|f'(x)| <M, x € [a,b), then the following inequality holds

60— 5 [y

M
<
~ (D)

(Al +’/’/LAz)l/q[(g(X) _

for each x € [a,b], where
1 1
B, :/ hl(t)dt and BzZ/ hz(t)dl.
0 JO

Proof. Suppose that p > 1 from lemma (2), and using the
Holder inequality, we have:

160~ [ ftuja

X —a2
sggzlﬁﬂﬂmwﬂﬂﬂwm
x)—b)?
Jr(g(b)fab)/olﬂf'(tg(xﬁr(l*t)b)|dt
< GO0 (')

(/01 |f’(tg(x)+(17t)a)|th)1/q
+w</;ﬂ’dt)'/”x
(/0' | (tg(x) + (1 _t)b)|th)1/q.

Since |f’|4 is relatively (m, hy,hy)—convex with respect to
function g and |f’(x)| < M, then we have

1750+ (1~ )

< /0] (011 (g +mha(1)[f (@) dt
< M </01h1 (1) +mh2(t)dt> dt

and similarly

[ 1550+ (1 —y0)

<M1 (/0.] hy (1) +mh2(t)dt) dt.

Doing

1 1
Ay :/ thy(t)dt and AZ:/ thy(t)dt,
0 0
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_\n o 1-1/q

it is attained < (g(b) —a) <” 1> «
| b 2n! n—+1

f80) ~ 5= [ fwdu |

n—1

2 2 " (n—21)x
—a)"+(g(x) —b) (/0
< — (A A 1/q (g('x) a)
_(p+])1/p( | +m. 2) |: (b—a) :|a
here 1 41 — 1, Th fi lete. O 0 ; 1/q

where -+ - e proof is complete (h](t)|f( )(a)|q+mh2(t)|f( )(g(b))|q)dt)
Remark. Lettingm =1, hy(t) =t¢, and hy(t) = 1 —1¢ for .
all r € [0,1] in Theorem 5 it follows that So, doing

1
! 1 1 1 :/t"*l —20)hy(t)dt
AI:/ tdt = ~ and AQ:/ (1—1t)dt = ~ S A
0 2 0 2

s0, by replacement we have

e~ 5 [ sty

and

1
CZ:/ "~ (n —2t)hy(t)dt
0

it is attained

1S(a,g(b);k,n, f)]

LM [(g(X) —a)’+ (s(x) —b)*
S orn b—a) '
Theorem 6. Let f : K, — R be n—times differentiable
and integrable on K, If |[f"| is relative

<<gw>—w"(n—1)'”qx

m,hy,hy)—convex with respect to a function g : K, — R, a 2n! ntl
8
then
. 1/q
|S(a,g(b)sk,n, f)] (Clr™ @1 +mGo| £ (g(b)))) .
- (g(b)—a)" (n—1 1=1/q " The proof is complete. O
- 2n! n+1
Remark.Lettingm =1, h(¢t) = ¢, and h;(t) = 1 — 1t for all
1/q t € [0,1] in Theorem 5 it follows that
(ClF @[ +mal (s ) . 01
1
where | C :/0 "N n—2t)tdt
_ n—1¢_
617/0 " (n—=2t)hy(t)dt a2 2o
and S n+l on+2  (n+1)(n+2)

1
sz/ " (n—20)hy(t)dt and
0

1
G = / " Yn—20)(1 —1t)dr
Proof. Using Lemma 3, the power mean inequality and the 0

fact that | £(")|4 is relative (m, h;,hy)—convex with respect S
to a function g : K, — R then (n+1)(n+2)
|S(a,g(b);k,n, f)] by replacement we have
. n rl .
< ‘(g(bz) ' a) / tnil(nle‘)f(n)(ta#* (1 7[)g(b))dt |S(a7g(b)’k7n7f)|
n! Jo
n 1-1/q
b)—a) 1 1-1/q (gb)—a)* (n—1
< W (/0 f”](”_ZI)dt) X = 2n! n+1 %
ro ) l/q /g
(/0 " (n=2t) | (ta+ (1 —t)g(b))|th) (C1|f(”)(a)|q+C2|f(”) (g(b))|")) :
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4 Some Consecuences

Corollary 1. Let f : I C [0,+) — R be a differentiable
function on I° such that f' € La,b], where a,b € I with
a < b. If |f'| is relatively P—convex with respect to a
function g : R — R in |a,b] and |f'(x)] < M, the
inequality

7o)~ 5 [ rtujad

Proof. Letting m = 1, hy () = hy(¢t) = 1 forall t € [0,1] in
Theorem 4 it follows that

1 1
A=A, = tdt = =
1 2 /0 )

by replacement we have

et~ 5 [ sy

2[5 — )+ ()~ )],

The proof is complete. 0

<

Corollary 2. Let f: 1 C [0,+) — R be a differentiable
function on I° such that f' € La,b], where a,b € I with
a < b. If |f'| is relatively m—convex with respect to a
function g : R — R in [a,b] and |f'(x)| < M, the
inequality

7o)~ 5 [ rtjad

b
< (e~ + st~ o).

Proof. Letting /11 () = ¢, and hy(t) = 1 —t for all t € [0, 1]
in Theorem 4 it follows that

'] 1 ! 1
A = / 2dt = — and Azz/ t(1—1)dt = -
Jo 3 0 6

So by replacement we get

bia./a‘bf(u)du

< i [tet - a2+ (et - ).

The proof is complete. O

Corollary 3. Let f: 1 C [0,+) — R be a differentiable
Sunction on I° such that f' € £|a,b], where a,b € I with
a<b.If|f'| is relatively s—convex in the second sense with
respect to a function g : R — R in [a,b] and |f'(x)| < M,
the inequality

7o)~ 5 [ rtuja

|F(e(x)) -

Proof. Letting m = 1, hy(t) = ¢*, and hy(t) = (1 —1¢)* for
all t € [0, 1] in Theorem 4 it follows that

1 1
A = ts+1dt:
! /0 s+2

1 1
s+1 s+2

1
Ay :/ t(1—1)’dt =

0

So by replacement

e

M
S el (ORI CORS

The proof is complete. O

Corollary 4. Let f: 1 C [0,+) — R be a differentiable
Sunction on I° such that f' € £|a,b], where a,b € I with
a<b.If|f'| is relatively (s,m)—convex in the second sense
with respect to a function g : R — R in [a,b] and | f'(x)| <
M, the inequality

[7(6) — e [ sl

M

< e —a+ et -07) (15 57 )

Proof. Letting i (¢) =¢*, and ha(t) = (1 —¢)* forall 7 €
[0, 1] in Theorem 4 it follows that

1 1
A= ¢ldr=——
! /0 s+2

1 1

1
A :/ t(1—r1)’dt =
0

s+1  s+2
Replacing
1 b J

’f(g(x))—m/a f(u) M‘

< - ~b)?]

< ol -ar+ et -07) (5 137
The proof is complete. O
Corollary 5. Let f:1 C Ry — Ry a differentiable

function in I° such that f' € £[a,b] where a,b € I with
a < b. If |f'|2 is relatively P—convex with respect to
function g : R — R for some g > 1, %Jré =1 and
|/ (x)] <M, x € [a,b], then the following inequality holds

e~ 5= [

__2Ym {(g(X)—a)QﬁL(g(X)—b)z}
T (pr)lr ’

foreach x € [a,b].
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Proof. Letting m =1 and /() = hp(¢t) = 1 for all ¢ € [0, 1]
in Theorem 5 it follows that

1
BliBzi/ dt=1.
0

So, by replacement

(e~ 5 [ty

2'am [(g(X) —a)’+(g(x) — b)z}

<

T (p D) (b—a)

The proof is complete. O
Corollary 6. Let f:1 C Ry — R, a differentiable

function in I° such that f' € £|a,b] where a,b € I with
a < b. If |f'|9 is relatively m—convex with respect to
function g : R — R for some q > 1, %—l—é =1 and
[f'(x)| <M, x € [a,b], then the following inequality holds

big/abf(u)du}

2 [(g(X)—a)er(g(X)—b)z}
~(p1)Vr ’

foreach x € [a,b].

[£(e(x)) -

Proof. Letting h(t) =t, h(t) =1 —t forall 7 € [0,1], and
taking m € (0, 1] in Theorem 5 it follows that

1 1
B]:BQZ/ h[(t)dt:—.
0 2

So, by replacement

(e~ 5 [ ptya

1
M (man\Ve [<g<x>fa>2+(g<x>fb>2}
T (p D)\ 2 (b—a) ’
The proof is complete. (]
Corollary 7. Let f:1 C Ry — R a differentiable

function in I° such that f' € £|a,b] where a,b € I with
a <b. If|f'| is relatively s—convex in the second sense
with respect to function g : R — R for some g > 1,
% —|—$ =1 and |f'(x)| <M, x € [a,b], then the following
inequality holds

76— 5 [ tusa

M 2
<
~(p+1)l/r (s+1
foreach x € [a,b].

Proof. Letting m = 1, hy(t) =%, ha(t) = (1 —¢)* for all
t € 10, 1] for some s € (0,1], in Theorem 5 it follows that

L 1
B]:BQZ/ ’dt =
0

So, by replacement

o)~ 5 [ sty

1/q ) —a)? ) — b)2
< (pﬁ)w (Hil) [(g( ) —a)”+(g(x) —b)

The proof is complete. (]

Corollary 8. Let f : 1 C Ry — Ry a differentiable
Sunction in I° such that ' € £|a,b] where a,b € I with
a < b. If |f'| is relatively (s,m)—convex in the second
sense with respect to function g : R — R for some g > 1,
%Jré =1 and |f'(x)| <M, x € [a,b], then the following
inequality holds

o)~ 5 [ty

m l/a x) —a)? x) —b)?
S(p+A/11)l/p<s:11) [(8() )"+ (g(x) b)}

foreach x € [a, D).

Proof. Letting m = 1, hy(t) =%, ha(t) = (1 —¢)* for all
t € 10, 1] for some s € (0,1], in Theorem 5 it follows that

So, by replacement

e~ 5 [ sty

m l/a x)—a)? x) —b)?
g(pﬁ)l/n<s:11) [(g() )"+ (g(x) b)},

The proof is complete. (]

Corollary 9. Let f: K, — R be n—times differentiable

and integrable on K,. If |f")| is relative P—convex with
respect to a function g : K, — R, then

1S(a,g(b);k,n, f)]

< O (20) (@l + 17 eonim) .
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Proof. Letting m = 1 , hy(t) = hy(t) = 1, for all t € [0, 1]
in Theorem 6 it follows that

n—
n+1

1
Ci :CZ:/ "N n—2t)dt =
0

So, by replacement
|S(a,g(b):k;n, [)]

< (ng)n_! = (ZI i) (1 @[+ 17 o))

The proof is complete. O

Corollary 10. Let f: K, — R be n—times differentiable

and integrable on Ky. If | f")| is relative m—convex with
respect to a function g : K, — R, then

[S(a,g(b):k;n, [)]

_ (s) —a)" ( 1) (17 @)+ 7 s ep)

2n! n+1

Proof. Letting 11 () =t and hp(r) = 1 —¢, for all t € [0,1]
for some m € (0, 1] in Theorem 6 it follows that

1 W22
C :/0 " (n—2t)rdr = YRS
and
n

1
G :/0 t”*l(n—Zt)(l—t)dt:m

So, by replacement
|S(a,g(b):k,n, f)]

(gb) =y (n—1)"'"
_2n!((n+1)(n+2))'/q(n+l) g

1/q

(02 =2)1 " @17+ mnl ) (g ()))
The proof is complete. O

Corollary 11. Let f: K, — R be n—times differentiable

and integrable on K. If | f")| is relative s—convex in the
second sense with respect to a function g : K, — R, then

1S(a,g(b);k,n, f)]

_ (gb)—a) (n— 1)"@

2n! n+1

7" (@)

(n(n 1)+s(n—2)
(n+s)(n+s+1)

nl(n+s—1)I(s+1)
F'n+s+1)

1/q
I <g<b>>|q>) |

Proof. Letting m = 1, h;(¢t) = ¢* and hy(¢) = (1 —1)*, for
allz € [0,1] for some s € (0, 1] in Theorem 6 it follows that

! n(n— s(n—
< :/o - 20)de = ((n+s1))(:+(s+ 12))

and

C = /Olt”*I(ant)(l —1)%dt = nlnts— DI(s+1)

Cn+s+1)
So, by replacement
|S(a,g(b):k,n, f)|
< B ar ()T
B 2n! n+1
nn—1)+s(n=2)
((n+S)(n+s+1) 1 (@)l
nl(n+s—1DI(s+1) - 1/q
e CCID)
The proof is complete. g

Corollary 12. Let f: K, — R be n—times differentiable

and integrable on K. If | f")] is relative (s,m)—convex in
the second sense with respect to a function g : K, — R,
then

S(a,g(B): ko, £)]
_ (eb)—ay (n— 1)“@

2n! n+1
n(n—1)+s(n—2) .
((n+S)(n+s+1) 1" (@)
mn!(n+s— DI (s+1) ) 1/q
e ) o)

Proof. The proof follows after evaluating the coefficients
C and G, taking s,m € (0,1}, hy(r) =¢* and hp(z) = (1 —
t)*, forall ¢ € [0, 1] in Theorem 6. O

5 Some applications of Hermite-Hadamard
type inequalities

Corollary 13. Ifin Theorem 4 we choose m =1, hy(t) =
t,hy(t)=1—tforallt €[0,1] and g(x) = 52 we get

a+b 1 b M
e — d ’ <—(b-
(557 - s [ 0] < S0
where |f'| is relatively convex with respect to function g :
R — Rand|f'(x)] <M, x € [a,b].

Corollary 14. If in Theorem 5 we choose m =1, hy(t) =
t,hy(t)=1—tforallt €[0,1] and g(x) = 52 we get

‘f (a;b) - bla/abf(u)du‘ < ﬁ(b—a).

where | f'|4 is relatively convex with respect to function g :
R—>R g>1, %—i—é =1land|f' (x)| <M, x € a,b]

© 2019 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 369-378 (2019) / www.naturalspublishing.com/Journals.asp

6 Conclusions

In this work we have found some Ostrowski-type
inequalities for functions whose derivatives in modulus
are (m,hy,hy)—convex. From the main results some
Corollaries referring to other generalized convexity types
are found. Also some Hermite-Hadamard-type
inequalities are deduced. The authors hope that this work
serves to stimulate the study in this line of research.
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