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Abstract: In this paper, a model of predator-two preys system dynamics is considered. Within the framework of such model, it is

assumed that preys are not competitors. The hypothesis that the simultaneous existence of three species excluding realization of regimes

of mass propagation is tested. It is believed that elimination of one of prey populations leads to conditions when other population

obtains the opportunity to escape from predator’s control and to realize mass propagation. In this model, a nonlinear control law is

taken into account. This variant of system management allows provision of effective control of population sizes. In particular, this

control mechanism does not allow phytophagous escaping out of control of their enemies, and prey population sizes stabilize at lower

values than it was observed before using control law. Thus, there is a principal possibility of organizing prey population sizes control

by release of additional preys into the system and the control influence.

Keywords: Model of predator-two preys system dynamics, Routh-Hurwitz criterion, Escape-effect, Lyapunov function, Nonlinear

control law

1 Introduction

One of basic problems of the evolution of insect
populations is to explain how stabilization and adaptation
to particular environmental conditions evolve through
natural selection. Population can be presented as a group
of single species which prefer to live together in the same
location and has a unique physical adaptation and
distribution in time and space [1]-[3]. The research and
study of population dynamics focuses on these changes as
why, how, and when they occur. In entomology, a clear
understanding of population dynamics is useful for
interpreting survey data, predicting pest outbreaks, and
evaluating the effectiveness of control approaches [4]-[6].

Many researchers seek to explain the observation in
nature fluctuations in the size of populations with the help
of simple mathematical models of ecological system
dynamics [23,5,6,19,2,15]. This is quite natural, since it
is always advisable to construct possibly simpler models
of real processes, greatly coarsening the phenomena
studied, and only by eliminating the shortcomings of the
coarsened models, to introduce their complication

(Kostitzin, 1937 ; Maynard Smith, 1968, 1974; Lyapunov,
Bagrinovskaya, 1975) [7]-[10].

This is one of aspects of the mathematical modeling
development of ecological systems. On the other hand,
there is a large amount of experimental data [11,12] on
the most diverse biological populations, the nature of the
variation in the numbers which the researchers seek to
describe with the help of mathematical models
(Berryman, 1992; Allen, 2010; Nedorezov, 2012). The
basis for constructing theory of the dynamics of the
population forest insects is the identification of
regularities that emerges, which suggests a sharp increase
in numbers, and the study of the driving mechanisms of
this phenomenon [22]. A necessary stage in the formation
of the theory should be the development of
recommendations on the control of population sizes. They
must be taken into account in different conditions and at
different phases of the development of mass propagation.

In our publications [5,6,16] close attention was turn
to the analysis of the trajectories behavior of the
dynamical systems with an unexpected change in the
initial values of the numbers in the model of
phytophagous-entomophagous system dynamics
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[13]-[15]. It is observed when chemical and biological
matters are used to reduce the number of phytophagous,
and also when additional entomophagous are released
into the system [23,24]. There is a number of papers in
which the authors consider another method of controlling
the number of pests, associated with the introduction of
additional species of parasitoids into ecosystems (see, for
example, [4,21,22]).

In this paper we compare two different models of
ecosystem dynamics: one prey - two predator, and two
preys - one predator. First of all, conditions of stability of
systems are analyzed and basic features of observed
stability are presented for considered cases. Obtained
results demonstrate that addition of new population to
ecosystem can be considered as potential regulator which
leads to conditions of stabilization of levels of
populations.

2 Model one prey – two predators

Let’s consider dynamic model one prey - two
predators:

dx
dt

= x
(

α1 −β1x−
γ1z1

1+π1x2 −
γ2z2

1+π2x2

)
,

dz1
dt

= z1

(
−α2 −β2z1 +

γ3x2

1+π1x2 − δ1z1z2

)
,

dz2
dt

= z2

(
−α3 −β3z2 +

γ4x2

1+π2x2 − δ2z1z2

)
,

(1)

where x(t) , z1 (t) , z2(t) are numbers of preys, first
and second predator populations respectively at time
t; ; αj, βj, γj, πj, δj ≡ const > 0 are parameters of the
model (1). Within the framework of this model it is
assumed that prey can escape of the control of every
predator or both predators.

This model can be considered as generalization of our
previous model of one predator system dynamics model
which was obtained [21] in a result of modification of the
model of predator – prey system dynamics with
saturation-effect [12]. Analysis of this one prey –
one-predator system dynamics model is presented in our
papers [16,17,18]. In figure 1, there is an example of
behavior of model (1) trajectories for following values of
parameters:
α1= 15, α2= 0.02,α3= 12.55,β1= 14.6, β2= 12.3,
β3= 19, γ1= 15, γ2= 16.61, γ3= 110.7, γ4= 12.4,

δ1= 120, δ2= 8.19

Figure 1 depicts scenarios of stabilization for model
(1). We have obtained regimes with asymptotic
stabilization of population sizes at any fixed levels. As it
is pointed out above, stability of ecosystem can be
increased in a result of release of new phytophagous
species into system. It can be considered as appearance of
new kind of food for predators which allows supporting
predator’s size on higher level.

/

Fig. 1: Regime of asymptotic stabilization in model (1).

The study model shows that the prey eliminates from
second predator Z2 in the system. Until the extinction of
the second predator, the numbers of the prey and the first
predator fluctuate.

Let’s consider the following model of predator - two
preys system dynamics with additional assumption that
preys cannot compete inside:

dx
dt

= λ x
(

α1 −β1x−
γ1z

1+x2

)
,

dy
dt

= µy (α2 − y− γ2z) ,
dz
dt

= z
(
−α3 − z+ γ3x2

1+x2 + γ4y
)
.

(2)

In this model x(t) , y(t) , z(t) are numbers of first and
second prey populations and predator respectively at time
t; ; αj, βj, γj ≡ const > 0 are parameters of the model (2).

3 Stationary states

System of nonlinear algebraic equations

z =
(α1 −β1x)(1+ x2)

γ1

=
α2 − y

γ2

=
γ3x2

1+ x2
+ γ4y−α3

(3)
allows determination of coordinates of stationary

points of the system (2) in positive part of phase space.
System (3) can be transformed into equation

x5 −
α1
β1

x4 + 2x3 + x2
[

γ1γ3+α2γ1γ4−α3γ1−2α1−2α1γ2γ4

β1 (1+γ2γ4)

]
+

+x+ α2γ1γ4−α3γ1−α1−α1γ2γ4

β1(1+γ2γ4)
= 0

(4)
With the help of system (3) it is easy to obtain

coordinates of stationary points in int (X · Z) where the
escape-effect can be observed:

x5+
α1

β1

x4+2x3+x2 γ1γ3 − γ1α3 − 2α1

β1

+x−
α1 +α3γ1

β1

= 0

(5)

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 3, 361-367 (2019) / www.naturalspublishing.com/Journals.asp 363

It is possible to find values of parameters (for
polynomials (4) and (5)) when dynamic system (2) has
three points in int (X · Z) and one point in int R+

3 . Let
α1= 10, γ1= 15, α3= 1, γ3= 10. Then the number of
points in int (X · Z) depends on the number of positive
roots of the polynomial (5), which has the following form
for pointed out parameters:

x5
− 10x4 + 2x3 + 115x2+ x− 25= 0, (6)

Polynomial (6) has three roots on the interval (0, 10).
The number of points in int R+

3 is determined by the
polynomial (4):

P̃(x) = x5 − 10x4 + 2x3 + x2 115+15α2γ4−20γ2γ4
1+γ2γ4

+ x−

−
15α2γ4−35−10γ2γ4

1+γ2γ4
= 0.

(7)

Let’s denote by K1 and K2 the following values:

K1 =
115+15α2γ4−20γ2γ4

1+γ2γ4
, K2 =−

15α2γ4−35−10γ2γ4
1+γ2γ4

.

Obviously, for any fixed positive values of the
parameters γ2and γ4 one can choose the parameter α2

such that the polynomial (7) has one root on the interval
(0, 10). If parameter α2 is rather big and inequality
K1 ≥ 103 is truthful then 10x4<K1x2 on the interval (0,

10) and, consequently, the polynomial P̃ increases
monotonically on this interval. Since K2<0 for sufficient

large value of parameter α2, P̃(0)< 0 and P̃(10)> 0, then
polynomial (6) has one root only.

4 Particular case

Thus, the system of ordinary differential equations
(particular case of the model (2))

dx
dt

= λ x
(

10− x− 15z
1+x2

)
= λ xQ1,

dy
dt

= µy(α2 − y− γ2z) = µyQ2,

dz
dt

= εz
(
−1− z+ 10x2

1+x2 + γ4y
)
= εzQ3

(8)

for certain values of the parameters α2, γ2 and γ4 have
one equilibrium state in int R+

3 . Let’s consider stationary
states of the system of equations (8). Point (0, 0, 0) is a
saddle, with a single outgoing separatrix (z axis). The
Jacobian of system (8) has the following form:

J =

∥∥∥∥∥∥∥

λ Q1 +λ x

(
−1− 30xz

(1+x2)2

)
0 −

15λ x
1+x2

0 µQ2 − µy −µγ2y
20εxz

(1+x2)2 εγ4z εQ3 − εz

∥∥∥∥∥∥∥
.

Let (x, y, z) be a stationary state of the system in
int R+

3 . The Jacobian at this point has the form:

Fig. 2: Population dynamics for model (2) in case (2.a)

J =

∥∥∥∥∥∥∥

−λ x̄− 30λ x̄2 z̄
(1+x̄2)2 0 −λ x̄ 15

1+x2

0 −µ ȳ −µγ2ȳ

20ε x̄z̄
(1+x̄2)2 εγ4z̄ −ε z̄

∥∥∥∥∥∥∥
.

The eigenvalues of the Jacobian satisfy the following
cubic equation:

−ξ 3 +A1ξ 2 +A2ξ +A3 = 0, (9)

where coefficients Ak depend on the parameters of the
system:

A1 =−λ x̄− 30λ x̄2 z̄
(1+x̄2)2 − µ ȳ− ε z̄ < 0,

A2 =− 300λ ex̄2z̄
(1+x̄2)3 − ȳz̄εµ(1+ γ2γ4)−

(
λ x̄+ 30λ x̄2 z̄

(1+x̄2)2

)
(µ ȳ+ ε z̄)< 0,

A3 =−

(
λ x̄+ 30λ x̄2 z̄

(1+x̄2)2

)
(εµ z̄ȳ+ εµγ2γ4z̄ȳ)− 300λ µε x̄2 z̄2

(1+x̄2)3 < 0.

Consequently, polynomial (9) has no positive roots,
and by Descartes’ theorem of signs it has either one or
three negative real roots [19,20]. Numerical analysis
allowed obtaining regimes with asymptotic stabilizations
of population sizes at any fixed levels (these regimes are
presented in Fig. 1).

In Fig. 2-3 we present an examples computed with
these models with the analysis for following cases, blue,
green and red colors of line means 1-3 questions:

(a) l = 1;α1= 10, α2= 1,α3= 1β1= 1,
γ1= 15, γ2= 1, γ3= 10, γ4= 1

(b) l = 1;α1= 17, α2= 1.6,α3= 5.5β1= 1,
γ1= 45, γ2= 1.6, γ3= 10, γ4= 1

Fig. 2-3 depict a population dynamics for model (2),
the reflective properties of the structural stability on a
large scale for various initial values are shown. In these
figures we can analyze the optimal strategy for model (2).
First, we observe an increase in the number of all
populations, then the number of the second prey drops to
zero, and the growth of the number of the first prey and
the predator continues. After the extinction of the second
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Fig. 3: Population dynamics for model (2) in case (2.b)

prey, the numbers of the first prey and the predator
stabilize at a non-zero level.

Analysis of this system shows that the stabilization of
the system is possible when the second phytophage (the
prey) dies out.

Finally, we model experiments of various
stability-related measures to compare the relative
efficiency of these methods. Our results suggest that
under most conditions, 3th population (presented as 2nd
prey) as seem to be the optimal strategy. Thus, the
simultaneous existence of three species can exclude
regimes of mass multiplication. In this case, the
degeneration of one population (y≡0) leads to the fact
that the other gets the opportunity to escape from the
control of enemies.

5 Analysis of model with nonlinear control

law

Let’s consider model of ecosystem dynamics with
nonlinear control system which contains a control law in
the form of one-parameter structurally stable mappings
[24,25]:

dx
dt

= λ x
(

α1 −β1x−
γ1z

1+x2

)
−
(
x3 + k1x

)
,

dy
dt

= µy (α2 − y− γ2z)−
(
y3 + k1y

)
,

dz
dt

= z

(
−α3 − z+ γ3x2

1+x2 + γ4y

)
−
(
z3 + k1z

)
.

(10)

A system has four equilibrium points:

Xs1 = (0,0,0) ,Xs2 =

(
α1

β1

,0,0

)
,

Xs3 = (0,α2,0) ,Xs4 = (0,0,−α3)

Let’s rewrite the system in terms of the components of
the Lyapunov’s function:

∂V
∂x1

= x3
1 + k1x1 −λ α1x1 +λ β1x2

1 +
λ γ1x1x3

1+x2
1

,

∂V
∂x2

= x3
2 + k1x2 − µα2x2 + µx2

2 + µγ2x2x3,

∂V
∂x3

= .x3
3 + k1x3 +α3x3 − γ4x2x3 + x2

3 −
γ3x2

1x3

1+x2
1

.

Complete derivative of Lyapunov’s function is given as
follows:

W (x1,x2,x3) =−

[
λ α1x1 −λ β1x2

1 −
λ γ1x1x3

1+x2
1

− x3
1 − k1x1

]2

−
[
µα2x2 − µx2

2 − µγ2x2x3 − x3
2 − k1x2

]2
−

−

[
−α3x3 + γ4x2x3 − x2

3 +
γ3x2

1x3

1+x2
1

− x3
3 − k1x3

]2

A function W (x1,x2, . . . ,xn) ≤ 0. The Hessian has the
following form:

For full derivative of Hessian is presented as follows:

Hxs=0 =

∥∥∥∥∥∥

−2(λ α1 − k1)
2

0 2(λ α1 − k1)

0 −2(µα2 − k1)
2

0

2(λ α1 − k1) 0 −2(α3 − k1)
2

∥∥∥∥∥∥

Thus, for the stationary point xs = 0 the total derivate
by time is performed as:

W (x1,x2,x3) =−4x2
1 (λ α1 − k1)

2
− 4x2

2 (µα2 − k1)
2

−4x2
3 (α3 − k1)

2 + 8x1x3 (λ α1 − k1)

For determination of positive-definite condition for the
Lyapunov’s function, let’s calculate the Hessian function:

∂ 2V

∂ x2
1

= 3x2
1 + k1 −λα1 +2λβ1x1 +

λ γ1x3

(
1+x2

1

)
−2λ γ1x2

1
x3

(1+x2
1)

2 ; ∂ 2V
∂ x1∂ x2

= 0; ∂ 2V
∂ x1∂ x3

=
λ γ1x1

1+x2
1

;

∂ 2V

∂ x2
2

= 3x2
2 + k1 −µα1 +2µx2 +µγ2x3; ∂ 2V

∂ x2∂ x1
= 0; ∂ 2V

∂ x2∂ x3
= µγ2x2;

∂ 2V

∂ x2
3

= 3x2
3 + k1 +α3 − γ4x2 +2x3 −

γ3x2
1

1+x2
1

; ∂ 2V
∂ x3∂ x1

=−
2γ3x1x3−2γ3x3

1
x3

(1+x2
1)

2 ; ∂ 2V
∂ x3∂ x2

= 0

For the first point xs = 0 :

Hxs=0 =

∥∥∥∥∥∥

k1 −λ α1 0 0
0 k1 − µα1 0
0 0 k1 +α3

∥∥∥∥∥∥

The Hessian of Lyapunov’s function classified as the
following:

W (x1,x2,x3)= (k1 −λ α1)x2
1+(k1 − µα1)x2

2+(k1 +α3)x2
3

The positive-definite of Lyapunov’s function is
determined by the following conditions:
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Fig. 4: Population dynamics for model (10) in case (a)






k1 −λ α1 ≻ 0
k1 − µα1 ≻ 0
k1 +α3 ≻ 0

Fig. 4-9 depict examples computed through such
models with the analysis for following cases, blue, green
and red colors of line means 1-3 (population) questions:

(a) l = 2;α1= 0.1, α2= 1.3,α3= 6β1= 1, γ1= 0.5,
γ2= 1.3, γ3= 0.5, γ4= 6.5,k = 3,µ= 1

(b) l = 2;α1= 0.1, α2= 1.3,α3= 6β1= 1, γ1= 0.5,
γ2= 1.6, γ3= 0.5, γ4= 3.5,k = 3, µ= 1

(c) l = 2;α1= 0.1, α2= 1.3,α3= 6β1= 1, γ1= 0.5,
γ2= 1.6, γ3= 0.5, γ4= 2.5,k = 3,µ= 1

(d) l = 1;α1= 2, α2= 1.3,α3= 0.5,β1= 1, γ1= 0.5,
γ2= 1.6, γ3= 0.5, γ4= 2.5,k = 4,µ= 1

(e) l = 1;α1= 2, α2= 5.3,α3= 0.5,β1= 1, γ1= 1.5,
γ2= 1.6, γ3= 0.05, γ4= 0.05,k = 4,µ= 0.2

(f) l = 1;α1= 2, α2= 2.3,α3= 0.5,β1= 1, γ1= 1.5,
γ2= 0.06, γ3= 0.05, γ4= 1.05,k = 5,µ= 0.2

The figures show that in the initial phase there is an
increase in the number of all three populations, then they
stabilize at the non-fool level. Thus, analysis of the model
with nonlinear control law shows that nonlinear control
allows us to ensure the stability of the system while
preserving all species, that is, maintaining species
diversity.

Figures depict six different scenarios of stabilization in
a data set.

6 Conclusion

This work is devoted to problem of analysis of two
models of one prey – two-predator system and two preys
– one predator system. In the second case, it is assumed

Fig. 5: Population dynamics for model (10) in case (b)

Fig. 6: Population dynamics for model (10) in case (c)

that preys are not competitors. Moreover, in both models
it was assumed that populations are under permanent
control. Provided numerical and analytical investigations
allow showing that outbreak regimes of populations can
be excluded when we use respective control law.
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Fig. 7: Population dynamics for model (10) in case (d)

Fig. 8: Population dynamics for model (10) in case (e)
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