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Abstract: In the present article, we applied a novel methodology for solving time-fractional and space-fractional telegraph equation

with the help of new Lagrange multiplier. We compare the analytic solution and numerical solution obtained by iterative method using

graphs, find analytic solution and plotted absolute error for different value of fractional order that proves obtained numerical solution

by employed technique converges very fast to the analytic solution.

Keywords: Fractional variational iteration method, Mittag-Leffler function, generalized Lagrange multiplier, fractional telegraph

equation, Caputo fractional derivative.

1 Introduction

In the previous some years, there has been found many uses of fractional calculus in numerous parts of engineering
and physical sciences for example in the field of chemical engineering, electromagnetics, viscoelasticity, bioinformatics,
control systems, robotics engineering, electrochemistry, acoustics, material science and almost in every part of day-today
life by various techniques [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. We have to face many linear and nonlinear problems
in modeling of various projects and many times, it is very difficult to find the analytic solutions, so it is necessary to
obtain approximate solutions of linear and nonlinear differential equations. We can make models of suspension flows by
using parabolic partial differential equations usually and these flows also can be modelled better using hyperbolic partial
differential equations using the telegraph equations having parabolic asymptotic.

Communication systems play a vital role in many of the real world problems. A typical engineering problem involves
the transmission of signals between two points. A transmission media is part of the circuit and it describes a physical
system that directly propagates signal among more than one points. Certainly, all the transmission media have loss in
signal. To optimize the transmission media it is needed to sort out signal losses. To evaluate these losses, it is very
essential to frame some sort of equations that can figure out these losses efficiently. Telegraph equations get up in the
examine of propagation of electrical signals in a cable of transmission line and wave phenomena. Oliver Heaviside found
the telegraph equations and developed the transmission line model. This model exhibits that the electromagnetic type
waves can be amplified on the wire and wave patterns appear along the transmission line. The telegraph equations are
in phrases of voltage and current for a segment of a transmission media and which can be applicable in numerous fields
including wave propagation, random walk theory, signal evaluation and so on. In most of the practical situation, these
telegraph equations arise in fractional order but not always in integer type order. There have been many analytic and
numerical methods are available in the literature to solve fractional order telegraph equations. There are certain cases in
which applied information studied in [15,16] seems to be better formed using the telegraph equations in comparison of
heat equation. Main application of the telegraph equations lie in the analysis of transmission of signals and in the process
of circulation of electrical signals and also in the models like diffusion of reaction [17,18]. Fractional telegraph equation
was studied by Momani [19] using Adomain decomposition method, Azab and Gamel [20] using Rothe-Wavelet-Galerkin
method, Biazar and Eslami [21] employed differential transform method, Huang [22] with the help of Cauchy problem,

∗ Corresponding author e-mail: amitmath@nitkkr.ac.in, amitmath0185@gmail.com

c© 2019 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/050203


112 A. Prakash et al. : Numerical method for space- and time-fractional...

Chen et al. [23] using separable variables method, Yildirim [24] using homotopy perturbation method. Recently, Das et al.
[25] used homotopy analysis method and Kumar [26] applied Homotopy analysis transform method to solution of time-
and space-fractional telegraph equation respectively.

Motivated by the literature studied for telegraph equation and its applications in the world of communication system,
in this paper, fractional variational iteration method is used to find solution of space-fractional and time-fractional
telegraph equation with the help of new generalized Lagrange multipliers. In (1997) J. H. He [27,28,29,30] established a
novel techniques, namely, varitational iteration method to find approximate solution of ordinary and partial differential
equations. In (2009), Odibat et.al [31] and Molliq et al. [32] used VIM to find numerically solution of fractional
Zakharov-Kuznetsov equations. In (2011) J. Lu and in (2012) Sakar et al. used VIM to find the numerical solution of
Fornberg–Whitham equation [33,34], Prakash et al. studied coupled Burger’s equation [35] and biological population
model [36] in (2015) and (2016), respectively.

Consider, fractional telegraph equation in space [26] and fractional telegraph equation in time [25] as:

∂ 2α u(x, t)

∂x2α
=

∂ 2u(x, t)

∂ t2
+ a

∂u(x, t)

∂ t
+ bum(x, t)+ g(x, t), t ≥ 0, 0 < α ≤ 1, (1)

which can be obtained by putting R[u] and N[u] terms in the following expression

D2α
x u(x, t)+R[u(x, t)]+N[u(x, t)] = g(x, t), (2)

and
∂ 2α u(x, t)

∂ t2α
=

∂ 2u(x, t)

∂x2
+ a

∂ αu(x, t)

∂ tα
+ bum(x, t)+ g(x, t), t ≥ 0, 0 < α ≤ 1, (3)

which can be obtained by putting R[u] and N[u] terms in the following expression

D2α
t u(x, t)+R[u(x, t)]+N[u(x, t)] = g(x, t). (4)

where R[u] denotes linear term and N[u] denotes nonlinear term, a & b are constants, m is natural number and g(x, t) is
any source function.
Sevimlican [37] used the variational iteration method to given telegraph equation (1) and proposed correctional functional
and Lagrange multiplier λ as

{

un+1(x, t) = un(x, t)+
∫ x

0 λ ( ∂ 2α un(ξ ,t)
∂ξ 2α − ∂ 2un(ξ ,t)

∂ t2 − a
∂un(ξ ,t)

∂ t
− bum

n (ξ , t)− g(ξ , t))dξ ,

λ = ξ − x.
(5)

The present article represents a novel mode to find Lagrange multiplier λ , called generalized Lagrange multiplier for
arbitrary value of fractional order α,0 < α ≤ 1, causes an improvement in the correctional functional for equation (1), it
can be derived as







un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ x
0 λ ( ∂ 2α un(ξ ,t)

∂ξ 2α − ∂ 2un(ξ ,t)

∂ t2 − a
∂un(ξ ,t)

∂ t
− bum

n (ξ , t)− g(ξ , t))(dξ )α,

λ = (ξ−x)α

Γ (1+α)
.

(6)

and for equation (3), it can be derived as







un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ t
0 λ ( ∂ 2α un(x,ξ )

∂ξ 2α − ∂ 2un(x,ξ )
∂x2 − a

∂ αun(x,ξ )
∂ξ α − bum

n (x,ξ )− g(x,ξ ))(dξ )α ,

λ = (ξ−t)α

Γ (1+α) .
(7)

2 Preliminaries

Definition 2.. Riemann-Liouville fractional integral of order µ > 0, [37,38,39,40] of a function f ∈ Cβ , β ≥ −1 is
defined as:
Iµ f (t) = 1

Γ (µ)

∫ t
0

f (τ)

(t−τ)1−µ dτ = 1
Γ (1+µ)

∫ t
0 f (τ) (dτ)µ

,

I0 f (t) = f (t).
Definition 2.2. Caputo fractional derivative of f , f ∈Cm

−1, m ∈ IN ∪{0} [37,38,39,40],

f (x) =

{

[Im−µ f (m)(t)], m− 1 < µ < m, m ∈ IN,

dm f (t)
dtm , µ = m.

(8)
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a.Iα
t f (x, t) = 1

Γ (α)

∫ t
0(t − s)α−1 f (x,s)ds,α, t > 0.

b.Dα
t u(x, t) = Im−α

t
∂ µ (x,t)

∂ tm , m− 1 < α < m.

c.Iµtγ = Γ (1+γ)
Γ (1+γ+µ) t

γ+µ
.

Definition 2.3. The Mittag-Leffler function Eα z for α > 0 in the form of a series, domain in the complex plane [37,38,

39,40] is Eα(z) = ∑∞
n=0

zn

Γ (αn+1) , α > 0, z ∈C.

3 Generalized Lagrange multipliers for space and time-fractional telegraph equation

Theorem 3.1. If the correction functional for equation (2) is determined with the help of Riemann-Liouville integration

un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ x

0
λ (x,ξ )(D2α

ξ un +R(un)+N[un]− f (ξ , t))(dξ )α
, (9)

where both R[un] and N[un] are restricted variations, generalized Lagrange multiplier can be found out as λ = (ξ−x)α

Γ (1+α) .

Integrating and applying variation on both sides of equation (2), we get

δun+1 = δun + δ (λ uα)|ξ=x − (δ (λ (α)un))|ξ=x +
1

Γ (1+α)δ
∫ x

0 λ 2αun (dξ )α .

From this we can obtain the equations

1−λ (α)|ξ=x = 0,λ 2α = 0 and λ |ξ=x = 0.

Finally, from these equations, we can obtain generalized Lagrange multiplier λ = (ξ−x)α

Γ (1+α)
, which complete the proof of

this theorem.
Theorem 3.2. If the correction functional for equation (4) is determined with the help of Riemann-Liouville integration

un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ t

0
λ (t,ξ )(D2α

ξ un +R(un)+N[un]− f (x,ξ ))(dξ )α
, (10)

where both R[un] and N[un] are restricted variations, generalized Lagrange multiplier can be determined as λ = (ξ−t)α

Γ (1+α)
.

Integrating and applying variation on both sides of equation (4), we get

δun+1 = δun + δ (λ uα)|ξ=t − (δ (λ (α)un))|ξ=t +
1

Γ (1+α)
δ

∫ t

0
λ 2αun (dξ )α

. (11)

From this we can obtain the equations

1−λ (α)|ξ=t = 0,λ 2α = 0 and λ |ξ=t = 0.

Finally, from these equations, we can obtain generalized Lagrange multiplier λ = (ξ−t)α

Γ (1+α)
, which complete the proof of

this theorem.

4 The Proposed FVIM for fractional Telegraph equation

In this segment, we represent the solution process for fractional Telegraph equation by fractional variational iteration
method with generalized Lagrange multiplier.

4.1 Basic idea for space-fractional Telegraph equation

To find the process of solution for space-fractional telegraph equation (1) by using the proposed fractional variational
iteration method, we take ensuing fractional differential equation as:

∂ 2α u(x, t)

∂x2α
=

∂ 2u(x, t)

∂ t2
+ a

∂u(x, t)

∂ t
+ bum(x, t)+ g(x, t), t ≥ 0, 0 < α ≤ 1, (12)

where a, b and m are given constants, g(x, t) is integrable given function.
According to the FVIM, a correction functional [27] can be built for above equation as:

un+1(x, t) = un +
1

Γ (1+α)

∫ x

0
λ (

∂ 2α un

∂ξ 2α
−

∂ 2ũn

∂ t2
− a

∂ ũn

∂ t
− bũm

n + g̃(x,ξ ))(dξ )α
. (13)
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Now using the theory of variation, Lagrangr multiplier λ satisfy equations as

1−λ (α)|ξ=x = 0,λ 2α = 0. Solving these equations, we get λ = (ξ−x)α

Γ (1+α)
and a new correction functional

un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(

∂ 2α un(ξ , t)

∂ξ 2α
−

∂ 2un(ξ , t)

∂ t2
−a

∂un(ξ , t)

∂ t
−bum

n (ξ , t)−g(ξ , t))(dξ )α
. (14)

In this way we obtain sequence of iteration un,n ≥ 0 with the help of λ , a generalized Lagrange’s multiplier, which can
be found with the help of theory of variation. The functions un, is restricted variation so δ ũn = 0. Subsequently, first we
find the generalized Lagrange multiplier λ , which is found easily with the help of integration. In same process we get,
sequences un+1(x, t),n ≥ 0, using this we get solution as u(x, t) = limn→∞ un(x, t).

4.2 Basic idea for time-fractional Telegraph equation

To find the process of solution for time-fractional telegraph equation (3) with the help of fractional variational iteration
method, we take ensuing fractional differential equation as:

∂ 2α u(x, t)

∂ t2α
=

∂ 2u(x, t)

∂x2
+ a

∂ αu

∂ tα
+ bum(x, t)+ g(x, t), t ≥ 0, 0 < α ≤ 1, (15)

where a,b and m are any arbitrary constants, g(x, t) is any source function.
Using FVIM, a new correct functional [20] can be constructed for above equation as

un+1(x, t) = un +
1

Γ (1+α)

∫ t

0
λ (ξ , t)(

∂ 2α un

∂ξ 2α
−

∂ 2ũn

∂x2
− a

∂ αun

∂ tα
− bũm

n + g̃(x,ξ ))(dξ )α
. (16)

Now using the theory of variational λ must satisfy

1−λ (α)|ξ=t = 0,λ 2α = 0.

From these equations, we obtain λ = (ξ−x)α

Γ (1+α)
and we build correction functional as:

un+1(x, t) = un(x, t)+
1

Γ (1+α)

∫ t

0

(ξ − t)α

Γ (1+α)
(

∂ 2α un(x,ξ )

∂ξ 2α
−

∂ 2un(x,ξ )

∂x2
− a

∂ αun

∂ tα
− bum

n (x,ξ )− g(x,ξ ))(dξ )α
. (17)

We build the sequence of iterations un, n ≥ 0 with the help of λ , which is generalized Lagrange’s multiplier, which can be
found out by the theory of variation. The functions un, is restricted variation so δ ũn = 0. So, first we take the generalized
Lagrange multiplier λ , which is obtained easily using integration. In this process we obtain, iterations un+1(x, t), n ≥ 0,
using this we obtain solution as u(x, t) = limn→∞ un(x, t).

5 Test Examples

In the present segment, we used proposed method to some test examples.
Example 5.1. Considering the ensuing telegraph equation [26] as

∂ 2α u

∂x2α
=

∂ 2u

∂ t2
+

∂u

∂ t
+ u, t ≥ 0, 0 < α ≤ 1, (18)

with the given initial conditions u(0, t) = e−t , u(x,0) = ex, ux(0, t) = e−t , 0 < x < 1 and exact solution for standard case
when α = 1 is u(x, t) = ex−t .
Now using the given initial condition, we assume
u0(x, t) = (x+ 1)e−t .
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Now by applying fractional variational iteration method

u1(x, t) = u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(

∂ 2α u0

∂ξ 2α
−

∂ 2u0

∂ t2
−

∂u0

∂ t
− u0)(dξ )α

,

= u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(−ξ − 1)(dξ )α

,

= e−t(1+ x+
x2α

Γ (1+ 2α)
+

x2α+1

Γ (2+ 2α)
).

u2(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
).

u3(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
+

x6α

Γ (6α + 1)
+

x6α+1

Γ (6α + 2)
).

un(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
+ ...+

x2αn

Γ (2αn+ 1)
+

x2αn+1

Γ (2αn+ 2)
).

when α = 1, we get

un(x, t) = e−t(1+ x+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ...+ x2n

2n!
+ x2n+1

(2n+1)!),

and in this process as n → ∞, u(x, t) = Lim
n→∞

un(x, t) = ex−t , which is the exact solution of the basic telegraph equation (18).

Example 5.2. Considering the ensuing telegraph equation [26] as

∂ 2α u

∂x2α
=

∂ 2u

∂ t2
+ 4

∂u

∂ t
+ 4u, t ≥ 0, 0 < α ≤ 1, (19)

with the given initial conditions
u(0, t) = e−2t + 1,u(x,0) = e2x + 1,ux(0, t) = 2,ut(x,0) =−2, 0 < x < 1,
and exact solution for standard case when α = 1 is u(x, t) = e−2t + e2x.

Now using the given initial condition, we can take initially u0(x, t) = e−2t + 2x+ 1.
Now by using fractional variational iteration method

u1(x, t) = u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(

∂ 2α u0

∂ξ 2α
−

∂ 2u0

∂ t2
− 4

∂u0

∂ t
− 4u0)(dξ )α

,

= u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(−ξ − 1)(dξ )α

,

= e−t(1+ x+
x2α

Γ (1+ 2α)
+

x2α+1

Γ (2+ 2α)
).

u2(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
).

u3(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
+

x6α

Γ (6α + 1)
+

x6α+1

Γ (6α + 2)
).

un(x, t) = e−t(1+ x+
x2α

Γ (2α + 1)
+

x2α+1

Γ (2α + 2)
+

x4α

Γ (4α + 1)
+

x4α+1

Γ (4α + 2)
+ ...+

x2αn

Γ (2αn+ 1)
+

x2αn+1

Γ (2αn+ 2)
).

when α = 1, we get

un(x, t) = e−2t2x2 + 1+ 2x+ x2+ 4x3

3
+ 2x4

3
− 1

15
(4x5)+ 4x6

45
+ . . .+ (2x)n

n!
,

and in this process as n → ∞,u(x, t) = Lim
n→∞

un(x, t) = e−2t + e2x,which is the exact solution of the standard telegraph

equation (19).
Example 5.3. Considering the ensuing telegraph equation [26] as

∂ 2α u

∂x2α
=

∂ 2u

∂ t2
+

∂u

∂ t
+ u− x2− t + 1, t ≥ 0, 0 < α ≤ 1, (20)

with the given conditions u(0, t) = t, u(x,0) = x2, ux(0, t) = 0, 0 < x < 1
and u(x, t) = t + x2 is an analytic solution of standard telegraph equation i.e. for α = 1.
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Now using the given initial condition, we assume u0(x, t) = t.

Now by using fractional variational iteration method

u1(x, t) = u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(

∂ 2α u0

∂ξ 2α
−

∂ 2u0

∂ t2
−

∂u0

∂ t
− u0 + ξ 2 + t − 1)(dξ )α

,

= u0(x, t)+
1

Γ (1+α)

∫ x

0

(ξ − x)α

Γ (1+α)
(−2+ ξ 2)(dξ )α

,

= t +
2x2α

Γ (2α + 1)
−

2x2α+2

Γ (2α + 3)
.

u2(x, t) = t +
2x2α

Γ (2α + 1)
−

2x2α+2

Γ (2α + 3)
+

2x4α

Γ (4α + 1)
−

2x4α+2

Γ (4α + 3)
.

u3(x, t) = t +
2x2α

Γ (2α + 1)
−

2x2α+2

Γ (2α + 3)
+

2x4α

Γ (4α + 1)
−

2x4α+2

Γ (4α + 3)
+

2x6α

Γ (6α + 1)
−

2x6α+2

Γ (6α + 3)
.

un(x, t) = t +
2x2α

Γ (2α + 1)
−

2x2α+2

Γ (2α + 3)
+ ...+

2x2αn

Γ (2αn+ 1)
−

2x2αn+2

Γ (2αn+ 3)
.

when α = 1 , we get un(x, t) = t + x2,
and in this process as n → ∞,u(x, t) = Lim

n→∞
un(x, t) = t + x2, which is the exact solution of the standard telegraph equation

(20).
Example 5.4. Consider the ensuing time fractional-order linear Telegraph equation as

∂ 2α u

∂ t2α
+ 2

∂ αu

∂ tα
+ u =

∂ 2u

∂x2
, (21)

with given initial conditions u(x,0) = ex,ut(x,0) =−2ex.
and u(x, t) = ex−2t is an analytic solution of standard telegraph equation i.e. for α = 1. Now using the given initial

condition, we can take initially u0(x, t) = ex(1− 2tα

Γ (α+1)).

Now by using fractional variational iteration method

u1(x, t) = u0(x, t)+
1

Γ (α + 1)

∫ t

0
(

∂ 2α u

∂ξ 2α
+ 2

∂ α u

∂ξ α
+ u−

∂ 2u

∂x2
)(dξ )α

,

= ex(1−
2tα

Γ (α + 1)

+(−2)2t2α

Γ (2α + 1)
).

u2(x, t) = ex(1−
2tα

Γ (α + 1)
+

4t2α

Γ (2α + 1)
−

8t3α

Γ (3α + 1)
).

u3(x, t) = ex(1−
2tα

Γ (α + 1)

+(−2)2t2α

Γ (2α + 1)
)+

(−2)3t3α

Γ (3α + 1)
.

un(x, t) = ex(1+
(−2)tα

Γ (α + 1)

+(−2)2t2α

Γ (2α + 1)
+

(−2)3t3α

Γ (3α + 1)
+

(−2)4t4α

Γ (4α + 1)
+

(−2)5t5α

Γ (5α + 1)
+ ...+

(−2)n+1t3α

Γ (α(n+ 1)+ 1)
).

and in this process as n → ∞, u(x, t) = Lim
n→∞

un(x, t) = exEα(−2tα), where Eα(−2tα) is Mittag Leffler function. which is

the analytic solution of the telegraph equation (21).

6 Numerical results and discussion

Table 1-4, illustrates the comparative study of absolute error between approximate and analytic solution for various values
of α with different order of approximations. From these table, we can conclude that absolute error is decreasing as
the order of approximation is increased and at the tenth order approximation absolute error is negligible. Also, we can
conclude that as the order of fractional derivative α increases, numerical solution is of high accuracy. Table 5-6, shows
the comparison among the proposed method, exact solution, HATM and VIM for different values of x and t at α = 1.
From these two tables, we can conclude easily that the applied technique is better than VIM and agree with HATM.
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Table 1: Absolute error comparison between analytic and numerical solution for various values of α for Eq. (18) for Ex.5.1.

α → 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00

x t |u−u5| |u−u8| |u−u10|
0.1 0.1 0 0 0 0 0 0 0 0 0

0.2 0.2 0 0 0 0 0 0 0 0 0

0.3 0.3 2.2×10−16 0 0 0 0 0 2.2×10−16 0

0.4 0.4 0 0 0 0 0 0 0 0 0

0.5 0.5 0 0 0 0 0 0 0 0 0

0.6 0.6 0 0 2.2×10−16 0 0 0 0 0 2.2×10−16

0.7 0.7 2.2×10−16 0 0 2.2×10−16 0 0 2.2×10−16 0 0

0.8 0.8 0 2.2×10−16 0 0 0 0 0 2.2×10−16 0

0.9 0.9 4.4×10−16 2.2×10−16 0 0 0 0 4.4×10−16 2.2×10−16

1.0 1.0 4.4×10−16 0 0 0 0 0 4.4×10−16 0 0

Table 2: Absolute error comparison between analytic and numerical solution for various values of α for Eq. (19) for Ex.5.2.

α → 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00

x t |u−u5| |u−u8| |u−u10|
0.1 0.1 0 0 0 0 0 0 0 0 0

0.2 0.2 0 0 0 0 0 0 0 0 0

0.3 0.3 0 0 0 0 0 0 0 0 0

0.4 0.4 0 0 0 0 0 0 0 0 0

0.5 0.5 0 0 2.2×10−16 0 0 2.2×10−16 0 0 2.2×10−16

0.6 0.6 6.6×10−16 0 0 0 0 0 0 0 0

0.7 0.7 3.3×10−15 0 0 0 2.2×10−16 0 0 0 0

0.8 0.8 1.6×10−14 0 0 2.2×10−16 0 0 0 0 0

0.9 0.9 6.6×10−14 0 2.2×10−16 0 0 0 2.2×10−16 0 2.2×10−16

1.0 1.0 2.3×10−13 0 0 0 0 0 0 0 0

Table 3: Absolute error comparison between analytic and numerical solution for various values of α for Eq. (20)for Ex.5.3.

α → 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00

x t |u−u5| |u−u8| |u−u10|
0.1 0.1 0 0 0 0 0 0 0 0 0

0.2 0.2 9.9×10−16 5.5×10−17 0 1.1×10−16 5.5×10−17 0 0 5.5×10−17 0

0.3 0.3 9.1×10−14 1.1×10−16 0 0 0 0 0 1.1×10−16 0

0.4 0.4 2.1×10−12 0 0 0 0 0 0 0 0

0.5 0.5 2.5×10−11 0 0 2.2×10−16 0 0 2.2×10−16 0 1.1×10−16

0.6 0.6 1.9×10−10 0 0 0 0 1.1×10−16 4.4×10−16 0 1.1×10−16

0.7 0.7 1.0×10−9 0 0 4.4×10−16 0 0 4.4×10−16 0 0

0.8 0.8 4.5×10−9 8.8×10−16 1.1×10−16 0 0 0 0 0 0

0.9 0.9 1.6×10−8 4.0×10−15 0 1.3×10−15 0 2.2×10−16 0 0 0

1.0 1.0 5.4×10−8 2.4×10−14 0 6.2×10−15 0 0 8.8×10−16 0 0

Table 4: Absolute error comparison between analytic and numerical solution for various values of α for Eq. (21) for Ex.5.4.

α → 0.50 0.75 1.00 0.50 0.75 1.00 0.50 0.75 1.00

x t |u−u5| |u−u8| |u−u10|
0.1 0.1 6.59×10−11 0 0 0 0 0 0 1.73×10−18 0

0.2 0.2 2.89×10−9 2.22×10−16 2.22×10−16 0 0 0 0 0 0

0.3 0.3 2.63×10−8 8.22×10−15 0 0 0 0 0 0 0

0.4 0.4 1.26×10−7 8.42×10−14 2.22×10−16 0 0 0 0 0 0

0.5 0.5 4.21×10−7 5.26×10−13 0 2.78×10−17 0 0 0 0 0

0.6 0.6 1.13×10−6 2.35×10−12 2.22×10−16 0 0 0 0 0 0

0.7 0.7 2.61×10−6 8.35×10−12 0 0 0 0 2.78×10−17 0 0

0.8 0.8 5.37×10−6 2.5×10−11 2.22×10−16 5.55×10−17 0 0 5.55×10−17 0 0

0.9 0.9 1.01×10−5 6.57×10−11 0 0 0 0 0 2.78×10−17 0

1.0 1.0 1.79×10−5 1.56×10−10 4.44×10−16 0 0 0 0 0 0
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Table 5: Absolute error comparison between analytic and numerical solution at α = 1 for Eq. (18) for Ex.5.1.

x t Exact sol. Proposed Method HAT M[26] V IM[37]
0.5 0.5 1.0 0.9999858350626777 0.9999858350626777 1.074222660600422

0.5 1.0 0.6065306597126334 0.6065220682438546 0.6065220682438546 0.6515489790122343

1.0 0.5 1.6487212707001282 1.6477416255526542 1.6477416255526542 1.925734844587611

1.0 1.0 1.0 0.9994058151824183 0.9994058151824183 1.1680172257193293

1.5 0.5 2.718281828459045 2.7061692168897262 2.7061692168897262 3.260576148033305

1.5 1.0 1.6487212707001282 1.6413746004141463 1.6413746004141463 1.9776394021099177

Table 6: Absolute error comparison between analytic and numerical solution at α = 1 for Eq. (20) for Ex.5.3.

x t Exact sol. Proposed Method HAT M[26] V IM[37]
0.5 0.5 0.75 0.7499565972222222 0.7499565972222222 0.73953125

0.5 1.0 1.25 1.2499565972222222 1.2499565972222222 1.2395312500000002

1.0 0.5 1.5 1.4972222222222222 1.4972222222222222 1.3299999999999998

1.0 1.0 2.0 1.9972222222222222 1.9972222222222222 1.83

1.5 0.5 2.75 2.718359375 2.718359375 1.86828125

1.5 1.0 3.25 3.218359375 3.218359375 2.36828125
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Fig. 1: Plot of tenth approximate solution for different values of α at t = 1 for telegraph equation (18) for Ex.5.1.

The numerical results obtained in table 5-6, demonstrate that FVIM is very well technique for this problem, even if we
use second order iteration to find approximate solution. Fig. 1 illustrates the comparison between analytic and numerical
solution for different value of fractional order α , here u(x, t) increase as we decrease the value of α . Fig. 2 illustrates
the comparison between analytic and numerical solution for different values of α , here u(x, t) strictly increases as α
decreases. Fig. 3 illustrates the comparison between analytic and numerical solution for different values of α , here u(x, t)
increase as we decrease the value of α and finally fig. 4 displays the comparative study of exact and approximate solution
for various values of α , here u(x, t) decrease as we decrease the value of α . It can be observed here that only tenth order
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Fig. 2: Plot of tenth approximate solution for different values of α at t = 1 for telegraph equation (19) for Ex.5.2.
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Fig. 3: Plot of tenth approximate solution for different values of α at t = 1 for telegraph equation (20) for Ex.5.3.

approximate solution is used in comparison of exact and approximate solution and its accuracy can be further improved
by using higher-order approximation. Figs. 5-8, display the plot of absolute error, for Ex. 5.1-5.4, which is negligible,
shows the accuracy of proposed technique.
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Fig. 4: Plot of tenth approximate solution for different values of α at t = 1 for telegraph equation (21) for Ex.5.4
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Fig. 5: Absolute error plot for the standard case α = 1 for telegraph equation (18) for Ex.5.1.

7 Conclusion

In present article, Fractional variational iteration method (FVIM) with generalized Lagrange multipliers has been applied
effectively for numerically solution of space- and time-fractional telegraph equations. By the use of generalized Lagrange
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Fig. 6: Absolute error plot for the standard case α = 1 for telegraph equation (19) for Ex.5.2.
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Fig. 7: Absolute error plot for the standard case α = 1 for telegraph equation (20) for Ex.5.3.

multiplier, it is apparently seen that the numerical solution obtained in the form of rapidly convergent series with easily
computable components and converges to the exact solution. So, FVIM is a very simple, efficient and powerful numerical

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


122 A. Prakash et al. : Numerical method for space- and time-fractional...

0

1

0.2

0.4

0.8 1

0.6

10-4

0.8

0.6 0.8

t

1

0.6

x

0.4
0.4

0.2
0.2

0 0

Fig. 8: Absolute error plot for the standard case α = 1 for telegraph equation (21) for Ex.5.4.

method for solving any type of space- and time-fractional partial differential equations arising in various fields of science
and engineering.

References

[1] A. Prakash and M. Kumar, Numerical method for solving time-fractional multi-dimensional diffusion equations, Int. J. Comput.

Sci. Math. 8(3), 257–267 (2017).

[2] A. Prakash and M. Kumar, Numerical method for fractional dispersive partial differential equations, Commun. Numer. Anal.

2017(1), 1–18 (2017).

[3] A. Prakash, Analytical method for space-fractional telegraph equation by Homotopy perturbation transform method, Nonlin. Eng.

Mod. Appl. 5(2), 123–128 (2016).

[4] A. Prakash and M. Kumar, He’s Variational iteration method for the solution of nonlinear Newell-Whitehead-Segel equation, J.

Appl. Anal. Comput. 6(3), 738–748 (2016).

[5] A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos Solit. Fract.

105, 99–110 (2017).

[6] A. Prakash, M. Goyal and S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel

equation, Nonlin. Eng. Mod. Appl. 8, 164–171 (2018).

[7] A. Prakash, V. Verma, D. Kumar and J. Singh, Analytic study for fractional coupled Burger’s equations via sumudu transform

method, Nonlin. Eng. Mod. Appl.7(4), 323–332 (2018).

[8] A. Prakash and M. Kumar, Numerical method for time-fractional Gas dynamic equations, Proc. Natl. Acad. Sci., India, Sect. A

Phys. Sci. doi.org/10.1007/s40010-018-0496-4 (2018).

[9] A. Prakash, M. Kumar and D. Baleanu, A new iterative technique for a fractional model of nonlinear Zakharov-Kuznetsov

equations via Sumudu transform, Appl. Math. Comput. 334, 30–40 (2018).

[10] A. Prakashand and H. Kaur, An efficient hybrid computational technique for solving nonlinear local fractional partial differential

equations arising in fractal media, Nonlin. Eng. Mod. Appl. 7(3) 229—235 (2018).

[11] A. Prakash and H. Kaur, q-homotopy analysis transform method for space and time- fractional KdV-Burgers equation, Nonlin. Sci.

Lett. A 9 (1), 44–61 (2018).

[12] D. Baleanu, A. Jajarmi and M. Hajipour, On the nonlinear dynamical systems within the generalized fractional derivatives with

Mittag–Leffler kernel, Nonlin. Dyn. 94,397–414 (2018).

[13] M. Hajipour, A. Jajarmi and D. Baleanu, An efficient nonstandard finite difference scheme for a class of fractional chaotic systems,

J. Comput. and Nonlin. Dynam. 13 (2), 021013 (2018).

c© 2019 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 5, No. 2, 111-123 (2019) / www.naturalspublishing.com/Journals.asp 123

[14] D. Baleanu, J. H. Asad and A. Jajarmi, New aspects of the motion of a particle in a circular cavity, Proc. Rom. Acad. A. 19 (2),

361–367 (2018).

[15] E. C. Eckstein, M. Leggas, B. Ma and J. A. Goldstein, Linking theory and measurements of tracer particle position in suspension

flows, Proc. ASME FEDSM 251(1–8), 12–19 (2000).

[16] E. Orsingher and L. Beghin, Time-fractional telegraph equation and telegraph processes with Brownian time, Prob. Theor. Relat.

Field. 128, 141–160 (2004).

[17] L. Debnath, Nonlinear partial differential equations for scientists and engineers, Birkhäuser, Mass, USA, Boston, 1997.
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