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Abstract: A five parameter lifetime statistical model is proposed in this research. The model is called the Kumuraswamy (KW)

exponentiated linear exponential distribution. We derive some statistical properties such as quantile functions, median, moments,

entropy, order statistics and many more. The estimation of the model parameters is provided by means of the maximum likelihood

(MLEs) approach and the observed information matrix is also presented. Moreover, we perform simulation analysis in order to

analyze the effectiveness of the parameters estimation. A set of real data is used to demonstrate the efficiency and effectiveness of the

model proposed model with the well-known lifetime models.

Keywords: KW-G distribution, Exponentiated linear exponential, simulation, maximum likelihood, observed information matrix, real

data.

1 Introduction

Recently, Mahmouda and Alamb [10] introduced a new lifetime model by exponentiating the exponential part of the

cumulative distribution function (cdf) of the linear exponential distribution given by G(x) = 1− e−( θ
2 x2+λ x) contrary to

what was done by Sarhana and Kundu [14] who exponentiated the whole cdf of the linear exponential distribution.
Mahmouda and Alamb [10] called their model Exponentiated Linear Exponential distribution. They studied and
investigated its mathematical and statistical properties and thereafter showed the flexibility of their model. The cdf and
probability density function (pdf) of the exponentiated linear exponential distribution is

G(x) = 1− e−( θ
2 x2+λ x)α

and g(x) = α(θx+λ )(
θ

2
x2 +λ x)α−1e−( θ

2 x2+λ x)α
(1)

Here, we propose an extension of the exponentiated linear exponential distribution based on the family of KW
Exponentiated (Kw-G) distributions proposed by Cordeiro and de Castro [9]. Some mathematical properties of this
family was investigated by Nadarajah et al. [12]. The KW distribution is not that popular among statisticians and is being
less examined in the literature. The cdf of the KW-G distribution for (0 < x < 1) is F(x) = 1− (1− xa)b, where a > 0
and b > 0 are shape parameters, and its density function has the form f (x) = abxa−1(1 − xa)b−1, it is increasing, a
constant, decreasing, uni-modal depending on the values of parameters. The KW-G distribution does not seem to be very
familiar to statisticians and before is not being investigated systematically in detail, nor has its relative interchangeability
with the beta distribution been widely appreciated. However, in recent papers, Jones [7] examine the background and
genesis of this distribution and, more importantly, made clear some similarities and differences between the beta and KW
distributions. In this paper, we compound the works of KW [8] and the authors in [9] to introduce a new distribution. The
distribution is constructed as: the baseline cumulative function of a random variable denoted by G is written as

F(x) = 1− [1−G(x)a]b (2)
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where a > 0 and b > 0 are also shape parameters which capture the skewness and tail weights. Because of its tractable
distribution function (2), the Kw-G distribution is applied efficiently to deal with censored data and its corresponding
density function is

f (x) = abg(x)G(x)a−1[1−G(x)a]b−1
. (3)

(3) possess a lots of characteristics for the class of beta-G distributions [4], but has some advantages in terms of tractability,
since it does not involve any special function such as the beta function. Equivalently, as occurs with the beta-G family of
distributions, special KW-G distributions may be derived as: the KW-normal distribution is obtained by taking G(x) in (2)
to be the normal cumulative function. Analogously, the KW-Weibull Cordeiro et al. [3], KW-exponentiated gamma Pascoa
et al. [13], KW-Birnbaum-Saunders Saulo et al. [15], KW-Gumbel Cordeiro et al. [2], KW-Exponentiated failure rate [6],
Kw-Modified inverse weibul [1] and Kw-Linear exponential distributions [11] can be attained by considering G(x) as
the cdf of the Weibull, exponentiated gamma, Birnbaum-Saunders, Gumbel, exponentiated linear failure rate, modified
inverse weibull and Linear exponential distributions, respectively, and many others. Therefore, each new KW-G may
be formulated via G distribution. The main aims of introducing this model is as follows: (i) The additional parameters
introduced by the KW generalization is sought as a means to furnish a more flexible distribution. (ii) Some modelling
phenomenon with non-monotone failure rates such as the bathtub-shaped and uni-modal failure rates, which are common
in reliability and biological studies, take a reasonable parametric fit with this distribution. (iii) The KW-GLED distribution
is expected to have immediate application in reliability and survival studies. (iv) KW-GLED distribution shows better
fitting, more flexible in shape and easier to perform and formula for modelling lifetime data. Some interesting models were
also proposed in [17],[18]. This paper is outlined as follows. In section 2, we define the Kw-GLED distribution, present
its sub-models and provide expansions for its cumulative and density functions. In addition, we study the properties and
limiting behavior of its pdf and hazard rate function. Mathematical and Statistical properties of this distribution are given
in sections 3. Maximum likelihood estimation is performed and the observed information matrix is determined in section
4. In section 5 simulation studies is performed, we provide an application of the Kw-GLE distribution to real data set in
section 6. Finally, conclusions are given in section 7.

2 The kW-GLE

The cdf and pdf of the KW exponentiated linear exponential distribution (KW-GLED) are obtained by substituting the cdf
in (1) into the cdf and pdf in (2) and (3) respectively. The cdf of the KW-GLE is given by

F(x) = 1−
(

1−
[

1− e−( θ
2 x2+λ x)α

]a)b

(4)

and the corresponding pdf is given by

f (x) = abα(θx+λ )(
θ

2
x2 +λ x)α−1e−( θ

2 x2+λ x)α
(

1−
[

1− e−( θ
2 x2+λ x)α

]a)b−1(

1− e−( θ
2 x2+λ x)α

)a−1

(5)

the survival function is given by

s(x) =
(

1−
[

1− e−( θ
2 x2+λ x)α

]a)b

(6)

and the hazard function is

h(x) =
abα(θx+λ )( θ

2
x2 +λ x)α−1e−( θ

2 x2+λ x)α
(

1− e−( θ
2 x2+λ x)α

)a−1

(

1−
[

1− e−( θ
2 x2+λ x)α

]a) (7)

2.1 Properties of KW-GLED pdf and hazard

The limiting behavior, shapes of the pdf and hazard are studied here. Table (1) has shown the limiting behavior of the pdf
and the hazard rate function of the KW-GLE distribution with different parameter values.

The pdf of the KW-GLED is decreasing for a < 1, 0 < α < 1 and uni-modal for a > 1, α > 1.
Proof. By taking the log of (5) and differentiating we reach

(log( f (x)))
′
= t(x)−α(

θ

2
x2 +λ x)α−1 − a(b− 1)

(

1− e−( θ
2 x2+λ x)α

)a−1
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Table 1: limiting behavior of the pdf and hazard rate function of the KW −GLE

a = 1, α = 1 a > 1, α > 1 0 < a < 1, 0 < α < 1

limx→0 f (x) λb 0 ∞
limx→∞ f (x) 0 0 0

limx→∞ h(x) λb 0 ∞
limx→0 h(x) 0 0 0

where

t(x) = θ +
(α − 1)

( θ
2

x2 +λ x)α−1
+

α(a− 1)( θ
2

x2 +λ x)α−1e−( θ
2 x2+λ x)α

1− e−( θ
2 x2+λ x)α

the function t(x) is negative for a < 1, 0 < α < 1 and so f (x)< 0 for all x > 0. Therefore, the pdf is decreasing for a < 1,

0 < α < 1. However, when a > 1, α > 1, θ > 0, λ > 0, b > 0 with mode at x = 1
θ (−λ +

√

θ
b
) and −λ +

√

θ
b
> 0 and at

x = 0 if −λ +
√

θ
b
< 0

The hazard rate function of the KW-GLE is an increasing (decreasing) function for α > 1(< 1) and a > 1(< 1).

Proof. By taking the log of (5) and differentiating we get
∂ f (x)
∂x2 > 0 where α > 1(< 1), which implies an

increasing(decreasing) hazard rate function.
However, the hazard rate function is upside down bathtube shape (uni-modal) and bathtube shape. This can be

illustrated graphically.
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Fig. 1: Density of the KW-GLE for different parameter values

2.2 Special Cases

Table (2) has shown the submodels of the KW-GLE distribution with different parameter values.
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Fig. 2: hazard rate function of the KW-GLE for different parameter values

Table 2: Sub models of the KW −GLE(a,b,α,λ ,θ )

a b α λ θ Distribution

[1] 1 1 1 λ 0 Exponential

[2] 1 1 1 0 θ Rayleigh

[3] 1 1 1 λ θ Linear Failure Rate

[4] a 1 1 0 θ Exponentiated Rayleigh

a b α θ λ Distribution

[5] a 1 1 λ 0 Exponentiated Exponential

[6] a 1 1 λ θ Exponentiated Linear Failure Rate

[7] 1 1 α λ θ Exponentiated linear Exponential

[8] a 1 α λ θ Exponentiated Exponentiated Linear Exponential

[9] a b 1 0 θ KW Rayleigh

a b α θ λ Distribution

[10] a b 1 λ 0 KW Exponential

[11] a b 1 λ θ KW Linear Failure Rate
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2.3 Expansion

We present in this subsection a representation of the cdf and pdf of the KW-GLE distribution. The relation (8) and (9)
will be used throughout the work. If b is a positive real-integer and |z|< 1, then

(1− z)b−1 =
∞

∑
j=0

w jz
j (8)

where

w j =
(−1) jΓ (b)

Γ (b− j)Γ ( j+ 1)
.

and the exponentiated binomial theorem if β is a positive and |z|< 1, then

(1− z)β−1 =
∞

∑
i=0

(−1)i

(

β − 1

i

)

zi (9)

using (9) in (4) we have the cdf of the KW-GLE as follows

F(x) = 1−
∞

∑
j=0

(−1) j

(

b

j

)

(

e−( θ
2 x2+λ x)α

)a j

(10)

also using (9) in (5) twice, we obtain that

f (x) =
∞

∑
k=0

∞

∑
j=0

(−1)k+ j

(

b− 1

j

)(

a( j+ 1)− 1

k

)

abα(θx+λ )(
θ

2
x2 +λ x)α−1e−(k+1)( θ

2 x2+λ x)α

= w j,k f (x;α,λ ,θ ) (11)

where

w j,k = ab
∞

∑
k=0

∞

∑
j=0

(−1)k+ j

(

b− 1

j

)(

a( j+ 1)− 1

k

)

e−k( θ
2 x2+λ x)α

and

f (x;α,λ ,θ ) = α(θx+λ )(
θ

2
x2 +λ x)α−1e−( θ

2 x2+λ x)α

which is clearly the pdf of the exponentiated linear exponential distribution.

3 Important properties

This portion will provide some basic statistical properties of the model under consideration.

3.1 Median and quantile

When we invert (4), the quantile function ( f or 0 < q < 1) is reached as

xq =
−λ ±

√

λ 2 + 2θ [−ln(1− (1− (1−q)
1
b )

1
a )]

1
α

θ

since θ is positive, we have our quantile function as

xq =
−λ +

√

λ 2 + 2θ [−ln(1− (1− (1−q)
1
b )

1
a )]

1
α

θ
(12)

and the median is given by

xq =
−λ +

√

λ 2 + 2θ [−ln(1− (1− ( 1
2
)

1
b )

1
a )]

1
α

θ
(13)
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3.2 Moments

Here, we present the rth moment of the KW-GLE distribution.

Theorem 31the rth moment of the KW-GLED is given by

E(X r) =
r

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ jΓ (a)

Γ (a− j) j!

(

r

i

)

Γ ( r−i+2
2

)

Γ ( r−i+2
2

− k)k!
2

r−i
2 −k

×
λ 2k+i

θ
i−r

2 +k
Γ

(

r− i

2α
−

k

α
+ 1,(b+ j)−1

)

proof.See Appendix B1
Letting r = 1 and r = 3 from (31), we obtain mean and third moment of the KW-GLED respectively.

Theorem 32Let X be distributed according to the KW −GLED then

E

[(

θ

2
x2 +λ x

)r]

=
r

∑
j=0

2 j

∑
i=0

(

r

j

)(

2 j

i

)

(−1)r− jλ 2(r− j)+i

θ 2(r− j)+i
µ2 j−i

=
∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + r

α
,(b+ j)−1

)

Proof.See Appendix B2.
We obtain the second and fourth moments from (32). Substituting r = 1 in (32), we can obtain the following

E

(

θ

2
x2 +λ x

)

=
∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 1

α
,(b+ j)−1

)

therefore
θ

2
E(X2)+λ E(X) =

∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 1

α
,(b+ j)−1

)

and consequently

µ2 =
2

θ

{

∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 1

α
,(b+ j)−1

)

−λ µ

}

Similarly by substituting r = 2 in (32) also, we will have the following

E

[

(

θ

2
x2 +λ x

)2
]

=
∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 2

α
,(b+ j)−1

)

therefore
θ

4
E(X4)+λ θE(X3)+λ 2E(X2) =

∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 2

α
,(b+ j)−1

)

hence

µ4 =
4

θ 2

{

∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 2

α
,(b+ j)−1

)

−λ θ µ3 −λ 2µ2

}

The variance of the KW-GLE is computed by

Var(X) = E(X2)− (E(X))2

where

E(X2) = µ2 =
2

θ

{

∞

∑
j=0

(−1) jΓ (a)

Γ (a− j) j!
Γ

(

α + 1

α
,(b+ j)−1

)

−λ µ

}

and E(X) is the mean of the KW −GLED.
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The kurtosis and skewness for the governing model can be reached as. Figure 3 depicts some physical features of the
skewness and kurtosis respectively.

γ3 =
µ (3)− 3µµ (2)+ 2µ3

(

µ (2)− µ2
) 3

2

(14)

γ4 =
µ (4)− 4µµ (3)+ 6µ2µ (2)− 3µ4

(

µ (2)− µ2
)2

(15)

where µ (2), µ (3) and µ (4) are second, third and fourth moments respectively

(a) Skewwness. (b) Skewness.

(c) kurtosis. (d) kurtosis.

Fig. 3: Skewness and kurtosis of KW-GLE in α and a when b = 0.9,θ = 1,λ = 0.4..
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3.3 Entropy

An entropy can be regarded as the measurement of variation of the ambiguity. There are two famous entropies which the
Renhi and Shannon entropies. The Renyi entropy of a random variable with probability density function f(.) is define as

IR(r) =
1

1− r
log

∫ ∞

0
f r(x)dx

for r > 0 and r 6= 1 the Renhi entropy of the KW-GLED is given by

IR(r) =−logα +
1

1− r
log

{

∞

∑
j=0

∞

∑
i=0

(−1)i+ j Γ (r(a− 1)+ 1)

Γ (r(a− 1)+ 1− j) j!

Γ ( r+1
2
)

Γ ( r+1
2

− i)i!
λ 2i 2

r−1
2 −i

θ
r−1

2 +i
Γ (u,v)

}

Proof. See Appendix B3
The Shannon entropy is defined by E[− log f (x)], this is a special case of the Renhi entropy when r ↑ 1.

3.4 Order Statistics

The density function fi,n(x) of the ith order statistic for i = 1,2, ...,n from data values x1, ...,xn having the KW-GLED can
be expressed as

fi,n(x) =
n!

(i− 1)(n− i)
[G(x)]i−1[1−G(x)]n−ig(x)

where G(x) and g(x)are cdf and pdf in (1) respectively. Then,

fi,n(x) = α(θx+λ )(
θ

2
x2 +λ x)α−1

[

e−( θ
2 x2+λ x)α

]b n−i

∑
j=0

(−1) j

(

∞

∑
i=0

[

1− e−( θ
2 x2+λ x)α

]

)i+ j−1

Using the equation of [?] for a power series raised to a positive integer k given by

(

∞

∑
j=0

)k

=
∞

∑
j=0

ck, ju
j (16)

where the coefficients ck, j (for k=1,2,...) can be determined from the recurrence equation

ck, j = ( ja0)
−1

j

∑
m=1

[m(k+ 1)− j]amck, j−m

and ck,0 = ak
0. Hence, ck, j follows directly from ck,0,...,ck, j−1 and therefore from a0,...,ak, after some algebra, we obatain

from (16)

fi,n(x) =
n−i

∑
j=0

(−1) j

(

n− i

j

) ∞

∑
k=0

ci+ j−1,k fθi, j,k , j(x) (17)

where fθi, j,k , j(x) is the KGLED density function with the parameter vector θi, j,k = (ai, j,k,b,α,λ ,θ )T . The result in (17)

gives the density function of the KW-GLED order statistics as a linear combination of KGLED density functions.

4 Statistical Inference

4.1 Estimation

Let X1, ...,Xn be a random sample with observed values x1, ...,xn from the KW-GLED with parameters α,λ ,θ ,a,and,b.
Let Θ = (a,b,α, ,θ ,λ )T be the parameter vector. The log likelihood function is given by

ln ≡ ln(x;Θ) = nlog(α)+
n

∑
i=0

log(θxi +λ )+ (α − 1)
n

∑
i=0

log

(

θ

2
x2 +λ x

)

+ b
n

∑
i=0

log
(

e−( θ
2 x2+λ x)α

)

+(a− 1)
n

∑
i=0

log
(

1− e−( θ
2 x2+λ x)α

)
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equation obtained by
differentiating ln(y;Θ) above. The components of the score vector U(y;Θ) are given by

Uλ (x;Θ) =
∂

∂λ
ln(y;θ ) =

n

∑
i=0

1

θxi +λ
+(α − 1)

n

∑
i=1

xi

( θ
2

x2
i +λ xi)

+α(a− 1)
n

∑
i=1

xi(
θ
2

x2
i +λ xi)

α−1e−( θ
2 x2

i +λ xi)
α

(1− e−( θ
2 x2

i +λ xi)α
)

−αb
n

∑
i=1

xi(
θ

2
x2

i +λ xi)
α−1

Uθ (x;Θ) =
∂

∂θ
ln(y;θ ) =

n

∑
i=0

xi

θxi +λ
+

(α − 1)

2

n

∑
i=1

x2
i

( θ
2

x2
i +λ xi)

−
αb

2

n

∑
i=1

x2
i (

θ

2
x2

i +λ xi)
α−1

+
α(a− 1)

2

n

∑
i=1

x2
i (

θ
2

x2
i +λ xi)

α−1e−( θ
2 x2

i +λ xi)
α

(1− e−( θ
2 x2

i +λ xi)α
)

Ua(x;Θ) =
∂

∂a
ln(y;θ ) =

n

∑
i=1

log

(

1− e−( θ
2 x2

i +λ xi)
α
)

Ub(y;Θ) =
∂

∂b
ln(y;θ ) =

n

∑
i=1

(

θ

2
x2

i +λ xi

)α

Uα(y;Θ) =
∂

∂α
ln(y;θ ) =

n

α
+

n

∑
i=1

log

(

θ

2
x2

i +λ xi

)

The MLEs does not have an explicit form of normal equations. As a result of this, numerical methods will be used to
obtain the MLEs. Simulations will be used to assess the performance and consistency of the MLEs.

For interval estimation, we consider the observe information matrix. The 5× 5 units matrix J = J(θ ) is expressed as

J =







Jλ λ · · · Jλ α
...

. . .
...

Jαλ · · · Jαα







One can see that θ̂ is consistent estimator of θ therefore, the authenticity of the asymptotic normality will remain

unchanged when the fisher information matrix I is changed by the observed fisher information attained at θ̂J(θ ): Owing

to this, a γ100% approximate asymtotic interval for each component parameter θ̂l of θ̂ is expressed as
(

θ̂l −Z 1+γ
2

√

Jθ̂lθ̂l , θ̂l +Z 1+γ
2

√

Jθ̂lθ̂l

)

where Jθ̂l θ̂l exhibits diagonals element for J(θ̂ )
−1

associating with all the parameter l = (a,b,α,λ ,θ ) and Z 1+γ
2

represents quantile
1+γ

2
of the standard normal distribution. The likelihood ration (LR) statistics is applied for testing

Kw-GLE with other existing distributions. By considering the partition θ = (θ T
1 ,θ T

2 )T , tests of hypothesis of the kind

H0 : θ1 = θ
(0)
1 vs H1 : θ1 6= θ

(0)
1 is observed by LR statistics that can be expressed as w = 2

{

l(θ̂ )− (lθ̃)
}

, where θ̂ , θ̃ are

the MLEs of θ under H1 and H0 respectively. Under the null hypothesis, w
d
→ χ2

q , where q is the dimension of the vector

θ1 of interest. The LR test rejects H0 if w > ξq, where ξq is the upper 100γ% point of the χ2
q distribution.

5 Simulation

Herein, we provide an assessment for the effieciency of the MLEs by simulating the parameters. We analyze the proposed
estimator of θ=(a, b , α , θ , λ ) of the proposed MLEs. 10000 samples of n = 30,100,300, and 500 size are proposed from
KW-GLED. For each scenario of the five different set values of θ . Samples from KW-GLED are attained by using the
(12). The accuracy of the approximation of the standard error of the MLEs have been assessed with the aid of the fisher
information matrix.

The following are observed from the Table (3) below:

1. The numerical method is proven to be stable of the MLEs approach since convergence is achieved.
2. Original values and the averages estimate are almost the same.
3. There is a consistent performance with the MLEs estimate.
4. When the sample size increases the standard errors of the MLEs decreases
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Table 3: The averages of 10000 MLEs and mean of the simulated standard errors for KW −GLED

AE SD

n (a, b , α , θ , λ ) â b̂ α̂ θ̂ λ̂ sd(α̂) sd(θ̂) sd(λ̂ ) sd(â) sd(b̂)
30 (0.6, 0.6, 0.5, 1.0, 1.0) 0.935 0.684 0.768 1.278 1.541 0.761 2.636 2.057 2.906 1.931

(3.0, 0.5, 0.5, 1.0, 1.0) 5.853 0.531 0.719 3.469 1.139 5.406 0.793 0.796 10.251 1.557

(2.0, 0.5, 0.5, 1.0, 1.0) 4.164 0.448 0.891 2.481 1.251 3.636 0.845 1.112 7.932 1.707

(2.0, 2.0, 2.0, 1.0, 1.0) 3.886 1.887 2.898 2.323 1.718 3.482 4.867 3.515 7.167 2.290

100 (0.6, 0.6, 0.5, 1.0, 1.0) 0.763 0.663 0.691 0.943 1.182 0.491 2.505 1.975 1.033 0.997

(3.0, 0.5, 0.5, 1.0, 1.0) 5.931 0.373 0.721 1.681 1.196 4.825 0.732 0.611 5.331 1.461

(2.0, 0.5, 0.5, 1.0, 1.0) 3.707 0.515 0.866 1.638 1.034 2.858 0.971 1.076 5.411 1.154

(2.0, 2.0, 2.0, 1.0, 1.0) 3.137 2.213 2.469 1.364 1.534 2.451 4.814 2.798 4.153 1.837

300 (0.6, 0.6, 0.5, 1.0, 1.0) 0.664 0.586 0.601 0.895 1.063 0.324 1.538 1.679 0.455 0.578

(3.0, 0.5, 0.5, 1.0, 1.0) 5.531 0.349 0.715 1.067 1.031 4.039 0.707 0.511 2.737 1.094

(2.0, 0.5, 0.5, 1.0, 1.0) 3.305 0.421 0.718 0.961 1.041 2.158 0.772 0.721 1.902 0.955

(2.0, 2.0, 2.0, 1.0, 1.0) 2.678 2.521 2.195 1.018 1.346 1.742 4.741 2.128 1.538 1.429

500 (0.6, 0.6, 0.5, 1.0, 1.0) 0.607 0.523 0.564 0.909 0.997 0.221 0.901 0.775 0.325 0.344

(3.0, 0.5, 0.5, 1.0, 1.0) 5.109 0.306 0.679 0.842 1.019 3.291 0.637 0.403 0.869 0.873

(2.0, 0.5, 0.5, 1.0, 1.0) 3.011 0.408 0.641 0.844 0.957 1.686 0.716 0.491 0.831 0.603

(2.0, 2.0, 2.0, 1.0, 1.0) 2.404 2.556 2.052 0.945 1.138 1.2124 4.093 1.575 0.498 0.831

6 Application

Herein, we demonstrate the applicability of the KW-GLED by means of a real data. The data set represents the strengths
of 1.5cm glass fibres and they are taken from Smith and Naylor [?]. We compare the fit of the KW-GLED with those of
the beta exponentiated exponential (BGE), beta exponential (BE), exponentiated exponential (GE), exponentiated
exponential poison (EEP), generalization of exponential poison (GEP) and exponential poison (EP) distributions. For
each distribution, the unknown parameters are estimated by the method of maximum likelihood. The maximum
likelihood estimates and the corresponding AIC and BIC values are shown in Tables (4). We can see that the smallest
AIC and BIC are obtained from the KW-GLED. The fitted probability density functions and the fitted cumulative
distribution function are shown in Figures (??) and (??) respectively. So, from the figures, we can conclude that the
KW-GLED is the most appropriate model for the data set out of the considered distributions. The MLEs of the KW-GLE
parameters a, b, α , λ and θ are computed by maximizing the objective function using R software. The estimated values
of the parameters,log-likelihood statistic, Akaike Information Criterion, AIC = 2p− 2log(L), and Bayesian Information
Criterion, BIC = Plog(n)− 2log(L) where L = L(θ ) is the value of the likelihood function evaluated at the parameter
estimates, n is the number of observations, and p is the number of estimated parameters for the data.

6.1 Data illustration

The data set is: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2 ,0.74, 1.04, 1.27, 1.39, 1.49, 1.53,
1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13,
1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

Table 4: MLEs of the strengths of 1.5cm glass fibres, measured at the National Physical Laboratory, England.

a b α λ θ l(θ ) AIC BIC

BGE(a,b,α,λ ) 0.4125 93.4655 22.6124 0.92271 − −15.5995 39.199 47.897

BE(a,b,λ ) 17.7786 22.7222 − 0.3898 − −24.1270 54.254 60.777

EEP(α,λ ,θ ) − − 6.4712 16619.29 0.1549 −15.6000 37.2 43.600

GEP(a,b,α,λ ) − − 31.9563 280.6076 0.0094 −31.5500 69.1 75.500

EP(α,λ ) − − − 983.5960 0.0007 −88.8500 181.7 186.0

GE(α,λ ) − − 31.3032 2.6105 − −31.3834 66.7668 71.1156

KWGLE(a,b,α,λ ,θ ) 0.210000 1.887788 8.999999 −0.444591 1.000000 −10.8870 31.774 42.646

We compare the proposed the model under consideration with other existing models as shown in Table (5).
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Table 5: LR statistics for the data

Model Hypothesis Statistic LR p-value

BGE vs KWGLE H0 : θ = 1 vs H1 : H0 is false 9.425 2.1405×10−3

BE vs KWGLE H0 : θ = α = 1 vs H1 : H0 is false 26.48 1.8×10−6

EEP vs KW GLE H0 : θ = α = 1 vs H1 : H0 is false 9.426 8.9778×10−3

GEP vs KWGLE H0 : θ = α = 1 vs H1 : H0 is false 41.326 0.0001

EP vs KWGLE H0 : a = b = α = 1 vs H1 : H0 is false 155.926 0.0004

GE vs KW GLE H0 : a = b = θ = 1 vs H1 : H0 is false 40.9928 0.0002
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Fig. 4: Fitted pdf and cdf for the data.

7 Conclusion

In this paper, we propose a new statistical distribution called the Kw-GLED. The proposed model performed much better
that the other models due to the better fitting in a real data. The pdf of the proposed model is uni-modal, decreasing, and
a constant depending on the parameter values. The hazard rate function possesses a bathtube shape and it also increasing,
decreasing. Moreover, statistical properties are analyzed and the parameters of the Kw-GLED are estimated using the
approach of MLEs and the information matrix is obtained . The hypothesis test via LR test and the simulation analysis
were conducted so that the effectiveness of the estimation of parameters can be observed. The applicability and efficiency
of the model were illustrated by means of a real data. The proposed model has proven to be more flexible for fitting
lifetime data in reliability, biology and other areas.

Appendix A

The elements of the 5× 5 information matrix are given by

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


22 A. Yusuf, S. Qureshi: A Five Parameter Statistical Distribution with ...

let pi =
θ
2

x2
i +λ xi

Jλ λ =
∂ 2

∂λ ∂λ
ln(y;θ ) =−

n

∑
i=1

1

(θxi +λ )2
− (α − 1)

n

∑
i=1

x2
i

p2
i

+α(a− 1)
n

∑
i=1

x2
i

(

α p
2(α−1)
i e−pα

i +(α − 1)pα−2
i e−pα

i (1− e−pα
i )
)

(1− e−pα
i )2

−α(α − 1)b
n

∑
i=1

x2
i p

(α−2)
i

Jθθ =
∂ 2

∂λ ∂θ
ln(y;θ ) =

n

∑
i=1

x2
i

(θxi +λ )2
+

(α − 1)

4

n

∑
i=1

x4
i

p2
i

−
α(α − 1)b

4

n

∑
i=1

x4
i pα−2

i

+
α(a− 1)

4

n

∑
i=1

x4
i

[

(α − 1)pα−2
i e−pα

i (1− e−pα
i )−α p

2(α−1)
i e−pα

i

]

(1− e−pα
i )2

Jaa =
∂ 2

∂a∂a
ln(y;θ ) = 0

Jbb =
∂ 2

∂b∂b
ln(y;θ ) = 0

Jαα =
∂ 2

∂α∂α
=−

n

α2

Jλ θ = Jθλ =−
n

∑
i=1

xi

(θxi +λ )2
−

(α − 1)

2

n

∑
i=1

x3
i

p2
i

−
α(α − 1)b

2

n

∑
i=1

x3
i pα−2

i

Jλ a = Jaλ = α
n

∑
i=1

p
(α−1)
i e−pα

i

(1− e−pα
i )2

Jλ b = Jbλ =−α
n

∑
i=1

xi p
(α−1)
i

Jλ α = Jαλ =
n

∑
i=1

xi

pi

− b
n

∑
i=1

xi p
(α−1)
i

Jθa = Jaθ =
α

2

n

∑
i=1

x2
i p

(α−1)
i e−pα

i

(1− e−pα
i )

Jθb = Jbθ =−
α

2

n

∑
i=1

x2
i p

(α−1)
i

Jθα = Jαθ =
1

2

n

∑
i=1

x2
i

(pi)
−

b

2

n

∑
i=1

x2
i pα−1

i +
(a− 1)

2

n

∑
i=1

x2
i p

(α−1)
i e−pα

i

(1− e−pα
i )

Jab = Jba = 0

Jaα = Jαa = 0

Jbα = Jαb = 0

c© 2019 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 8, No. 1, 11-26 (2019) / www.naturalspublishing.com/Journals.asp 23

Appendix B

B1proof.
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If r(a− 1)+ 1> 0 is a real non integer we expand (1− e−u)r(a−1)+1−1 using power series expansion
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IR(r) =
1

1− r
log

[

αr−1
∞

∑
j=0

∞

∑
i=0

(−1)i+ j Γ (r(a− 1)+ 1)

Γ (r(a− 1)+ 1− j) j!

Γ ( r+1
2
)

Γ ( r+1
2

− i)i!
λ 2i 2

r−1
2 −i

θ
r−1

2 +i
Γ (u,v)

]

This implies that

IR(r) =−logα +
1

1− r
log

{

∞

∑
j=0

∞

∑
i=0

(−1)i+ j Γ (r(a− 1)+ 1)

Γ (r(a− 1)+ 1− j) j!

Γ ( r+1
2
)

Γ ( r+1
2

− i)i!
λ 2i 2

r−1
2 −i

θ
r−1

2 +i
Γ (u,v)

}

where u =− (r−1)
2α − i

α + (α−1)(r+1)
α + 1, v = br+ j

References

[1] Gokarna Aryal and Ibrahim Elbatal. Applied Mathematics Information Sciences 9 651-660 (2015).

[2] Nadarajah S. Cordeiro, G.M. and E.M.M. Ortega. Statistical Methods and Applications, 2011.

[3] Ortega E.M.M. Cordeiro, G.M. and S Nadarajah. Journal of the Franklin Institute 337 1399-1429 (2010).

[4] Lee C. Eugene, N. and F. Famoye. Communications in Statistics: Theory andMethods 31 497-512 (2002).

[5] Ryzhik I.M. Gradshteyn, I.S. Table of Integrals, Series, and Products, Academic Press, New York, 2000.

[6] I.Elbatal. Indian Journal of Computational and Applied Mathematics 1 61-78 (2013).

[7] M. C. Jones. Statistical Methodology 6 70-81 (2009).

[8] P. KW. Journal of Hydrology 462 79-88 (1980).

[9] Cordeiro G. M. and M. de Castro. Journal of Statistical Computation and Simulation 81 883-898 (2011).

[10] Farouq Mohammad A. Alamb M.A.W. Mahmouda. Elsevier 80 1005-1014 (2010).

[11] F. Merovci and I. Elbatal. Journal of Statistics Applications Probability Letters. An International Journal 2 1-14 (2015).

[12] Cordeiro G.M. Nadarajah, S. and E.M.M. Ortega. Journal of Statistical Computation and Simulation, 9 504-520 (2011).

[13] Ortega E.M.M. Pascoa, A.R.M. and G.M. Cordeiro. Statistical Methodology 8 411-433 (2011).

[14] Ammar M. Sarhana and Debasis Kundu. Communications in Statistics-Theory and Methods 38 642-660 (2009).

[15] Leao J. Saulo, H. and M. Bourguignon. Journal of Statistical Theory and Practice 15 598-608 (2012).

[16] R. L. Smith and J. C. Naylor. Applied Statistics 36 358-369 (1987).

[17] Mohammed K. Shakhatreh, Abdullahi Yusuf and Abdel-Razzaq Mugdadi (2016): The beta generalized linear exponential

distribution, Statistics, DOI: 10.1080/02331888.2016.1230617

[18] A. Yusuf et al. The Inverse Burr Negative Binomial Distribution with Application to Real Data. J. Stat. Appl. Pro. 5, 53-65 (2016)

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


26 A. Yusuf, S. Qureshi: A Five Parameter Statistical Distribution with ...

Abdullahi Yusuf is a lecturer 1 at Federal University Dutse. He got his
MSC in the department of mathematics and statistics, Jordan University
of science and technology Irbid. His PhD in applied mathematics, Firat University Turkey.

Sania Qureshi is an assistant professor at the department of Basic Sciences and Related
Studies, Mehran University of Engineering and Technology, Jamshoro, Pakistan.

c© 2019 NSP

Natural Sciences Publishing Cor.


	Introduction
	The kW-GLE
	Important properties
	Statistical Inference
	Simulation
	Application
	Conclusion

