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Abstract: A proper edge coloring of a graph G is called star edge coloring if there is no bi-colored path or cycle of length four in G.

The minimum number of colors needed to star color the edges of G is called the star chromatic index of G, denoted by χ
′
s(G). In 2013

[1], Dvořák et. al. proved that for a subcubic graph G, χ
′
s(G)≤ 7 and conjectured that it is less than or equal to 6. In this paper, we show

that if a subcubic graph G has maximum average degree less than 8
3 then χ

′
s(G)≤ 6.
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1 Introduction

All the graphs considered in this paper are finite and
simple. For a graph G with vertex set V (G) and edge set
E(G) a proper edge coloring of G is an assignment of
colors to the edges of G so that no two adjacent edges
receive the same color. A star edge coloring is a proper
edge coloring with an additional condition that any path
or cycle of length four is not bi-colored. The star

chromatic index of G is the least number of colors needed
for a star edge coloring of G, denoted by χ

′
s(G). This

coloring was introduced by Liu and Deng [2] in 2008. In
2013 [1], Dvořák, Mohar and Šámal found the following
bound for the star chromatic index of complete graphs.

Theorem 1.The star chromatic index of the complete

graph Kn satisfies

(2+ o(1))n ≤ χ
′
s(Kn)≤ n 22

√
2(1+o(1))

√
logn

(logn)
1
4

.

In particular, for every ε > 0 there exists a constant c such

that χ
′
s(Kn)≤ cn1+ε for every n ≥ 1.

They also obtained a near-linear upper bound in terms of
the maximum degree ∆ for general graphs. In addition,
they considered subcubic graph - a graph in which each
vertex has degree at most three and showed that the star
chromatic index of every subcubic graph is at most 7. L.
Bezegová et. al.[3] proved that the star chromatic index of
every subcubic tree and subcubic outerplanar graph is at
most 4 and 5 respectively.

Motivated by the strong list edge coloring of subcubic
graphs [4], [5], list version of star edge coloring is also

studied and bounds are given in terms of maximum
average degree of the graph. The maximum average
degree of a graph G, denoted by mad(G) is defined as

mad(G) = maxH⊆G,|V (H)|≥1{ 2|E(H)|
|V (H)| }. S. Kerdjoudj et.al.

[6] proved that the list star chromatic index of a subcubic
graph G with mad(G) < 7

3
and mad(G) < 5

2
is at most 5

and 6 respectively. They also showed that the list star
chromatic index for every subcubic graph is at most 8. S.
Kerdjoudj and A. Raspaud [7] proved that for subcubic
graphs with mad(G) < 30

11
it is at most 7. Recently, B.

Lužar et.al.[8] proved that 7 colors suffice for the list star
edge coloring of every subcubic graph G.

There are examples for subcubic graphs with the star
chromatic index equal to 6, (e.g. K3,3 and K4 with one
subdivided edge) but no example of a subcubic graph
requiring 7 colors is known. Based on this fact, Dvořák et
al.[1] proposed the following conjecture.

Conjecture 1 If G is a subcubic graph, then χ
′
s(G)≤ 6.

In this paper we prove the following theorem in
support of the Conjecture 1.

Theorem 2.Let G be a subcubic graph with mad(G)< 8
3
.

Then, χ
′
s(G)≤ 6.

The girth of a graph G is the length of a shortest cycle

in G. For every planar graph with girth g, mad(G)< 2g
g−2

.

This, together with the theorem above gives the following
corollary.

Corollary 1.Let G be a planar subcubic graph with girth

g ≥ 8. Then χ
′
s(G)≤ 6.
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Notations: Let d(v) denote the degree of the vertex v in
G. A vertex of degree k is called a k-vertex. A k-vertex
adjacent to a vertex v is a k-neighbor of v. A 3k-vertex is a
3-vertex adjacent to exactly k (0 ≤ k ≤ 3) vertices of
degree 2. A 3-vertex adjacent to a 1-vertex is a light

3-vertex. For an edge coloring ϕ of a graph G, let ϕ(v)
denote the set of colors used on the edges incident with
the vertex v ∈ V (G) in the coloring ϕ . Similarly, for an
edge uv ∈ E(G), ϕ(uv) denotes the color used on the edge
uv. We say that a color c is an available color for an edge
uv, if c is not assigned to any of its neighbors and there is
no bi-colored path of length four or cycle of length four
involving uv when colored with c. Otherwise, it is a
forbidden color. The set of available colors for the edge
uv is denoted by A(uv).

Proof of Theorem 2

Let G
′

be a minimum counterexample minimising

|E(G) + V (G)|. Then the edges of G
′

are not star

colorable with six colors and mad(G
′
) < 8

3
. By

minimality of G
′
, we can assume that it is connected.

Otherwise, we can star color independently the edges of

each connected component of G
′

with six colors. We list
some structures or set of some subgraphs called reducible

configurations in G
′
. We prove all the claims by

contradiction. For each of the claim, we suppose that the

described structure exists in G
′
, then we remove a certain

number of edges from G
′

to form a graph H, which by

minimality of G
′

is star edge colorable with six colors.
Let ϕ be such a star edge coloring of H. We show a
contradiction by extending the star edge coloring ϕ of H

with six colors to a star edge coloring of G
′

with same
number of colors. Before going into the proof we need the
following observation.

Observation:
Let u and v be two adjacent 3-vertices in G

′
. Let

N(v) = {v1,v2,u} and N(u) = {u1,u2,v}. Let ϕ be a star

edge coloring of H = G
′ \ {uui, i = 1,2} with six colors.

Let v1 not adjacent to v2 (in worst case) be two 3-vertices.
If |ϕ(v1)∩ϕ(v2)| ≥ 1, then there is at least one color that
is not present on the edges incident to the vertices v1 and
v2. If the edge uv is not colored with this color, then we
can recolor it with this color. If |ϕ(v1)∩ϕ(v2)| = 0, then
we can assume that any available color for the edge uv is
such that, either ϕ(uv) ∈ ϕ(v1) or ϕ(uv) ∈ ϕ(v2). In the
worst case, in order to exclude greater number of colors
for the edges incident with u, we always assume the latter
part (|ϕ(v1)∩ϕ(v2)|= 0).
When v1 is adjacent to v2 or either of v1 or v2 are
2-vertices then we can always recolor the edge uv with a
color that is not present on the edges incident to the
vertices v1 and v2.

Claim 1. G
′

does not contain a 1-vertex adjacent to a 2-
vertex.

Suppose there is a 1-vertex u adjacent to a 2-vertex v

in G
′
. As G

′
is a minimum counterexample,

H = G
′ \ {uv} is star edge colorable with six colors. By

counting the number of maximum possible forbidden
colors for uv, it is easy to see that we have at least three
colors available for it. So, the coloring of H can be

extended to G
′
, a contradiction.

Claim 2. G
′

does not contain a 3-vertex adjacent to two
1-vertices.

Let a 3-vertex u be adjacent to the 1-vertices v and w

in G
′
. Consider H = G

′ \{uv}, which by minimality of G
′

is star edge colorable with six colors. By counting the
number of maximum possible forbidden colors for uv,
again it is easy to see that we have at least two colors
available for it. So, the coloring of H can be extended to

G
′
, a contradiction.

Claim 3. G
′

does not contain a 3-vertex adjacent to a 1-
vertex and a 2-vertex.

Suppose u be such 3-vertex adjacent to the 1-vertex v

and a 2-vertex w. The graph H = G
′ \{uv} has a star edge

coloring with six colors. Again, by counting the number
of maximum possible forbidden colors for the edge uv it is
easy to see that there is at least one color available for uv,
a contradiction.

Claim 4. G
′
does not contain two adjacent light 3-vertices.

Let u and v be two adjacent light 3-vertices adjacent to

the 1-vertices u1 and v1 respectively in G
′
. Let x and y be

the other neighbors of u and v respectively. By claim 3, x

and y are 3-vertices. Consider H = G
′ \ {uu1}, which by

minimality of G
′

is star edge colorable with six colors. By
counting the number of available colors it is easy to see
that we have at least one color available for uu1. So, the
coloring of H can be extended to G

′
, a contradiction.

Claim 5. G
′

does not contain two adjacent 2-vertices.

Suppose u1 and u2 be the two adjacent 2-vertices in

G
′
. For i = 1,2, let vi be the other neighbor of ui. By

minimality of G
′
, H = G

′ \ {u1u2} has a star edge
coloring ϕ with six colors. When v1 is adjacent to v2 or
when v1 = v2, by counting the number of available colors

for u1u2, we can easily extend ϕ to G
′
. So let v1 be

distinct and not adjacent to v2 with N(vi) = {wi,w
′
i,ui},

i = 1,2. If there is an available color for the edge u1u2 we
are done. Otherwise, all the six colors are forbidden for
this edge, this means, |{ϕ(v1) ∩ ϕ(v2)}| = 0 and

ϕ(uivi) ∈ {ϕ(wi)∩ϕ(w
′
i)}. So, we recolor the edge u1v1

using the Observation . This gives |A(u1u2)| ≥ 1. Hence,

ϕ can be extended to G
′
, a contradiction.

Claim 6. G
′

does not contain a 3-vertex adjacent to three
2-vertices.

Let u be such a 3-vertex in G
′
. Let u1, u2 and u3 be the

2-neighbors of u. Let each ui be adjacent to xi. By claim 1
and claim 5, xi is a 3-vertex for each i. By minimality of

G
′
, H = G

′ \ {uui, i = 1,2,3} has a star edge coloring ϕ
with six colors. We extend this coloring to the edges uu1,
uu2 and uu3 in order. First, we color the edge uu1 with
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a color such that it does not appear on the colored edges
incident to the vertices x1, u2 and u3. Then, we color the
edge uu2 with a color which does not appear on the colored
edges incident to the vertices x2, u and u3. Finally, we have
at least one color available for the edge uu3. Hence, ϕ is

extended to G
′
, a contradiction.

Claim 7. G
′

does not contain a cycle uvwu, where u is
either a light 3-vertex or a 2-vertex.

Suppose uvwu be such a cycle in G
′
. When u is

adjacent to a 1-vertex u1, consider H = G
′ \ {uu1}, which

by minimality of G
′

is star edge colorable with six colors.
By counting the number of maximum possible forbidden
colors it is easy to see that we have at least one color
available for uu1. When u is a 2-vertex, consider
H = G

′ \ {uv} having a star edge coloring ϕ with six
colors. Let v1 and w1 be the neighbors of v and w

respectively. If v1 is adjacent to w1 or v1 = w1, then it is
easy to see that uv can be easily colored. Otherwise,
(when v1 and w1 are non adjacent) if uv cannot be
colored, then |ϕ(v1)∩ϕ(w)| = 0. So, we can recolor uw

with a color other than ϕ(uw) such that there is an
available color for the edge uv, which is a contradiction.

Claim 8. G
′

does not contain a cycle xuvwx, where v and
x are 2-vertices.

Suppose G
′
contains such a cycle xuvwx. Let v and x be

the 2-vertices. Consider H = G
′ \ {uv,ux,wv,wx}, which

by minimality of G
′

has a star edge coloring ϕ with six
colors. Clearly, u is not adjacent to w. Let y1 and y2 be
the neighbors of u and w respectively (other than v and
x). If y1 = y2, it can be observed that ϕ can be extended to

the edges of G
′
easily. So, we can assume that y1 is distinct

from y2. For the worst case, let d(yi)= 3, i= 1,2. Let zi and

z
′
i be the other neighbors of yi. Recolor the edges uy1 and

wy2 using the Observation. In worst case, we can assume
that ϕ(uy1) ∈ ϕ(z1) and ϕ(wy2) ∈ ϕ(z2). So, we color the
edges ux and uv with c1 and c2 respectively, such that c1 /∈
{ϕ(y1),ϕ(wy2)} and c2 /∈ {ϕ(y1),ϕ(wy2),c1}. We have,
|A(ux)| ≥ 2 and |A(uv)| ≥ 1. This gives |A(wx)| ≥ 3. There
is an appropriate color for wx so that there is at least one
color available for the edge wv. Hence, ϕ can be extended

to the edges of G
′
, a contradiction.

Claim 9. G
′

does not contain a 3-vertex adjacent to two
light 3-vertices.

Suppose G
′

contains such a vertex u. Let
N(u) = {v1,v2,x3}. Let v1 and v2 be the light 3-vertices
adjacent to the 1-vertices v and w respectively. Let x1 and
x2 be the other 3-neighbors of v1 and v2 respectively. (By
claim 3, both are 3-vertices). For i = 1,2, let

N(xi) = {zi,z
′
i,vi} and (let d(x3) = 3) N(x3) = {z3,z

′
3,u}.

Consider H = G
′ \ {v1v}, which by minimality has a star

edge coloring ϕ with six colors. If x1 = x2, then by
counting the number of maximum possible forbidden
colors it is easy to see that we have at least one color
available for vv1. So, we assume that x1 is distinct from
x2. Suppose there is no color available for v1v. Then,

|{ϕ(u)∩ϕ(x1)}| = 0 and ϕ(v1x1) ∈ {ϕ(z1)∩ϕ(z
′
1)} and

ϕ(v1u) ∈ {ϕ(x3) ∩ ϕ(v2)} making bi-colored paths of
length three.

Without loss of generality, we can assume a coloring
that depicts this situation. Let ϕ(v1x1) = 1, ϕ(x1z1) = 2,

ϕ(x1z
′
1) = 3, ϕ(v1u) = 4, ϕ(ux3) = 5 and ϕ(uv2) = 6.

When ϕ(v1u) = ϕ(v2w) = 4, if there is an available
color for v2w other than 4, we are done. Otherwise, we
can assume that ϕ(x2) ⊆ {1,2,3},

ϕ(v2x2) ∈ {ϕ(z2) ∩ ϕ(z
′
2)} and 6 ∈ ϕ(x3) forming

bi-colored paths of length three. This situation is shown in
Figure 1. Remove the colors of the edges uv2 and v2w,
then recolor the edge v2x2 using the Observation. After
recoloring, let the color of v2x2 = c. Clearly, c ∈ {4,5,6}.
If c ∈ {5,6}, we first color uv2 with an available color
from {1,2,3} then, we color the edges v1v and v2w in
order. Otherwise, we uncolor the edge v1u, then color uv2

with an available color from {1,2,3}. Finally, we color
v1u, v1v and v2w in order. At each step there is a color
available for each of the edge.
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Fig. 1: Configuration of claim 9

When ϕ(v1u) = ϕ(v2x2) = 4, we remove the colors of
the edges uv2 and v2w and recolor the edge v2x2 using the
Observation. After recoloring, let the color of v2x2 = c. In
the worst case, let c ∈ ϕ(z2). If c = 4, we uncolor the
edge v1u, this gives at least two colors available for uv2.
We choose a color other than 6 for uv2. Then color uv1,
v1v and v2w in order. Otherwise, (when c 6= 4) we color
uv2, v1v and v2w in order. At each step there is at least one
color available for each of the edge.
From the above, we can also see that a 3-vertex is not
adjacent to a light 3-vertex and a 2-vertex.

Claim 10. G
′

does not contain a 32-vertex adjacent to
either (i) a 31-vertex or (ii) a 3-vertex which is adjacent to
a light 3-vertex.

Suppose to the contrary that G
′

contains a 32-vertex u

adjacent to such a 3-vertex v1. Let N(v1) = {u,v2,x1}. Let
v2 be a 2-vertex. Let u1 and u2 be 2-neighbors of u. By
claim 7, v2 6= u1 or u2. By claim 5, v2 is not adjacent to u1

or u2. Let wi be the other neighbor of ui that is distinct
from u and x2 be a 3-neighbor of v2 which is distinct from
v1. (By claim 5, x2 and wi, i = 1,2 are three vertices). Let

N(wi) = {zi,z
′
i,ui} and N(xi) = {yi,y

′
i,vi}. (If v2 is a light

3-vertex, let the adjacent 1-vertex be v.) Since, G
′

is a

minimum counterexample, H = {G
′ \ {uui}, i = 1,2} has

a star edge coloring ϕ with six colors. To extend ϕ to G
′
,

we remove the colors of the edges uv1 and v1v2. (When v2
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is a light 3-vertex then, we remove the color of the edge
v2v also.) By claim 7, x1 6= x2. By using the Observation
for the edges vixi, i = 1,2 we can assume that
ϕ(vixi) ∈ ϕ(yi).

When ϕ(v1x1) = ϕ(v2x2), there are at most five
forbidden colors for the edge v1v2 so, we color it with the
available color. (Then we color the edge v2v, when v2 is a
light 3-vertex, with the color ϕ(x1y1), if it is available.
Otherwise, ϕ(x1y1) = ϕ(x2y2). So, we set the color of v2v

= ϕ(x2y
′
2)). This makes at most three colors forbidden for

the edge uv1. Therefore, |A(uv1)| ≥ 3.

When ϕ(v1x1) 6= ϕ(v2x2), there are at least two colors
available for the edge v1v2. We choose a color that
appears on ϕ(x1) for the edge v1v2, if it is available.
Otherwise, |ϕ(x1)∩ϕ(x2)| ≥ 1, so we get a color which
does not appear on ϕ(xi), for both i = 1,2. We set this
color for v1v2. (Then we color the edge v2v as above when
v2 is a light 3-vertex.) Therefore, again there are at most
three forbidden colors for the edge uv1, |A(uv1)| ≥ 3.
In both the cases above we can observe that there is at
least one color in A(uv1) which is not present in ϕ(x1)
and ϕ(v2). Let A(uv1) = {α1,α2,α3}.
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Fig. 2: Configuration of claim 10

By claim 8, w1 6= w2, so, by using the Observation for
the edges uiwi, we can assume that ϕ(uiwi) ∈ ϕ(zi), for
i = 1,2. We choose a color, say α1 ∈ A(uv1), which is not
present on the edges incident to the vertices x1 and v2. Set
the color of uv1 = α1. If α1 6= ϕ(uiwi) for both i, we can

further extend the coloring easily to the edges of G
′
. If

α1 = ϕ(uiwi), for one i, say, i = 1, then color uu1 and uu2

in this order. At each step there is an available color for
each edge. If α1 = ϕ(uiwi), for both i, and ϕ cannot be
extended then, {ϕ(wi)∩ϕ(v1)} = {α1}. This coloring is
shown in Figure 2. So, we replace α1 by α2, such that α2 /∈
{ϕ(x1),ϕ(v2)}, if such a color exists, else we choose a
color which is either in ϕ(x1) or in ϕ(v2). This makes the
availability of at least two colors for one of the edges and

at least one for the other. Hence, ϕ can be extended to G
′
,

which is a contradiction.

Claim 11. G
′

does not contain a 3-vertex adjacent to two
32-vertices.

Suppose u is a 3-vertex adjacent to two 32-vertices u1

and u2. Let u3 be the third neighbor of u. Let

N(ui) = {vi,v
′
i,u}, i = 1,2,3. For i = 1,2 let vi and v

′
i be

the 2-neighbors of ui. Let N(vi) = {ui,wi},

N(v
′
i) = {ui,w

′
i}, N(wi) = {xi,x

′
i,vi} and

N(w
′
i) = {yi,y

′
i,v

′
i}.

Consider H = G
′ \ {u1v1,u1v

′
1}. By minimality of G

′
, H

has a star edge coloring ϕ using six colors. If v1 = v2 and

we cannot extend ϕ to the edges of G
′
. We recolor the

edges v
′
1w

′
1 and uu1 using the Observation. In the worst

case, we assume that ϕ(uu1) ∈ ϕ(u2) or ϕ(uu1) ∈ ϕ(u3)

and ϕ(v
′
1w

′
1) ∈ ϕ(y1). If ϕ(uu1) = ϕ(v

′
1w

′
1), then we

color the edges u1v
′
1 and u1v1 in this order. There exists at

least one color for each of them. Otherwise,
|A(u1v

′
1)| ≥ 2, so, we set the color of u1v

′
1 = α ∈ A(u1v

′
1),

such that α ∈ ϕ(u) and α /∈ ϕ(w
′
1), if such α exists. Else,

we get a color α
′
/∈ {ϕ(u)∪ϕ(w

′
1)}. So, we set the color

of u1v
′
1 = α

′
. This gives |A(u1v1)| ≥ 1 so, ϕ can be

extended to G
′
. Similarly, we can extend ϕ to G

′
when

v
′
1 = v

′
2. Therefore, in G

′
, v1 is distinct from v2 and v

′
1 is

distinct from v
′
2.

Also, it can be observed that for i = 1,2, vi is not adjacent

to v
′
i (by claim 5) and wi is distinct from w

′
i (by claim 8).

Now, suppose ϕ cannot be extended to the edges of

G
′
. We recolor the edges v1w1 and v

′
1w

′
1 using the

Observation. In the worst case we can assume that the
color of v1w1 = (say)t1 ∈ ϕ(x1) and the color of

v
′
1w

′
1 = (say)t2 ∈ ϕ(y1). If we get colors available for the

edges u1v1 and u1v
′
1, we are done. Otherwise, we recolor

the edge uu1. After recoloring, let the color of uu1 = α .
We consider two cases.

Case 1: Suppose α /∈ {ϕ(u2)∪ϕ(u3)}.

When α 6= t1 6= t2 or α 6= t1 = t2 we can easily get

available colors for the edges of G
′
. When α = t1 6= t2 (α =

t2 6= t1 respectively), first we color u1v1 (u1v
′
1 respectively),

then we have A(u1v
′
1)≥ 2 (A(u1v1)≥ 2 respectively).

When α = t1 = t2 and there is no color available for
one of the edges in G

′
. We extend this coloring to G

′
in the

following way. Before recoloring the edge uu1 with α -

Case 1.1: If ϕ(uu1) is different from α then,
ϕ(uu1) 6= t1 = t2. As ϕ could not be extended,

|{ϕ(w1)∩ ϕ(w
′
1)}| = 3 and all the three colors incident

with the vertex u must be forbidden. So, ϕ(uu1) must
appear on one of the edges incident to u2 and also on u3.
So, the coloring can be assumed as follows. ϕ(w1v1) = 1,

ϕ(w1x1) = 2, ϕ(w1x
′
1) = 3, ϕ(w

′
1v

′
1) = 1, ϕ(w

′
1y1) = 2

ϕ(w
′
1y

′
1) = 3 and ϕ(uu1) = 4, ϕ(uu2) = 5, ϕ(uu3) = 6.

Let ϕ(u3v
′
3) = 4 and ϕ(u2v

′
2) = 4. After recoloring, now

we get the case that the color of
uu1 = α /∈ {ϕ(u2)∪ϕ(u3)} and α = t1 = t2 = 1. If there
is any color available for the edge uu1 other than 1 and 4,
we are done. Otherwise, we can assume that ϕ(v2w2) = 5

and 6 ∈ ϕ(v3). If ϕ(v
′
2w

′
2) 6= 1 (or 1 is an available color

for uu2) we can swap the colors of the edges uu1 and uu2.
Then it is easy to see that, there is at least one color

available for each of the two edges u1v1 and u1v
′
1 of G

′

and we are done. Therefore, we assume that ϕ(v
′
2w

′
2) = 1.

Now, we remove the colors of the edges u2v2, u2v
′
2, uu2
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and uu1. We set ϕ(u2v
′
2) = α1 and ϕ(u2v2) = α2, such

that α1 /∈ {ϕ(w
′
2) ∪ (ϕ(v2w2),ϕ(uu3))}, (Clearly

α1 ∈ {2,3,4}) and α2 /∈ {ϕ(w2) ∪ (ϕ(uu3),α1)}. For
α2 6= 1, we set ϕ(uu2) = 1 and ϕ(uu1) = 5. For α2 = 1
and α1 = 2 or 3, we set ϕ(uu2) = 4 and ϕ(uu1) = 5. For
α2 = 1 and α1 = 4, we set ϕ(uu2) = 5 and
ϕ(uu1) ∈ {2,3}. Therefore, in each case, the color of

uu1 6= t1 = t2. So, ϕ can be easily extended to G
′
.

Case 1.2: If ϕ(uu1) is the same as α then
|{ϕ(u2)∩ϕ(u3)}| = 1. If we get a color other than α for

uu1 we can easily extend the coloring to G
′
. Otherwise,

we can assume the coloring as in (i) except that the colors

of the three edges out of u2v2, u2v
′
2, u3v3 and u3v

′
3 are

from {2,3,4} and α = t1 = t2 = 1. If

{ϕ(u2v2),ϕ(u2v
′
2)} ∈ {2,3,4}, then we can swap the

colors of the edges uu2 and uu1 and hence, we are done. If

{ϕ(u3v3),ϕ(u3v
′
3)} ∈ {2,3,4}, then we can again swap

the colors of uu2 and uu1, whenever ϕ(v
′
2w

′
2) 6= 1 or 1 is

available for uu2. Otherwise, (when ϕ(v
′
2w

′
2) = 1), we

remove the colors of the edges uu1 and uu2 and then
recolor the edge uu3 using the Observation. After
recoloring ϕ(uu3) ∈ {1,4,5} (Observe that before

recoloring ϕ(uu3) ∈ {ϕ(v3) ∩ ϕ(v
′
3)}). If ϕ(uu3) = 1,

retain ϕ(uu2) = 5 and set ϕ(uu1) = 6. If ϕ(uu3) = {4,5}
and ϕ(u2v

′
2) 6= 6, then set ϕ(uu2) = 6 and

ϕ(uu1) ∈ {4,5}. When ϕ(u2v
′
2) = 6, then 6 ∈ ϕ(w

′
2) (as 1

is not available for uu2). So, we remove the color of the

edge u2v
′
2 and recolor it with a color which is not in

{ϕ(u)∪ϕ(v2)∪ϕ(w
′
2)}. There is at least one such color.

Observe that after recoloring ϕ(u2v
′
2) ∈ {2,3}, so we set

ϕ(uu2) = 1 and ϕ(uu1) = 6. Therefore, in each case, the

color of uu1 6= t1 = t2. So, ϕ can be easily extended to G
′
.

Case 2: Suppose α ∈ ϕ(u2) or α ∈ ϕ(u3).
Case 2.1: When α ∈ ϕ(u3). (and there is no color
available for one of the edges).
From the Observation |{ϕ(u2)∩ϕ(u3)}| = 0 so, without
loss of generality we can assume that α = ϕ(u3v3) = 1,

ϕ(uu3) = 2, ϕ(u3v
′
3) = 3, ϕ(uu2) = 4, ϕ(u2v2) = 5,

ϕ(u2v
′
2) = 6. In order to extend ϕ to the edges of G

′
, we

try to get a color for the edge uu1 other than 1. If such
color is available, we are done. Otherwise, we can assume
that ϕ(v2w2) = ϕ(v

′
2w2

′) = 4. So, we swap the colors of
the edges uu1 and uu2 and set the color of uu2 = 1 and the
color of uu1 = 4. This situation is shown in Figure 3.
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Fig. 3: Configuration of claim 11, case 2.1

Case 2.2: When α ∈ ϕ(u2) and there is no color available
for one of the edges.
Again from the Observation |{ϕ(u2)∩ ϕ(u3)}| = 0. Let

α = ϕ(u2v2) = 1, ϕ(uu3) = 2, ϕ(u3v
′
3) = 3, ϕ(uu2) = 4,

ϕ(u3v3) = 5, ϕ(u2v
′
2) = 6. If there is an available color

for the edge uu1 other than 1 then we are done.

Otherwise, we can assume that 2 ∈ {ϕ(v3)∩ϕ(v
′
3)} and

ϕ(v
′
2w

′
2) = 4. This situation is depicted in Figure 4. So,

we remove the colors of the edges u2v2, uu1 and uu2.
Then, we recolor the edge uu3 using the observation.
Clearly, after recoloring ϕ(uu3) ∈ {1,4,6}.
When ϕ(uu3) = 4, we retain the color of u2v2 and recolor
the edge uu2 with an available color from {3,5} and set
ϕ(uu1) = 2.
When ϕ(uu3) = 6, we set ϕ(uu2) = 1 and color u2v2 with
its available color. There is at least one available color for
it, as 6 /∈ ϕ(w

′
2). If ϕ(u2v2) 6= 2, we set ϕ(uu1) = 2.

Otherwise, we set ϕ(uu1) = 4.
When ϕ(uu3) = 1, as ϕ(v2w2) 6= 4, we retain the colors
of the edges u2v2 and uu2 and set ϕ(uu1) = 2.
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Fig. 4: Configuration of claim 11, case 2.2

Now, in cases 2.1 and 2.2 above, when
α = 1 = t1 = t2, after recoloring, ϕ(uu1) 6= t1 = t2, so,
there are at least two colors available for u1v1 and at least
one for u1v

′
1. When α = 1 6= t1 6= t2, after recoloring, if

ϕ(uu1) 6= t1 6= t2, there are at least three colors available

for u2v2 and at least one for u1v
′
1. Otherwise, if

ϕ(uu1) = t1 6= t2 (resp. = t2 6= t1), we color the edges u1v1

(resp. u2v2) and u1v
′
1 (resp. u2v

′
2) in order. At each step

there is a color available for each of the edges. Hence, ϕ

can be extended to G
′
, a contradiction.

Now, we delete all the vertices of degree one from G
′

and obtain a graph H
′
= G

′ \ {v ∈ V (G
′
) | d(v) = 1}.

Clearly, it is connected and has maximum average degree
< 8

3
. Using all the above claims we get the following

reducible configurations in H
′
.

C1) The minimum degree of H
′ ≥ 2. (from claims 1 & 2)

C2) H
′

does not contain -
C2.1) two adjacent 2-vertices. (from claims 3, 4 & 5)
C2.2) a 3-vertex adjacent to three 2-vertices. (from claims
6 & 9)
C2.3) a 31-vertex adjacent to a 32-vertex. (from claims 7,
8, 9 & 10)
C2.4) a 3-vertex adjacent to two 32-vertices. (from claims
8, 9 & 11)
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Next, we set a weight function w : V (H
′
) → R with

w(v) = d(v)− 8
3
, ∀ v ∈ V (H

′
). It can be easily observed

that as mad(H
′
) < 8

3
, the total sum of weights of all the

vertices in the graph H
′

is strictly negative. That is,

∑v∈V (H
′
)
w(v)< 0.

Then, we redistribute the weights among the vertices
according to the discharging rules described below, to

obtain the weight function w
′
. During the discharging

process, the sums of the values of w
′

and w, counting over
all the vertices remain same.

Let v∈V (H
′
) be a k-vertex, k = 2,3. The initial weight

assigned to the 2-vertices is - 2
3

units and to the 3-vertices

is 1
3

units. We move the positive weights from 3-vertices
to 2-vertices using the following discharging rules:

A 3-vertex sends-
R1 1

3
units to the adjacent 32-vertex.

R2 1
3

units to each of the adjacent 2-vertices.

Case 1: Let v ∈V (H
′
) be a 2-vertex.

From C2.1 and C2.2, a 2-vertex v is adjacent to 3-vertices
only. Therefore, using R2, the 3-vertices send 1

3
units to v.

So, w
′
(v) =− 2

3
+ 2× 1

3
= 0.

Case 2: Let v ∈V (H
′
) be a 3-vertex.

From C2.2, a 3-vertex v can be adjacent to at most two 2-
vertices.
When v is a 32-vertex, by C2.3 and C2.4, v is adjacent to
at least one 30-vertex. So, by R1 it receives 1

3
units from

the 30-vertex, then by R2 it sends 1
3

units to each of the

adjacent 2-vertices. Therefore, w
′
(v) = 1

3
+ 1

3
−2× 1

3
= 0.

When v is a 31-vertex, it sends 1
3

units to the adjacent 2-

vertex. Therefore, by using R2, w
′
(v) = 1

3
− 1

3
= 0.

When v is a 30-vertex, by C2.4 it can be adjacent to at most
one 32-vertex. So, it sends 1

3
units to it. Therefore, by using

R1, w
′
(v) = 1

3
− 1

3
= 0. If v is not adjacent to any 32-vertex,

then its weight remains unchanged. So, w
′
(v) = w(v) = 1

3
.

Therefore, w
′
(v)≥ 0 for every v∈V (H

′
). This leads us

to the contradiction 0 ≤ ∑v∈V (H
′
) w

′
(v) = ∑v∈V (H

′
) w(v)<

0. Therefore, H
′

cannot exist. Hence, the minimal counter
example G

′
also does not exist. This completes the proof.

2 Conclusion

We have determined the star chromatic index of graphs
with maximum degree ∆ ≤ 3 and maximum average

degree less than 8
3
. We have shown that χ

′
s(G) ≤ 6 for

such graphs.
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Graph Theory, Vol. 72, No. 3, pp. 313-326(2013).

[2] X.S. Liu and K. Deng, An Upper Bound on the Star

Chromatic Index of Graphs with δ ≥ 7, J. Lanzhou Univ.

(Nat. Sci.), Vol. 44, pp. 94-95(2008).
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