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Abstract: In this article, we present numerical approximations to lower bounds of Structured Singular Values (SSV) for a family of

Pascal matrices. In mathematics, particularly in matrix theory, Pascal matrix is an infinite matrix containing the binomial coefficients

as its elements. The obtained lower bounds of SSV are then compared with the well-known MATLAB routine mussv available in

MATLAB Control Toolbox.
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1 Introduction

Pascal’s triangle is usually represented in the form of a
square matrix which possesses two different forms: the
very first is lower triangular matrix, say a matrix Pn or
even as a full symmetric matrix say Sn. Also, it’s abvious
that SnSt

n, where St
n represents a transpose of matrix Sn, is

nothing but the cholesky decomposition of symmetric
matrix Sn. While the other side of picture contains a
matrix Pn which can be decomposed by a special
summation matrices.

In the present article, our main objective is to discuss
a numerical method in order to approximate SSV for a
family of pascal matrices. The µ-values introduced by
Doyle [8] is a well-known mathematical tool in control
which discusses stability and synthesis of the
linear-control systems subject to certain class of
uncertainties. The perturbation structures addressed by
SSV are very generic. These structures allow to cover all
kinds of parametric perturbations which can be
incorporated into the linear control system by means of
both real and complex Linear Fractional Transformations
LFT’s. We refer to [3,5,6,7,8] and the references therein
for more details.

The computation of an exact value of SSV especially
for matrices with higer dimensions appears to be
NP-hard [2]. There has been much written work about the
approximation of the bounds of SSV. Almost all of

numerical methods, which are used in practice,
approximate both upper and lower bounds of SSV. The
computation of an upper bound of the SSV is to provide
sufficient conditions which guarantees the robust stability
analysis of feedback systems, while on the other hand a
lower bound provides sufficient conditions which
guarantees the instability of the linear feedback systems.

The well-known MATLAB function mussv available
in the Matlab Control Toolbox approximates an upper
bound of SSV by means of the well -known
methodologies-the one like diagonal balancing
thechnique and Linear Matrix Inequlaity technique
(LMI) [4]. Furthermore, an approximation of lower
bounds of SSV is by means of the generalization of power
technique [9].

Definition 1. [1]. The (n+1)× (n+1)Pascal matrix Pn is

defined as

Pn(i, j) :=

(
i

j

)
; i, j = 0, ...,n

with
(

i
j

)
= 0; j > i.

Further we define the matrices like In, Qn, Dn as;

In := diag(1,1, ...,1);

Qn(i, j) := 1, j 6 i; Qn(i, j) := 0, j > i;
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Dn := 1, i = 0, ...,n;

Dn(i+ 1, i) :=−1, i = 0, ...,n− 1;

Dn(i, j) := 0, j > i or j < i− 1.

The Pascal matrix Pn is characterized by its construction
rule, that is,

Pn(i, j) := Pn(i,0) = 1, i = 0, ...,n; Pn(i, j) := 0 j > i.

Pn(i, j) := Pn(i− 1, j)+Pn(i− 1, j− 1) i, j = 1, ...,n.

Let’s consider the n-dimensional either a real (or a
complex) matrix M. The matrix M could be either square
or rectangular in nature. Also consider a family of block
diagonal matrices ∆G.

∆G = {Diag(Γi,α jI j) : Γi ∈ C
mi,mi(Rmi,mi),α j ∈ C(R)},

where I j is an identity matrix with the dimension j, the
same as the dimension of the given matrix M.

Definition 2.Suppose that M is a n-dimensional either

square or a rectangular, real (or complex) matrix and

also consider a family of block diagonal matrices ∆G.

Then the SSV known as µ-value is defined as:

µ∆G
(M) :=

1

min{‖∆‖2 : ∆ ∈ ∆G,det(I−M∆) = 0}
. (1)

We also consider the special case when the set ∆G allows
us to have only pure complex uncertainties. We denote
∆∗
G

instead of ∆G for the family of complex block
diagonal matrices. The matrix ∆ ∈ ∆∗

G
implies the fact

that exp(iϕ)∆ ∈ ∆∗
G

for any scalar ϕ ∈ R. This lead us
with the fact that ∆ ∈ ∆∗

G
in such a way that ρ(M∆) = 1

if and only if there exists the perturbation ∆ ′ ∈ ∆∗
G

having
the same unit 2-norm such that the matrix M∆ ′ has the
maximum eigenvalue exactly equal 1, in turn this implies
det(I − M∆ ′) = 0. The above discussion allows us to
write down the following alternative expression for
µ-value, that is:

µ∆∗
G
(M) =

1

min
{
‖∆‖2 : ∆ ∈ ∆∗

G
, ρ(M∆) = 1

} . (2)

Next, we give the definition of a matrix-valued function
∆(t) which acts as local extremizer and maximizes the
modulus of the greatest eigenvalue λ1(t).

Definition 3. [11]. A matrix-valued function ∆(t) ∈ ∆∗
G

such that ‖∆(t)‖2 ≤ 1 and εM∆ possesses a greatest

eigenvalue λ1(t) that locally maximizes the modulus of

Λ
∆∗
G

ε (M) is known as a local extremizer.

2 µ-value based on structured ε spectral

value sets

The structured epsilon spectral value set of given matrix
M ∈Cn×n with respect to a perturbation level say ε is given
as:

Λ ∆G
ε (M) = {λ ∈ Λ(εM∆) : ∆ ∈ ∆G}. (3)

In Equ. (3), the quantity Λ(·) express the spectrum of a
matrix while the admissible perturbation ∆ possesses a
unit 2-norm that is ‖∆‖2 = 1. For the special case when
we have purely complex perturbations that is ∆∗

G
, the

structured spectral value set Λ
∆G
ε (M) is nothing but

simply a disk having its centered at the origin. While for a
more generic case that is: of mixed complex and real
uncertainties, the set

Σ
∆G
ε (M) = {ξ = 1−λ : λ ∈ Λ

∆G
ε (M)}. (4)

allows us to express µ-value as:

µ∆G
(M) =

1

arg min{0 ∈ Σ
∆G
ε (M)}

. (5)

For a purely complex uncertainties, the underlying set ∆∗
G

allows us to write down the alternative form of SSV as:

µ∆∗
G
(M) =

1

arg min{max |λ |= 1}
. (6)

Here, λ ∈ Λ
∆∗
G

ε (M).

2.1 The mathematical Problem

We consider the following optimization problem

ξ (ε) = argmin |ξ |, (7)

where ξ ∈ Σ
∆G
ε (M) for a fixed value of perturbation level

ε , that is ε > 0. From above discussion on SSV, µ∆G
(M)

is the reciprocal of the minimum value of perturbation
level ε so that ξ (ε) = 0 which suggests us to give a
two-level algorithm, that is, inner and outer algorithm: In
the inner algorithm, we solve Equ. (7). While for the
outer algorithm, we first vary perturbation level ε by
means of some iterative method which helps to exploits
the knowledge of the computation of exact derivative of
an extremizer say ∆(ε) with respect to perturbation level
ε . We solve the optimization problem addressed as in
Equ. (6) by first solving a gradient system of Ordinary
Differential Equations (ODE’s). This computation only
produces a local minimum which, in turn, gives an upper
bound for perturbation level ε and hence as a result one
obtains the lower bound for µ∆G

(M). The purely complex
uncertainties set ∆∗

G
can be addressed by taking the inner

algorithm to compute a local optima for the maximization
problem as addressed below:

λ (ε) = argmax |λ |, (8)

where in Equ. (8) λ ∈ Λ
∆∗
G

ε (M) which then produces a
lower bound for µ∆∗

G
(M).
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3 Pure Complex Perturbations [11]

In this section, we establish the solution of the inner
problem as mentioned in Equ. (8). This includes the
estimation of the quantity µ∆∗

G
(M) for matrix M ∈ Cn,n

while taking into account a pure complex uncertainties
set.

∆∗
G = {diag(α1I

1
, ...,αnIn;∆1, ...,∆F) : αi ∈C,∆ j ∈C

m j ,m j}.
(9)

In the following Lemma 1, we give the eigenvalue
perturbation result in order to approximate the rate of
change in the eigenvalue λ (t).

Lemma 1.Consider a matrix family Ω(t) : R → Cn,n and

consider that λ (t) is one of the eigenvalue of Ω which

converges to a simple eigenvalue say λ1 of Ω0 = Ω(0) as

t → 0. Then there exists eigenvectors v0 and w0 such that

λ (t) is analytic near t = 0 with

λ̇ (t)|t=0 =
w∗

0Ω1v0

w∗
0v0

.

Here Ω1 = Ω̇ (0) where Ω̇(0) denotes the time derivative

of matrix Ω(t) at t = 0 and v0,w0 are right and left

eigenvectors of Ω0 associated to λ0, that is,

(Ω0 −λ0I)v0 = 0 and w∗
0(Ω0 −λ0I) = 0.

Since our goal is to give a solution for the maximization
problem as addressed in Equ. (8). This requires the
computation of an uncertainty ∆local such that
ρ(εA∆local) has the maximum growth among all
admissible perturbations ∆ ∈ ∆∗

G
so that ∆ having a unit

2-norm that is ‖∆‖2 ≤ 1. In the following we call λ1 to be
the greatest eigenvalue if |λ1| equals the spectral radius of
the matrix (εA∆local).

The following theorem provides the characterization of
local extremizers ∆(t).

Theorem 1. [11]. The block diagonal matrix

∆local = {Diag(α1I1, ...,αnIn;∆1, ...,∆F)},

possesses a unit 2-norm, that is, ‖∆local‖2 = 1 and acts as

a local extremizer of structured epsilon spectral value set

Λ
∆∗
G

ε (M) when

|αr|= 1 ∀ r = 1, . . . ,n and ‖∆h‖2 = 1 ∀h= 1, . . . ,F.

3.1 A system of ODEs to compute extremal

points of Λ
∆ ∗
B

ε (M).

In order to approximate a local maximizer ∆(t) for

greatest eigenvalue |λ1(t)|, with λ1(t) ∈ Λ ∆G∗
ε (M) we first

develop a matrix-valued function ∆(t) that maximizes the
greatest eigenvalue λ1(t) of (εM∆(t)) which attains the
maximal local growth. Secondly, we derive a gradient
system of ordinary differential equations which must
satisfy the choice of this initial valued matrix ∆(0).

3.2 The optimization problem [11].

Consider that λ1 = |λ1|e
iθ be the simple eigenvalue having

eigenvectors v,w which are normalized such that

‖w‖2 = ‖v‖2 = 1, w∗v = |w∗v|e−iθ
. (10)

As a result of Lemma 1, we get

d

dt
|λ1|

2 = 2|λ1|Re
( u∗∆̇v

eiθ w∗v

)
=

2|λ1|

|w∗v|
Re(u∗∆̇v), (11)

where u = M∗w.

By considering ∆ ∈ ∆G, we compute the direction ∆̇ =
U which locally maximizes the growth of the modulus of
greatest eigenvalue λ1. From this discussion, we get

U = diag(ω1Ir1
, . . . ,ωsIrN

,Ω1, . . . ,ΩF) (12)

as a solution of the maximization problem

U∗ = argmax{Re(u∗Ux)}

subject to Re(δ iωi) = 0, i = 1 : N,

and Re〈∆ j,Ω j〉= 0, j = 1 : F. (13)

The Lemma 2 gives the solution of the optimization
problem as discussed in the Equ. (12).

Lemma 2.[11] We make use of the notation as introduced

earlier in the above discussion and v,u being partitioned, a

solution U∗ of the maximization problem discussed in Equ.

(13) is given as

U∗ = diag(ω1Ir1
, . . . ,ωNIrN

,Ω1, . . . ,ΩF), (14)

with

ωi = νi (v
∗
i ui −Re(v∗i uisi)si) , i = 1, . . . ,N (15)

Ω j = ζ j

(
uN+ jv

∗
N+ j −Re〈∆ j,uN+ jv

∗
N+ j〉∆ j

)
, j = 1, . . . ,F.(16)

Here in the solution U∗, the coefficient νi > 0 is nothing

but the reciprocal of the absolute value of the right-hand

side in Equ. (15) and is other than zero while νi = 1 else.

Similarly the coefficient ζ j > 0 and is the reciprocal of the

Frobenius norm of the matrix obtained on the right hand

side in Equ. (16) and is other than zero while ζ j = 1 else.

The result obtained in Lemma 2 can alternatively be
expressed as:

U∗ = D1P∆∗
B
(uv∗)−D2∆ . (17)

Here P∆∗
G
(·) is the orthogonal projection while D1,D2 ∈

∆∗
B

are diagonal matrices where the orthogonal matrix D1

appears a positive matrix.
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4 The gradient system of ODEs

Lemma 2 allows us to consider the following ordinary
differential equation on the manifold ∆∗

G
:

∆̇ = D1P∆∗
G
(uv∗)−D2∆ . (18)

Here v(t) is an eigenvector having a unit 2-norm and it is
associated to a simple eigenvalue λ1(t) of the matrix
εM∆(t) associated with a fixed perturbation ε > 0. The
ordinary differential equation (18) represent a gradient
system because right-hand side is nothing but the
projected gradient of U 7→ Re(u∗Uv).

4.1 Choice of initial value matrix ∆0 and ε0

In two-level algorithm for approximating ε0 we make use
of the admissible perturbation ∆ obtained for the previous
value ε1 as the initial value matrix for the gradient system
of ODEs. While in order to gain the locally maximal
growth of |λ1(t)| we choose

∆0 =C P∆G
(wv∗), (19)

the positive diagonal matrix C is taken in such a way that
∆0 ∈ ∆G.

While on the other hand a very natural choice for ε is
given as

ε =
1

µ̂∆G
(M)

, (20)

here µ̂∆G
(M) is the upper bound of µ-value which is

approximated by well-known MATLAB function mussv.

4.2 Outer algorithm

In this section, we approximate the lower bound of SSV,
µ∆B

(M) by means of outer algorithm. But we note
immediately the fact that the principles remain same as
discussed in the previous case, so one can treat the case of
purely complex uncertainties in detail and provide a brief
discussion on the extension to the case of mixed complex
and real uncertainties.

5 Numerical Experimentation

In this section we propose the comparison of the
lower bounds of µ-values approximated by mussv
and the algorithm [11].

Case-I: 2-dimensional Pascal Matrix P2.
The following matrix P2 is generated by using
MATLAB command, that is P2 = pascal(2,1). This
returns the lower triangular Cholesky factor (up to

the signs of the columns) of the Pascal matrix. It is
involutary, that is, it is its own inverse.

P2 =

[
1 0
1 −1

]
.

Consider the perturbation set as:

∆B = {diag(∆1) : ∆1 ∈ C2,2}.

Using Matlab function mussv, we obtain the

perturbation ∆̂ with

∆̂ =

[
0.2764 0.4472
−0.1708 −0.2764

]
,

while ‖∆̂‖2 = 0.6180. The upper bound is obtained
as µupper

PD = 1.6180 while the same lower bound is

approximated as µ lower
PD = 1.6180.

Now, by making use of the algorithm [11], we
obtain the perturbation ε∗∆∗ with

∆∗ =

[
0.4472 0.7236
−0.2764 −0.4472

]
,

while ε∗ = 0.6180 and ‖∆∗‖2 = 1. The same lower
bound is approximated µlower = 1.6180 as the one
approximated by MATLAB function mussv.

Case-II: 2-dimensional Pascal Matrix P∗
2 .

The following matrix P∗
2 is generated by using

MATLAB command, that is P2∗ = pascal(2,2). This
returns a transposed and permuted version of
pascal(n,1). P∗

2 is a cube root of the identity matrix.

P∗
2 =

[
−1 −1
1 0

]
.

Consider the perturbation set as:

∆B = {diag(∆1) : ∆1 ∈ C2,2}.

Using Matlab function mussv, we obtain the

perturbation ∆̂ with

∆̂ =

[
−0.4472 0.2764
−0.2764 0.1708

]
,

while ‖∆̂‖2 = 0.6180. For this example, we obtain an
upper bound µupper

PD = 1.6180 while the same lower

bound is approximated as µ lower
PD = 1.600.

Now by making use of algorithm [11], we obtain the
perturbation ε∗∆∗ with

∆∗ =

[
−0.7235− 0.0092i 0.4472− 0.0046i

−0.4472+ 0.0046i 0.2763− 0.0092i

]
,

while ε∗ = 0.6181 and ‖∆∗‖2 = 1. The lower bound is
approximated as µlower = 1.6132 which is much better
than the one obtained by mussv function.
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Fig. 1: Comparison of bounds of SSV

Figure 1 shows the comparison of lower and
upper bounds of SSV for the matrix-valued function
P(n,w) for the various values of frequency w that is
w = 0,1,2,3,4 and n = 2 when computed by MUSSV
and algorithm [11].

Case-III: 3-dimensional Pascal matrix P3.
The following matrix P3 is generated by using
MATLAB command, that is P3 = pascal(3,1). This
returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is
involutary, that is, it is its own inverse.

P3 =




1 0 0
1 −1 0
1 −2 1


 .

Consider the perturbation set

∆B = {diag(δ1I1,δ2I1,δ3I1) : δ1,δ2,δ3 ∈ R}.

Using Matlab function mussv, we obtain the

perturbation ∆̂ with

∆̂ =




1 0 0
0 1 0
0 0 1


 ,

while ‖∆̂‖2 = 1. For this example, we obtain the
upper bound µupper

PD = 1 while the same lower bound

is approximated as µ lower
PD = 1.

Now by making use of our algorithm [11], we
obtain the perturbation ε∗∆∗ with

∆∗ =



−1 0 0
0 −1 0
0 0 −1


 ,

while ε∗ = 1 and ‖∆∗‖2 = 1.

Case-IV: 3-dimensional Pascal matrix P∗
3 .

The following matrix P∗
3 is generated by using

MATLAB command, that is P3∗ = pascal(3,2). This
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Fig. 2: Comparison of bounds of SSV

returns a transposed and permuted version of
pascal(n,1). P∗

3 is a cube root of the identity matrix.

P∗
3 =




1 1 1
−2 −1 0
1 0 0


 .

Consider the perturbation set

∆B = {diag(∆1) : ∆1 ∈C3,3}.

Using the Matlab function mussv, we obtain the

perturbation ∆̂ with

∆̂ =




1 0 0
0 1 0
0 0 1


 ,

while ‖∆̂‖2 = 1. For this example, we have
approximated an upper bound µupper

PD = 2.8059 while
the same lower bound is approximated as
µ lower

PD = 2.8059. Now, by making use of our
algorithm [11], we obtain the perturbation ε∗∆∗ with

∆∗ =




1 0 0
0 1 0
0 0 1


 ,

and ‖∆∗‖2 = 1. In this case, lower bound is
approximated as µlower = 2.8059.

Figure 2 shows the comparison of lower and
upper bounds of SSV for the matrix-valued function
P(n,w) for the various values of frequency w that is
w = 0,1,2,3,4 and n = 3 computed by MUSSV and
algorithm [11].

Case-V: 6-dimensional Pascal matrix P6.
The following matrix P6 is generated by using
MATLAB command, that is P6 = pascal(6,1). This
returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is
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involutary.

P6 =




1 0 0 0 0 0
1 −1 0 0 0 0
1 −2 1 0 0 0
1 −3 3 −1 0 0
1 −4 6 −4 1 0
1 −5 10 −10 5 −1



.

Consider the perturbation set

∆B = {diag(∆1) : ∆1 ∈C
6,6}.

Using the Matlab function mussv, we obtain the

perturbation ∆̂ with

∆̂ =




0 0.0001 0.0004 0.0010 0.0022 0.0042

−0.0001 −0.0005 −0.0017 −0.0043 −0.0093 −0.0180

0.0002 0.0009 0.0030 0.0075 0.0162 0.0313

−0.0002 −0.0008 −0.0026 −0.0067 −0.0143 −0.0277

0.0001 0.0004 0.0012 0.0030 0.0064 0.0124

0 −0.0001 −0.0002 −0.0005 −0.0012 −0.0022



,

while ‖∆̂‖2 = 0.0548. For this example, we
approximate the upper bound µupper

PD = 18.2441 while
the same lower bound is obtained as
µ lower

PD = 18.2441.
Now, by making use of our algorithm [11], we

obtain the perturbation ε∗∆∗ with

∆ ∗=




0.0004 0.0023 0.0074 0.0186 0.0401 0.0775

−0.0019 −0.0098 −0.0314 −0.0790 −0.1701 −0.3288

0.0032 0.0170 0.0546 0.1373 0.2956 0.5713

−0.0029 −0.0150 −0.0483 −0.1214 −0.2614 −0.5052

0.0013 0.0067 0.0217 0.0544 0.1172 0.2264

−0.0002 −0.0012 −0.0039 −0.0099 −0.0212 −0.0410



,

while ε∗ = 1.0000. And ‖∆∗‖2 = 1. In this case the
obtained lower bound takes the form as
µlower = 18.2441.

Case-VI: 6-dimensional Pascal matrix P∗
6 .

The following matrix P∗
6 is generated by using

MATLAB command, that is P6∗ = pascal(6,2). This
returns a transposed and permuted version of
pascal(n,1). P∗

6 is a cube root of the identity matrix.

P∗
6 =




−1 −1 −1 −1 −1 −1
5 4 3 2 1 0

−10 −6 −3 −1 0 0
10 4 1 0 0 0
−5 −1 0 0 0 0
1 0 0 0 0 0



.

Consider the perturbation set

∆B = {diag(δ1I2,δ2I2,δ3I2) : δ1,δ2,δ3 ∈ R}.

Using the Matlab function mussv, we obtain the

perturbation ∆̂ with
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Fig. 3: Comparison of bounds of SSV

∆̂ =




−0.0042 0.0180 −0.0313 0.0277 −0.0124 0.0022
−0.0022 0.0093 −0.0162 0.0143 −0.0064 0.0012
−0.0010 0.0043 −0.0075 0.0067 −0.0030 0.0005
−0.0004 0.0017 −0.0030 0.0026 −0.0012 0.0002
−0.0001 0.0005 −0.0009 0.0008 −0.0004 0.0001

0 0.0001 −0.0002 0.0002 −0.0001 0



,

while ‖∆̂‖2 = 0.0548. For this example, we obtain the
upper bound µ

upper
PD = 5.3454 while the same lower

bound is approximated as µ lower
PD = 5.3440. Now, by

making use of our algorithm [11], we obtain the
perturbation ε∗∆∗ with ε∗ and ∆∗ is given as follows.

∆∗ =




−0.0781 0.3278 −0.5712 0.5064 −0.2274 0.0416
−0.0403 0.1693 −0.2951 0.2616 −0.1175 0.0215
−0.0186 0.0783 −0.1364 0.1209 −0.0543 0.0099
−0.0073 0.0308 −0.0536 0.0476 −0.0214 0.0039
−0.0024 0.0099 −0.0172 0.0152 −0.0068 0.0013
−0.0008 0.0032 −0.0055 0.0049 −0.0022 0.0004




+



−0.0025i 0.0001i 0.0008i 0.0002i −0.0002i −0.0004i

−0.0014i 0.0004i −0.0001i 0.0004i −0.0003i −0.0002i

−0.0007i 0.0004i −0.0005i 0.0005i −0.0003i −0.0001i

−0.0001i −0.0004i 0.0008i −0.0007i 0.0003i −0.0001i

0.0002i −0.0013i 0.0024i −0.0021i 0.0009i −0.0002i

0.0005i −0.0024i 0.0042i −0.0037i 0.0017i 0.0003i




and ‖∆∗‖2 = 1.0000 and ε∗ = 0.0548. The obtained
lower bound is as µlower = 5.3454.

Figure 3 shows the comparison of lower and
upper bounds of SSV for the matrix-valued function
P(n,w) for the various values of frequency w that is
w = 0,1,2,3,4,5. and n = 6 when computed by
MUSSV and algorithm [11].

6 Conclusion

In this article we have presented the approximation of
µ-values for the family of Pascal matrices. Different
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experiments have been performed while taking into
account the different pascal matrices with varoius
dimensions. The experimental results show how the lower
bounds of SSV approximated by mussv function and the
one approximated by alogorithm [11] are related to each
others.
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