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Abstract: A novel mathematical model is presented to analyse the performance of cloud computing centers using non-Markovian

queuing model M/G/c/c+r/PR with priority as a queue discipline.Task arrivals are categorized as higher-priority (Hpriority) task queue

and low-priority (Lpriority) task queue.This model allows cloud providers to determine the performance metrics of the task queue such

as average number of tasks, probability of congestion, and probability of no waiting time with respect to server and buffer size. Two

feasible conditions, namely non-preemptive and preemptive task priorities are discussed in this work. This approach is validated using

discrete-event simulator and Maplesoft for the above mentioned parameters and the analysis has been done based on the arrived results.
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1 INTRODUCTION

Cloud computing (CC) is one among the parallel and
distributed computing system which is widely-used these
days [1].Cloud computing facilitates dynamically scalable
and virtualized resources through the internet. Three
broad categories of CC are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a
service (SaaS) [2].There are ample advantages of cloud
computing, but at the same time service users and
providers of Cloud computing faces many challenges.

A task is submitted to the cloud system to get a
service. At the time of task submission, there is Service
Level Agreement s (SLA’s) between cloud users and
providers. This SLA’s defines the expectation of the cloud
user and QoS. Some of the common issues addressed in
SLA are security, reliability, power efficiency, availability
and so on. The performance metrics are also mentioned in
terms of Quality of Service (QoS) such as average waiting
time, probability of congestion, probability of no waiting
time and so on.

Cloud providers face with many problems while
sizing their cloud system in order to meet the SLA’s.
Hence, cloud providers should choose appropriate tool to

assist in providing good service to cloud users. Queuing
theory tool is used in this paper for determining the
performance metrics such as average waiting time,
probability of congestion, probability of no waiting time
and to achieve QoS. There are two broad categories in
queuing approach, namely Markovian queuing approach
and non-Markovian queuing approach. The service
pattern is not predictable in cloud system and thereby it
should follow the general distribution [3]. Hence the
cloud system is modelled as a non-Markovian queuing
model.

A user may request a particular infrastructure (or) a
particular platform (or) a particular platform (or)
particular software with unique probabilities. Assuming
the service time of arrived tasks for each and every
component of the resultant
Platform-Infrastructure-Software follows an exponential
distribution/Erlang distribution, the total service time of
the arrived tasks in the cloud center follows a
hyper-Erlang distribution /hyper-exponential distribution.
In such a case, the relative standard deviation
(RSD = Standarad deviation

Mean value
) of the resultant task

distribution of service time exceeds one [4]. From here it
is arrived with a result that the task service time should be
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modelled with a general distribution, relatively one that
permits the RSD to be changed independently of the
average (mean) value.

Therefore, in this proposed work, cloud center is
developed in the form of M/G/c/c+r/PR queuing model
with characteristics of single task arrival and a finite
capacity task buffer. Performance is evaluated using
Laplace transform -based mathematical model and
Markov Chain (MC) is used to obtain task count. This
work is aimed to obtain the performance metrics of the
task queue such as average number of tasks, probability
of congestion, and probability of no waiting time with
respect to server and buffer size. This approach is
validated using discrete event simulator [5] and Maplesoft
[6] for the above mentioned parameters.

Such non-Markovian queuing model can be analysed
by means of stochastic process. Initially, a continuous
time process is defined, which records the number of
tasks in the cloud system. Since the proposed model is not
a Markovian process, it is necessary to employ the known
embedded Markov Chain process for analysing the cloud
system and hence obtained with an approximate preferred
performance metrics. This proposed model has the
following stages:

• This proposed model considers cloud computing
centers with Poisson task arrivals and follows
general service distribution of task.

• This model provides probability distribution of the
arrived response time of tasks and number of tasks
in the cloud system. This also offers average
response time, average waiting time, probability of
congestion and probability of no waiting time.

• Cloud computing centers performance is dependent
on the RSD of the arrived service time of the task
and size of the system. Larger values of RSD results
in higher response time and low utilization. Hence
in this proposed work it is assumed that RSD=0.5
and 1.4.

• Performance can be improved based on the RSD of
service time.

Queuing model considered in this work is a
non-Markovian queuing with priority as a queue
discipline. Basically, there are two feasible priority
conditions, namely

• Non-Preemptive task priority
• Preemptive task priority

These priority conditions can be used based on the
application. To make the Scheduling mechanism efficient,
it is necessary to allocate and distribute the tasks to
various resources without compromising the Quality of
Service (QoS). Moreover, it is mandatory to schedule the
task in an optimized and workload that should be
balanced based on two priority conditions. These two
conditions are used in different situations based on the
application. Now from the previous research work of the

authors, namely non-preemptive task priority
(Improved-Weighted Round Robin algorithm) [7] and
Preemptive task priority (Preemptive Improved-Weighted
Round Robin algorithm) [8], scheduling and load
balancing of the arrived tasks can be performed. In cloud
computing, resource scheduling and load balancing have
attracted many researchers attention. There are many
research work under progress and some of the related
works has been studied to solve the mechanism-related
issues. In [9], performance (evaluation and
characterization) of queuing system on cloud was
proposed with general arrival patterns and also general
service patterns. Queuing theory approach has been
considered for performance analysis and validated their
approximation using discrete event simulator for QoS
metrics like response time of task, probability of
congestion and so on. Validation of this work is limited to
the accuracy of the approximate solution. This work does
not validate the adequacy of the general model itself in a
specific cloud System.

In[10], a successful and exact solution used for the
determination of probability along with cumulative
distribution functions of a task response time was derived,
by the assumption that both task inter-arrivals and task
service times are distributed exponentially. By means of
the response time distribution, the correlation along with
the maximum number of customers, the minimum
resources for service and the maximum service levels was
obtained. Only performance measure analysed here is
“Response time”.

Non-Markovian with single server queuing model for
the non-preemptive task has been developed in [11].
Moreover, user’s need of resources from the cloud
computing providers with differentiated quality of service
has been analysed. Analysis and numerical results shows
that quality of service has been guaranteed for scheduling
user-submitted tasks and also CC service providers yields
the highest profit. Priority-queue discipline is considered
in this paper. But only Non-pre-emptive priority is
discussed here.

Priority queue discipline with non-preemptive task
scheduling has been discussed in [12]. In this work, single
server queuing model considered with finite capacity
having buffer size two. These buffers are considered for
two different categories of traffic (real time and non-real
time). An efficient algorithm has been developed to
compute various performance measures for priority
queuing. Preemptive task scheduling has not been
discussed in this work.

Single-server queue system has been modelled for
real-time soft system and its performance is approximated
in In[13]. Non-preemptive earliest-deadline first is
considered as the service discipline for single-server
Markovian queuing model. In this work, there is no time
limit for the task to end the service. Loss rate is the key
parameter considered in this work for “n” of tasks in the
cloud system.
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In [14,15,16], various Markovian queuing model
techniques were proposed. Various performance
parameters like allocation of resources, and task
scheduling for cloud computing centers are evaluated by
introducing Markovian queuing model to satisfy the
demands of the users and performing the service
effectively. Response time is the only parameter that has
been analysed.

In [17], markovian queuing system is modelled with
multiple services in which arrival process follows
markovian task arrival and service time follows phase
type distribution. Different phases considered in this
queuing system are balking of tasks, intolerance and so
on. Such queuing system suits only for modelling
wireless communication networks.

Non-markovian queuing model is proposed for
heterogeneous type of distributed system in [18].
Reallocation policies are proposed for dynamic task
scheduling to reach the optimal result for heterogeneous
system. Main advantage of the proposed model is to
identify the excess load servers and transferring the task
to other servers for effective service. No data dependency
considered in this work. This model works only for
independent tasks.

In [19], M/M/1 queuing system for non-preemptive
tasks was proposed with priority scheme. In [20],
multiple server queuing system for non-preemptive tasks
with priority scheme was proposed for heterogeneous
systems. NS-2 simulator was used for experimental
analysis. These two approaches suits only for
non-pre-emptive task priority.

Priority queue discipline model is discussed in [21] by
using fuzzy theory. Here, single-server queuing system is
assumed for scheduling the arrived task. Moreover, both
arrivals and tasks service follows Poisson distribution.

From the above mentioned research work, it is clearly
identified that, the mathematical model for cloud centers,
addressing of queue performance, priority queue
discipline, namely non-preemptive task priority,
preemptive task priority, task scheduling and load
balancing has been addressed and handled independently.
And also it is identified that only few works have
addressed the non-Markovian Queuing system and very
few among these adopted the analytical approach.
Moreover, analytical model and task performance
analysis have not been done for cloud-computing
environment using non-Markovian queuing system with
priority as queue discipline. This proposed work is aimed
towards simultaneous addressing of all the above
mentioned aspects and worked towards the development
of non-Markovian queuing model with priority as a queue
discipline. In this proposed work, mathematical model are
verified through discrete event simulator and Maplesoft.

Further this paper is organized as follows. In Section
2, Diagrammatic representation of scheduling and load
balancing using non-Markovian queuing model and
mathematical model are discussed in detailed manner and
arrived with different performance metrics by solving the

mathematical model. Mathematical and simulation results
are discussed in Section 3. Derived results and future
work are summarized in Section 4.

2 QUEUING APPROACH TO IMPROVE

QUEUEING PERFORMANCEl

Queuing approach is proposed in this work for the
analysis of the performance of arrived task queue and
aimed to achieve better quality of service. This approach
can be categorized as Markovian queuing approach and
non-Markovian queuing approach. From the literature
survey it is clear that Markovian approach is not suitable
for the analysis of cloud centers. Hence in this proposed
work, cloud computing centers are modelled as
non-Markovian queue system with priority as queue
discipline. Hence Mathematical model is derived for
non-Markovian queuing approach and verified the
proposed work is verified through simulation. In the next
section, diagrammatic representation of task flow
submitted by users is explained briefly.

2.1 Task Flow

Fig.1 represents the flow of task arrivals submitted by
cloud users and how they are served in optimized manner.
Initially, task arrivals are submitted to task manager for
getting service. Arrived tasks are categorized as
higher-priority (Hpriority) task queue and low-priority
(Lpriority) task queue, the tasks are queued separately.
Here arrived tasks follow Poisson distribution and tasks
are submitted to scheduler and load balancer module.
Improved-Weighted Round Robin (IWRR) for
Non-Preemptive and Pre-emptive Improved-Weighted
Round Robin (PIWRR) for Preemptive priorities are used
for scheduling and load balancing. Arrived tasks are
assigned to the hosts (servers) in a balanced way based on
their priorities. Service pattern follows the general
distribution with finite buffer size and finally the
departure of tasks takes place.

In the next section, mathematical model for
non-Markovian queuing is discussed in a detailed manner
and arrived with different performance metrics by solving
the mathematical model.

2.2 Mathematical Model

A non-Markovian (M/G/C/C+r/PR) queuing model is
proposed for comprising a multi-server queuing system,
Poisson arrival pattern and a service pattern which
follows the general distribution. In this model, it is
assumed that the tasks are scheduled based on priority
with independent service and inter arrival times. Arrival
rate is denoted by λ and it does’t change with respect to
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Fig. 1: Task Flow

time (ie)., Input process is independent of time. The
general task distribution µ = 1

E(S) is followed, where as S

is a random service time. Service times are independent
which follows identical and indefinite general distribution
for accomplishing the tasks.

A transform is defined as a drawing of a function from
one place to another. In this work we are using Laplace
transform for the analysis of non-Markovian queuing
models. Let us define a real-valued function f (t) in the
interval 0 6 t < ∞ .Laplace transform of f (t) is defined
as F(s) =

∫ ∞
0 e−st f (t)dt where s is assumed as a complex

variable. In this model, an arrival of task follows a
process which is Poisson and the arrival time between the
tasks is distributed exponentially with an arrival rate of
1
λ . Its CDF (Cumulative Distribution Function) of a
non-negative random variable (RV) X is defined as

f (t) = λ e−λ t , t > 0 . Then the LST (Laplace-Stieltjes
transform) of arrival time between the tasks is given by

F∗(s) = Exp[e−sax] =

∫ ∞

0
e−stdF(t)

=
∫ ∞

0
e−st f (t)dt =

∫ ∞

0
e−stλ e−λ tdt

= λ

∫ ∞

0
e−t(λ+s)dt =

λ

λ + s
(1)

In this model, the general distribution for task service
and mean service time is given by 1

µ . Its cumulative

distribution function is given by G(t) and its pdf is given
by g(t) and hence the LST (Laplace-Stieltjes transform)
of task’s service time G∗(s) is given by

G∗(s) =
∫ ∞

0
e−stdG(t)

=

∫ ∞

0
e−stg(t)dt (2)

Residual service time G+ is defined as the time
interval, since an arbitrary point of a task’s service time to
the ending of the task’s service time. Elapsed service time
of task G− is defined as the time interval, since the start
of a task’s service time to an arbitrary point of the task
service time. Now the residue task service time G+ and
elapsed service time of task G− then have the identical
probability distribution [22] then the LST
(Laplace-Stieltjes transform) is given by

G∗
+(s) = G∗

−(s) =
1−G∗(s)

s. 1
µ

(3)

The traffic intensity for multi-server model is defined
as

ρ
mµ = mean service time

Number o f servers ×mean inter arrival time
where

mean service time is denoted by 1
µ and λ is the reciprocal

of the mean inter-arrival time.
In the proposed work,the load of the cloud system

M/G/C/C+r is denoted by ρ and is hence assumed that the
traffic intensity ρ < 1 for steady-state results to exist.
Because if ρ > 1 (i.e) λ > cµ then the system is
overloaded and if the buffer size is full during the arrival
of task, then the newly-arrived task gets blocked and
vanished.If λ = cµ ( ρ = 1) then the arrival of tasks and
service of tasks are deterministic and moreover tasks are
completely scheduled, steady state does not exists. Hence

in our model we assume that ρ ≡ λ
cµ < 1 (i.e) λ < cµ .

2.3 Non-Markovian Queues- Embedded Markov

chain (EMC)

In Markovian queuing systems, both arrival times and
task’s service times follows an exponential distributions.
The number of tasks N(t) at any time’t’ in the queuing
system represents the state of the systems.
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When more general service times are allowed, then
N(t) and also the remaining (or residual) service time
R(t) for the current task is needed to predict future values
of N(t). In such cases we construct a Markov Chain (MC)
out of N(t) and the markov chain is named as
”embedded”, which permits us to construct many of the
parameters of interest. Let the tasks arrivals follows
Poisson process with λ as a task arrival rate. Task-service
times are independent and identical distribution of RV’s
(random variables) with general probability distribution
of task’s service time. Between two departures of task’s
service time T , the Probability distribution of T is given
by g(t). From the ergodicity definition and known result
”MC is ergodic” it is proved that EMC is homogeneous
and also ergodic. Hence the solution of EMC is in steady
state. Then average response time and task count in the
cloud system can be calculated.

At t ≥ 0, N(tn) is defined as the no. of tasks in the cloud
system . Let tn be the time instant at which the nth task,
number of task remaining in the cloud system is defined as
Xn = N(tn),n = 1,2, . . . and the Markov chain is defined as
a sequence of RV’s {Xn;n = 1,2, . . .} . Hence

Xn+1 =







Xn − 1+A, i f Xn > 0 (i.e) Xn ≥ 1

A, i f Xn = 0
(4)

Where A denotes the number of tasks arriving during
(n+ 1)th task’s service time T .

The first condition for Xn+1 is obvious. The second
condition outcomes from the reality that Tn+1 is the point
of departure of the task which arrives after the task tn. It is

in reality Xn+1 = 1− 1+A . Let U(Xn) =







1,Xn > 0

0,Xn = 0

where U - ”Unit step function”. Hence
Xn+1 = Xn −U(Xn)+A . To justify that X1,X2, . . . ,Xn. is a
Markov Chain, it is necessary to prove that an upcoming
state of the Markov chain (MC) depends simply on the
current state. (i.e) it is necessary to prove that given
current state Xn, the upcoming state Xn+1 is independent
of prior states Xn−1,Xn−2, . . . From (1) it’s clear that Xn+1

depends only on Xn and A. Moreover A is independent of
the prior states Xn−1,Xn−2, . . . then it is proved that
X1,X2, . . . ,Xn is a MC (Markov Chain). This is because of
”A” Where A denotes the number of tasks arriving during
(n + 1)th task’s service time T, which depends on the
service time with respect to task length, but this service
time does not depend on the events that have occurred
previously (i.e)., the size of the queue at prior departure
points are Xn−1,Xn−2, . . . . Hence X1,X2, . . . is an
embedded MC.

Next, we develop transition probabilities on behalf of
the above derived embedded MC (Markov chain). Let us
assume [P[i, j]](n) ≡ Pro[Xn = j/X0 = i], i, j ∈ S where S

is the state space and S = {0,1,2, . . .} is the number of

tasks in the cloud system. Let [P[i, j]](i) = Pro[i, j] from
the relationship of Xn and Xn+1, then

Pro[i, j]≡ Pro[Xn+1 = j/Xn = i]

=







Pro(i+A− 1= j), i > 0

Pro(A = j), i = 0

=







k( j−i+1), i > 0

k( j), i = 0
(5)

whereK( j) = Pro(Xn = j)
A balanced probability distribution exists for the no.

of tasks exhibit at the task arrival time. Assuming that
steady-state probability vector πP = π where the
elements of the matrix P are defined as one step TPM
(Transition probability matrix Pi j ) and
π = {π0,π1, . . . ,πc+r}. Now the stationary probability for
the non-Markovian model M/G/C can be constantly
written in the form of waiting time-cumulative
distribution function as

πq
n = Pro[′n′ in queue just a f ter a departure]

=
1

n!

∫ c+r

0
(λ t)ne−λ tdwq(t) (6)

Where ”n” is the cloud system size, for the ”n”
Poisson arrivals at the departure point arbitrarily during
the waiting time of the cloud system departure. At the

departure points, the average queue length L
(D)
q is defined

as

L
(D)
q =

c+r

∑
n=0

nπq
n =

∫ c+r

0
(λ t)dwq(t) = λ wq (7)

Which is Little’s formula.

In general kth factorial moment queue length of the

departure point is L
(D)
q (k) = λ kw(q,k) where the ordinary

waiting time of kth moment in the queue is denoted by
w(q,k). Next we identify the elements of the TPM
(Transition probability matrix), it is necessary to calculate
the no. of tasks leaving from the cloud system in between
the consecutive arrival of the tasks. Each one of the host
(server) has nil or more task departures during the
inter-arrival time. For a arrived task to end and depart
from the cloud system between 2 successive tasks arrivals
”the residual of task service time must be smaller than the
task inter arrival time by the probability”.
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Pro(x) = Pro[F(s)> G+(s)]

=
∫ ∞

T=0
Pro[L[ f [t]]> G+(s)/G+(s) = T ]dG+(T )

=
∫ ∞

t=0
(
∫ ∞

T=t
λ e−λ tdt)dG+(T )

=

∫ ∞

0
e−λ tdG+(T ) = G∗

+(λ ) (8)

The length of the queue size is zero (idle server), then
an arriving task can accommodate immediately. The
probability Pro(y) for such an arrived task leaves prior to
the next arrival of the task which is given by

Pro(y) = Pro[F(s)> G(s)]

=
∫ ∞

T=0
Pro[L[ f [t]]> G(s)/G(s) = T ]dG(T )

=
∫ ∞

t=0
(
∫ ∞

T=t
λ e−λ tdt)dG(T )

=
∫ ∞

0
e−λ tdG(T ) = G∗(λ ) (9)

Using the above values, TPM (Transition probability
matrix) can be calculated.

2.4 Transition Probability Matrix

To calculate the TPM, it is necessary to categorize EMC
(Embedded Markov-Chain) among 4 different operating
cases as follows:

Case (i): From the relationship of Xn and Xn+1 we
have Pro(i, j) ≡ Pro[(X(n+1) = j)/(Xn = i)]. Now the
probability that i+ 1− j tasks is serviced during the
inter-arrival time of tasks. Here for
(i + 1) < j,Pro[i, j] = 0, because we have at most i+ 1
tasks existing between Xn and X(n+1).

Case (ii): i < c and j ≤ c ,in the task queue none of
the tasks arrived are waiting. Now ”c” denotes the number
of hosts (servers) between inter-arrival of tasks request; the
sum of (i+ 1− j) task finishes their service and leave from
the cloud system by means of the probability Pro[i, j]

=

(

i

i− j

)

[Pro(x)]i− j(1−Pro(x)) jPro(y)

+

(

i

i+ 1− j

)

[Pro(x)]i+1− j(1−Pro(x)) j−1(1−Pro(y)

(10)

Case (iii): For i, j ≥ c, all hosts (servers) are busy
during the two consecutive arrivals of the request. Let us
assume (i+1− j) = Z which denotes the number of tasks
arrived or leave from the cloud system among Markovian
points. This point might lies between 0 to ∞ (its close to

1). For this case, state-transition probabilities are given
byPro[i, j] =

Min(z,c)

∑
s1=min(z,1)

(

c

s1

)

(Pro(x))s1(1−Pro(x))c−s1

Min(z−s1,s1)

∑
s2=min(z−s1,1)

(

s1

s2

)

Pro(u,2)s2(1−Pro(u,2))s1−s2

(

s2

z− s1 − s2

)

[Pro(u,3)]z−s1−s2(1−Pro(u,3))s2 (11)

Case (iv): For i ≥ c and j < c, all hosts (servers) are
busy at the initial arrival of task and in the queue (i− c)
arrived tasks are being waiting. During the next task
arrival, the queue is vacant and specifically ”j” arrived
tasks are in service. For this case, state transition
probability is given by Pro[i, j] =

Min(z,c)

∑
s1=(c− j)

(

c

s1

)

(Pro(x))s1(1−Pro(x))c−s1

Min(z−s1,s1)

∑
s2=min(z−s1,c− j)

(

s1

s2

)

Pro(z,2)s2(1−Pro(z,2))s1−s2

(

s2

z− s1 − s2

)

[Pro(z,3)]z−s1−s2(1−Pro(z,3))s2 (12)

For case (iii) and case (iv) it is assumed that there are
only up to 3 task departures between inter-arrival tasks.
But steady-state distribution {πi} is to be present for the
Markov chain, then the solution of the cloud system ∀ j ≥ 0
is given by

c+r

∑
i=0

P(i, j)πi = π j and
c+r

∑
i=0

πi = 1 (13)

Where π j denotes the balance equation which links
the entering and leaving state probabilities. Now the
generating function for the no. of arrived tasks in the
cloud system at the point of a task arrival is defined as

π(z) =
c+r

∑
j=0

π jz
j (14)

2.5 Priority-Based Queue Discipline

In priority queue discipline model tasks with the Hpriority

are chosen for task service in advance of those with
Lpriority, which is independent of the arrived task with
respect to time in the cloud system. This can be further
enhanced into two feasible priority conditions, namely
non-preemptive and preemptive cases. In the case of
non-preemptive, the task is not interrupted which is in
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service and at the same time the Hpriority tasks
immediately go to the top of the queue and wait for its
turn of service. In the case of preemptive, when the
Hpriority task arrived the cloud system, it is permitted to
enter the service directly even though another task with
Lpriority is in service. In this case, it is necessary to decide
that whether to resume the service of the task which is
preempted or the service of the task have to start from the
initial state. A real-life queuing situation contains priority.
For optimal design, priorities are absolutely essential.
From the above, we have arrived with the 2 common
situations if the queue discipline follows a priority
queuing. Priority queue discipline is considered in this
paper.

Case (i): In the first priority situation, which is called
as the Non-preemptive case, the task with the Hpriority go
to the top of the queue but the task does not get into the
service till the task complets its service which occurs
currently in the service, although the current running task
has Lpriority. Suppose the kth priority task (if the number is
small then the priority will be high) arrives according to a
Poisson process with rate λk, (k = 1,2, . . . ,r). Let us
assume Xk is a task with priority k where the service time
is random. Next, let us assumue Xk with general
distribution having first moment of Xk which is given by
Exp[Xk] =

1
µk

and 2nd moment is given by Exp[X2
k ].Let us

consider a ith priority task which arrives at the cloud
system. After the task arrived at the cloud system or
queue then upon this new arrival of task we suppose that
there aren1 tasks with priority 1 in the top of the queue, n2

tasks having the priority 2 and so on. Now the required
time to complete the tasks service is given by S0and this
time S0 will be equal to zero if the cloud system is idle.

Now we define E[S0] = P[Sytem is busy] .
E[S0/(sytem is busy with priority k task)]. Here S0 is
the service time which remains for the task arrived, this is
true for the idle cloud system if the arriving task has the
value zero. If the cloud system is busy then the
probability is given by

λ .[Mean service time] = λ
r

∑
k=1

λk

λ
.

1

µk

= ρ

E[S0/system is busy with kth priority task] =
E[X2

k ]µk

2

Therefore,

E[S0] = ρ
r

∑
k=1

E[Xk]
2µk[

λk
µk
]

2ρ

=
r

∑
k=1

E[Xk]
2λk

2

=
λ

2

r

∑
k=1

λk

λ
E[Xk]

2

=
λ E[s2]

2
(15)

Hence, waiting time of task in queue is given by

W
(i)
q =

λ E[S2]/2

(1−σi−1)(1−σi)
(16)

By Little’s formulae, Expecting waiting time of task in
system is

W
(i)
s = W

(i)
q +

1

µ

=
λ E[S2]/2

(1−σi−1)(1−σi)
+

1

µ
(17)

Length of the task queue (or) mean number of task in

queue is given by L
(i)
q =W

(i)
q λ ′where the parameter is the

overall effective arrival rate at the system. It equals the
arrival rate λ when all arriving tasks can join the system.
Otherwise, if some tasks cannot join because the system
is full then λ ′ < λ .

Therefore,

L
(i)
q =

λ E[S2]/2

(1−σi−1)(1−σi)
.λ ′ (18)

Mean number of tasks in the cloud system (or) length
of the tasks in the cloud system is given by

L
(i)
s = L

(i)
q +

λ ′

µ

=
λ E[S2]/2

(1−σi−1)(1−σi)
.λ ′+

λ ′

µ
(19)

Now we define C the average number of busy servers
as

C = L
(i)
s −L

(i)
q (20)

Hence facility utilization is given by C
C

where ”C” is
the number of hosts (servers).

Case (ii): Next priority situation, called the
preemptive case. In this situation, if the Hpriority task
arriving the cloud system as soon as the arrival Hpriority

task is permitted to enter service directly even though
another task with Lpriority is in service. In this case, task
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with Lpriority is preempted from service; service of the
Lpriority task is stopped from the current state and resumed
service from the current state after the Hpriority task is
being served. From this we can come to the conclusion
that the preempted task which is resumed from the service
either continues the service of the task from the
preempted point or else starts from the initial stage. In
this model, we assume that the task service continues
their service from the preempted point. Here the
preempted task resumes their service from the interrupted
point. Then the expected or mean number of tasks in the
system is given by

L
(i)
s =

ρi

(1−σi−1)
+

λi ∑i
j=1 λ jE[S

2
j ]

2(1−σi−1)(1−σi)
(21)

S j - Service time which is random.

ρi = λiE[Si] and σi =
i

∑
j=1

ρi

Hence we can calculate the remaining parameter by
using Little’s formulae.

Here, the task arrivals have independent buffer state.
Moreover, we have mean no. of tasks in the cloud system.
Then the Probability of Congestion cloud system
PrCongestion can be evaluated as PrCongestion = πc+r here
the size of the buffer is given by r. In this model the task
will continuously arrives to the system even if its capacity
is full. Since there is a buffer, it is not difficult to take care
of the case if the system is blocked. Here probability of
congestion is always below a threshold value ε .

The probability of no waiting time (probability of
immediate service for the arrived tasks) is given by

Pro(no wait) =
c−1

∑
i=0

πi (22)

3 EXPERIMENTAL AND

PERFORMANCE ANALYSIS

Discrete-event simulator is used to validate an analytical
model (Petri net-based simulation engine) and the balance
equations derived in this model is solved numerically
using Maple 16 (Maplesoft). The above derived
parameter values give a practical approach to the
performance of cloud centers. Practically in a large
service provider, if the number of hosts (servers) is very
low then the traffic intensity will be high.

It is assumed that service time has gamma
distribution. This distribution is selected because it
permits Relative Standard Deviation (RSD) to be assigned
independent of the average value. Hence the values used
for RSD: low-value RSD = 0.5, which results in
hyper-exponential service time and high value RSD = 1.4,
which results in hyper-exponential service time.

The following parameter values are considered for the
analysis purpose. The values assumed may be applicable
to all types of service providers (medium to high) for
maximum server utilization as much as possible.

• Number of Hosts : c = 100,200,500
• System capacity (Input buffer) :

r = 0 to
m

2
(5 steps)

• Relative Standard Deviation (RSD) of task service
time : 0.5 and 1.4

• Traffic intensity (server busy time) :ρ = 0.85

First illustration is shown in Fig. (2,3 and 4) the mean
number of tasks increases gradually with the size of the
buffer when the no. of host is c=100, however for higher
number of servers (c = 200 and 500) it is less distinct.
In the second illustration, the system capacity is examined
which is shown in Fig. (5,6 and 7), by increasing the
buffer size it is clear that probability of congestion
decreases rapidly. From this illustration it is clear that,
probability of congestion is maintained below 0.5%
(PrBlock ≤ 0.005) . Moreover it is observed that, with less
arrival variability (cv = 0.5), the probability of
congestion is decreasing.

Fig. 2: Mean number of tasks with c = 100 at ρ = 0.85

Finally in the third illustration, immediate probability
of service is examined without waiting in queue and
shown in Fig.(8,9 and 10). Probability of no waiting time
should not depend on the system capacity; at least one
idle server is required for arriving task. It is clearly
observed that if the buffer size is small, the probability is
closer to 1. This probability stabilizes if the buffer size is
increased by r. From this behaviour, it has been
concluded that the arriving tasks will not be queued if the
buffer size r is small, instead the arriving tasks get service
immediately or the arriving tasks are blocked. Hence,
both the congestion probability and probability of no wait
will be decreased by increasing the buffer size. It is quite
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Fig. 3: Mean number of tasks with c = 200 at ρ = 0.85

Fig. 4: Mean number of tasks with c = 500 at ρ = 0.85

Fig. 5: Probability of congestion with c = 100

obvious that 100% of tasks do not get immediate service,
hence it should be aimed that at least 85%, or above, tasks
to get immediate service without waiting in queue (i.e)
Prno wait ≥ 0.85. Figure 4 shows that the analysis for host
size c = 100,200,500 and set buffer space equal to c+ r.

Fig. 6: Probability of congestion with c = 200

Fig. 7: Probability of congestion with c = 500

Fig. 8: Immediate probability with c = 100

Hence from the overall analysis it is clearly identified that
performance is poor when the RSD = 1.4. As a future
work, to obtain further understanding into the
performance of cloud centers, it is also necessary to find
higher moments like standard deviation, skewness and
kurtosis of response time. From the higher moments,
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Fig. 9: Immediate probability with c = 200

Fig. 10: Immediate probability with c = 500

performance of response time can be analysed. Analytical
model is proposed in this paper based on Markov chain
approximation for performance analysis of task queue in
cloud computing centers. Further in this paper, numerical
analysis and simulation are conducted to validate the
proposed model. Simulation and numerical results prove
that the approximate method which has been proposed in
this paper ends with high amount of accurateness for the
average no. of tasks in the cloud systems, probability of
congestion and immediate probability.

4 CONCLUSION AND FUTURE

ENHANCEMENT

Mechanism-related issues in cloud computing are
scheduling the arrived tasks to the resources and
balancing the load in an optimized way. It is necessary to
reduce waiting time and response time of the task
submitted by the cloud users. In this work, the
performance of the task queue is analysed using
non-Markovian queuing model based on Markov chain
model. Due to the inconsistency of workloads in cloud

environment it is important to consider Markovian arrival
of task and general service time distribution with priority
as a queue discipline. Numerical analysis has been done
using Maplesoft and simulated using discrete event
simulator for validating the proposed analytical model.
Simulation and numerical analysis show that the proposed
model provides accurate results for the Expected (mean)
number of tasks, probability of congestion, and
immediate probability with high amount of exactness.
Improved Weighted Round Robin algorithm with
non-preemptive and pre-emptive Improved Weighted
Round Robin algorithm with Preemptive priorities is used
for scheduling and load balancing of task and
experimental analysis is done by using the simulator
Cloudsim. Further research can be done for evaluating
time complexity of non-markovian queuing model for
cloud environment.

References

[1] Chia-WeiLee, Hung-ChangHsiao, Kuang-YuHsieh and Sun-

YuanHsieh, A Dynamic Data Placement Strategy for

Hadoop in Heterogeneous Environments, Big Data Research,

Elsevier, 14-22 (2014).

[2] Armando Escalante and Borko Furht, Cloud Computing

Fundamentals, Handbook of Cloud Computing, Springer, 3-

19 (2010).

[3] Qiang Duan, Cloud Service Performance Evaluation: Status,

Challenges, and Opportunities – A Survey from the

System Modeling Perspective, Digital Communications and

Networks, 1-36 (2016).

[4] Anum L. Enlil Corral-Ruiz, Felipe A. Cruz-Pérez, and
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