
Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) 239

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/130212

Fault Diagnosis of a Protocol Implementation Specified

in a System of Communicating Finite-State Machines

Qi-Ping Yang1 and Tae-Hyong Kim2,∗

1 Shanghai Research Center for Wireless Communications, China
2 Kumoh National Institute of Technology, Republic of Korea

Received: 2 Jan. 2019, Revised: 10 Feb. 2019, Accepted: 20 Feb. 2019

Published online: 1 Mar. 2019

Abstract: Since testing is an important but expensive process in the protocol development, formal specification models like Finite-

State Machines (FSMs) are used to automate testing process. This paper focuses on specifications in a system of communicating

FSMs (SCFSM) for protocols with multiple components, and explores fault diagnosis of protocol implementations based on

such specifications. The target implementation is first examined with test cases generated by our test generation method. For the

implementation which turns out to have a fault, we propose a heuristic algorithm to isolate and locate the fault in the specification. We

also presents the assumptions and conditions required for exact fault localization of an SCFSM. Additionally, an adaptive method is

proposed to minimize the fault candidates with the given test cases. The proposed method is evaluated with case studies and complexity

analysis, and also software tool development in Java.

Keywords: protocol testing, fault diagnosis, formal methods, communicating finite state machines

1 Introduction

As requirements of network services are getting more
various and extensive, protocol specifications have been
much more complicated than before. For automated
development of protocol products without faults, formal
methods have been widely used with well-formed
modeling techniques such as Finite-State Machines
(FSMs) or the Specification Description Language (SDL)
[1]. Testing and verification are necessary tools to
generate the next-stage output in formal protocol
development. Conformance testing, especially, which
verifies if a protocol implementation conforms to its
reference specification is required to increase the
possibility of successful inter-operation with other
existing network products.

In order to optimize testing work which usually costs
enormously, there have been a lot of studies, theoretical
and practical, how to derive appropriate test cases
automatically and efficiently. Since the amount of test
cases is related to both test cost and fault coverage of test,
which are usually in trade-off relations, automatic
generation of test cases with minimal cost but with
maximal coverage is an ultimate goal in protocol testing.

In test-case generation based on FSMs, output faults and
transfer faults are usual types of faults to be detected. The
Wp method is a well-known method to generate test cases
with full fault coverage under that fault model for FSMs
[2].

An interesting yet more complex issue associated with
testing is fault diagnosis which includes fault detection
and localization. In general, fault diagnosis can be
classified into two categories: signal processing-based
and model-based. In the signal processing-based fault
diagnosis [3], some mathematical or statistical operations
are performed on the measurements, or some neural
network is trained using measurements to extract the
information about the fault. The model-based fault
diagnosis tries to predict faults according to the system
behavior with well-established formal models [4], [5].

Most of current communication protocols are actually
complex concurrent systems which have multiple
communicating components inside. Such a protocol is
more naturally modeled as a network of Communicating
Finite-State Machines (CFSMs), which is usually called a
system of CFSMs (SCFSM). A component machine in an
SCFSM is an FSM with an input queue which
communicates with other components in the system. A

∗ Corresponding author e-mail: taehyong@kumoh.ac.kr

c© 2019 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/130212

240 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

well-formed system of CFSMs, which ensures generally
desirable properties, such as absence of livelocks,
deadlocks, and non-executable transitions, needs to be
verified through formal methods. A simple technique to
explore the behavior of an SCFSM, called reachability
analysis, has been used for systematic generation of the
global state space of a protocol [6], [7], [8].

In our previous study [9], we investigated how to
derive test cases from a specification model in an
SCFSM. For test-case generation, an SCFSM is usually
transformed into the observably equivalent FSM, which
we call the Observable Product Machine (OPM). We
analyzed the characteristics of an SCFSM and checked if
test-cases generated for its OPM can be applied to
SCFSM testing with the same fault coverage. We showed
that some faults in component FSMs might be undetected
by such test cases and thus proposed a generation method
of minimal test cases with full fault coverage using
individual reliable resets of component FSMs.

We now focus on fault diagnosis techniques for
SCFSM testing in this paper. We try to detect and locate
faults of the target protocol implementation with its
specification model in an SCFSM. Actually, fault
diagnosis of a protocol with concurrent components have
been not studied enough yet due to its complexity. We put
some appropriate assumptions on the SCFSM model in
order to realize feasible fault analysis. A heuristic method
is proposed for fault isolation and localization with test
cases generated for full fault coverage. We also provide
an adaptive method to reduce the number of fault
candidates with the given test cases.

This paper proceeds as follows. We first introduce
some preliminary work required for SCFSM testing in
section 2. Section 3 explains the motivation and problem
definition of our fault diagnosis, and present the proposed
fault diagnostic method in detail. The proposed method is
illustrated with two examples and evaluated by
complexity analysis in section 4. Section 5 concludes the
paper with some discussions.

2 Preliminary Work

2.1 An SCFSM and its OPM

Definition 1.A Finite-State Machine (FSM) is a 6-tuple

M = (S ,I ,O,δ ,λ ,s1), where S is a finite and

nonempty set of states, I is a finite and nonempty set of

input symbols, O is a finite and nonempty set of output

symbols, δ : S ×I → S is the state transfer function,

λ : S ×I → O is the output function, and s1 ∈S is the

initial state of the machine.

In an FSM, if the machine is given an input a ∈ I

when in state si ∈S , it will move to state s j and produce
output b, where s j = δ (si,a) and b = λ (si,a). We write
this as si [M,a/b〉s j , or if M is understood, simply si [a/b〉s j.
We extend δ and λ to finite-input sequences by

recursively letting, for si ∈ S , a ∈ I , and α ∈ I ∗,
δ (si,aα) = δ (δ (si,a),α) and λ (si,aα) = λ (si,a)
λ (δ (si,a),α), with base cases δ (si,ε) = si and
λ (si,ε) = ε , where ε is the empty sequence. We use
si [M,α〉s j or si [α〉s j to indicate that FSM M moves from
state si to s j when an input sequence α is given. An FSM
is completely specified and deterministic if and only if δ
and λ are complete functions implying that, for each
si ∈ S and a ∈ I , there exists exactly one s j and one b

such that si [a/b〉s j. Two states si and s j of M are
distinguishable if there is an input sequence α ∈I ∗ such
that λ (si,α) 6= λ (s j ,α) and otherwise, si and s j are said
to be equivalent. We use si 6∼ s j and si ∼ s j to denote two
states are distinguishable or equivalent, respectively. Two
FSMs M and M′ are equivalent if and only if for every
state in M there is an equivalent state in M′, and vice
versa. If M and M′ are equivalent, we denote as M ∼ M′

and otherwise M 6∼ M′. Finally, an FSM is initially

connected if every state can be reached from its initial
sate, strongly connected if every state can be reached
from every state, and minimal if it does not contain two
equivalent states. An FSM possesses a reliable reset if
there is an input symbol r ∈ I such that, for any state
si ∈ S , δ (si,r) = s1 and it is known to have been
implemented correctly. Obviously, if M is initially
connected and has a reliable reset then M is strongly
connected. In this paper, we assume that each FSM we
consider is minimal since there are algorithms that
convert an FSM into an equivalent minimal FSM [10]. We
also assume that FSMs under test are deterministic,
completely specified , initially connected and has a
reliable reset.

The architecture of a communication protocol usually
consists of several components connected via queues.
This organization can be modeled as a system of
Communicating Finite-State Machines (SCFSM), where
each component is a Communicating Finite-State
Machine (CFSM). A CFSM can communicate with other
CFSM(s) by producing an output that is placed in the
input queue of others.

Definition 2.A system of Communicating Finite-State

Machines (SCFSM) is a set of L machines,

M = {Mk : 1 ≤ k ≤ L}, where each machine Mk is a

CFSM that is represented as an FSM by

(Sk,Ik,Ok,δk,λk,sk1) with an input queue βk.

Transitions of each CFSM Mk are called local

transitions. Note that a CFSM Mk has one input queue βk.
Through βk, Mk can receive inputs from another
component M j(1≤ j 6= k ≤ L) as well as the environment
with first come, first served. An input symbol of a CFSM
Mk shall be called external input if the input can be
received from the environment. An output symbol of a
CFSM Mk is an external output if it is observed by the
environment. Otherwise, it is called as internal output

that cannot be observed by the environment. Let
I =

⋃
1≤k≤L Ik and O =

⋃
1≤k≤L Ok. Then Iext ⊆ I

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 241

and Oext = O\I are the sets of external input symbols
and external output symbols of M , respectively. We
assume the SCFSM M holds the pairwise disjoint input
property, ∀1 ≤ k,h ≤ L,k 6= h =⇒Ik ∩Ih = /0, and thus
the input a is contained in the input symbols of only one
CFSM and thus M is deterministic. If an input a ∈ Ik is
placed in the input queue βk of M , this leads to a local
transition in Mk , say ski

[Mk,a/b〉sk j
. Since one CFSM can

interact with another, it is possible for output b to trigger
a local transition in other CFSM. If there is a CFSM Mh

such that b ∈Ih, then the symbol b is placed in the input
queue βh, causing in turn a local transition in Mh, and so
on; otherwise b becomes an external output to the
environment. Thus, only symbols in Oext can be sent to
the environment while Oint = O ∩I are internal symbols
which can not be observed by the environment.

The global state of the SCFSM is defined by the states
of each component CFSM and the contents of the queues.
A global state is stable if all the queues are empty and
otherwise it is unstable. We assume a stable initial state
and slow environment, i.e., the SCFSM has enough time to
consume any symbol in any queue before the environment
provides the next input. It is then easy to show that exactly
one input queue contains one symbol in any unstable state.
For simplicity, we can use a single global queue β of size
one instead of separate queue for each component CFSM.
Thus, the global state of an SCFSM can be written as σ if
it is stable, or σ .a if it is unstable, where σ = (s1k

, · · · ,sLk
)

is the state combination of all components of the SCFSM
and a ∈ Oint is the symbol in the input queue β . We also
assume that livelock freeness, that is, an SCFSM does not
allow a cycle of transitions over unstable states. Under the
slow environment and livelock freeness assumptions, an
SCFSM can be converted to an OPM whose behavior is
equivalent to that of the original SCFSM.

Definition 3.The Observable Product Machine (OPM) of

an SCFSM M is a tuple P(M) = (Σ r
s , Iext , Oext , δp, λp,

σ1), where Σ r
s is a finite and nonempty set of reachable and

stable global states of M , Iext is a finite and nonempty

set of external input symbols of M , Oext is a finite and

nonempty set of external output symbols of M , δp : Σ r
s ×

Iext → Σ r
s is the state transfer function, λp : Σ r

s ×Iext →
Oext is the output function, and σ1 ∈ Σ r

s is the initial global

state (s11,s21, · · · ,sL1).

Let Σ = ∏1≤k≤L Sk be the stable state space of M ,
then the set of reachable and stable global states of an
OPM is Σ r

s = {σ : ∃α ∈ I ∗ext ,δp(σ1,α) = σ} ⊆ Σ . Note
that Σ r

s ⊆ Σ because some combinations of local states
might not be reachable and stable global states if all
incoming local transitions to each local state of those
combinations would have internal outputs only. A
transition of an OPM, upon an external input a at a stable
global state σm, proceeds according to a sequence of local
transitions σm.a [a/ai〉σi.ai [ai/a j〉 · · ·σh.ah [ah/b〉σn, where σn

is the next stable global state. Such a transition is called
stable global transition, which is denoted by σm [[a/b〉〉σn.

δp(σm,a) = σn and λp(σm,a) = b represent the state
transfer function and output function of this global
transition respectively. All transitions of an OPM are
stable global transitions. When executing a stable global
transition, one or more local transitions are traversed. A
prefix of a stable global transition is defined as a transit

global transition and can be denoted by
σm [[(t1, · · · , ti)a/b〉〉σn.b, where a is an external input, b is an
internal output generated by the last traversed local
transition ti, and t1, · · · , ti are the traversed local
transitions.

2.2 Test-case generation for an SCFSM

While an SCFSM can be converted to an OPM that is
considered as a deterministic, minimal, completely
specified, and strongly-connected single FSM, FSM
testing techniques might be used in SCFSM testing as it
is. We assume that MS = {Mk : 1 ≤ k ≤ L} and
MI = {M′k : 1 ≤ k ≤ L} are a specification SCFSM and
an implementation SCFSM, respectively, where there is a
one-to-one mapping between Mk and M′k. The
corresponding OPMs are P(MS) and P(MI). ℑk is
the set of all implementation FSMs with the same input
alphabet as Mk. ℑk is called a fault domain for Mk.
ℑ =

⋃
L≥k≥1 ℑk is the fault domain for MS . In general

the traditional fault model <specification, conformance
relation, fault domain> is used [11] .

The strongly connectedness and livelock freeness of
the OPM of an SCFSM can be guaranteed if we assume
there is a global reliable reset and no livelock. However,
we found in the previous study that the minimality of the
OPM cannot be guaranteed even if all component CFSMs
are deterministic, minimal, completely specified, strongly
connected and free of livelock. Therefore, for applying test
generation techniques for the OPM, it is normally required
to minimize the OPM first if it is not minimal.

We also showed that test generation methods for
FSMs with full-fault coverage, such as the W method and
Wp method, may not guarantee the full fault coverage in
testing an SCFSM with its OPM because the stable state
space of a faulty implementation might be larger or
smaller than that of the correct implementation [9]. If a
faulty implementation has an extra state that is not
equivalent to an exiting state of the specification machine,
that faulty state might be undetected when tested by test
cases generated for the OPM of the specification SCFSM.

In order to handle this fault masking problem, we
presented a Wp-based test generation method considering
state addition faults by converting the target OPM to the
full OPM [9]. The generated test suite is complete w.r.t
the fault model < P(MS),∼,P(ℑ) > if the test suite
detects all SCFSM implementations whose OPMs are not
equivalent to that of the specification SCFSM. In order to
reduce the length of test sequences multiplied for
checking state addition faults, we also used individual
reliable resets of component FSMs.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

242 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

3 Fault diagnosis for an SCFSM

3.1 Motivation

A test suite consists of multiple test sequences checking if
there are differences between an implementation and its
reference specification by observing input/output (I/O)
behaviors of the implementation. The differences between
the observed I/O pairs of the implementation and the
expected I/O pairs of the specification, which are called
symptoms, imply the existence of faults in the
implementation [12]. In addition to detecting symptoms,
identifying observed symptoms in the specification is an
interesting but very complex problem. In order to solve
this problem, a diagnostic process called fault diagnosis is
required to pinpoint the root cause of those observed
differences. The fault diagnosis is very useful in the
development of a system since it can make easy the job of
correcting an implementation, so that it can conform to its
specification [13].

Actually, fault diagnosis has not been studied a lot due
to its complexity. A. Ghedamsi et al. [12] and D. Lee et

al. [13] proposed the process of fault diagnosis with
FSMs. Both of their work are locating the differences
between an implementation and its specification under the
assumption that there is only a single fault in the
implementation. Ghedamsi et al. generated a set of
transitions called conflict set. These transitions whose
failure could explain the faults are further examined to
find the faulty transitions by deriving additional test cases
with limited characterization set [12]. D. Lee et al.

proposed a fast algorithm which reduced the number of
diagnostic candidates by deriving additional test cases
called distinguishing tests [14]. Ghedamsi et al. [15]
extended their procedure for diagnosing multiple faults
with FSMs under the assumption that each fault is
reachable through non-faulty transitions.

A. Ghedamsi et al. proposed some heuristic methods
to model the process of fault diagnosis with a system
represented by CFSMs [16], [17]. However, they limited
the interaction between the component machines by
assuming that if a component machine receives an input
symbol from another machine, it must execute the
corresponding local transition and emit an external output
symbol that can be observed by the environment directly.
Moreover, it is not always possible to guarantee the
precise localization of a single fault because two faulty
implementations with a different single fault might cause
the same observable behavior. Furthermore, the cost of
reducing fault candidates was not considered in their
methods.

This paper presents a heuristic method by
concentrating on removing the limitation on
communications among component machines of fault
localization of implementations with a single fault. The
proposed method can precisely locate the difference
between the specification and implementation if the root
cause of observed symptoms is unique; otherwise, it

s11

s12

t11: a/c

t12: b/y

t14: b/ct13: a/x

s21

s22

t21: c/b

t22: d/x

t24: d/b

t23: c/a

CFSM M1 CFSM M2

Fig. 1: An example SCFSM M1

provides a set of all potential single faults. It also provides
an adaptive selection of test cases and a fast procedure to
discriminate diagnostic candidates for reducing the cost
of fault diagnosis.

3.2 Problem statement

It is important to note that application of an input symbol
in a test case might trigger execution of one or more local
transitions, depending on whether that input produces an
external or an internal output. Although we assume that a
single output fault or transfer fault exists in only one
component machine, generation of diagnostic fault
candidates still needs to consider all possible differences
for traversed local transitions. In fault diagnosis of a
single FSM, if an implementation has only one output
fault, it must occur in the transition traversed by the last
input in the observed symptom. However, it is not true for
an SCFSM; the output fault can occur in any local
transitions constructing the last global transition of the
symptom.

Let us consider an SCFSM M1 shown in Figure 1,
where M1 = {M1,M2} with Iext = {a,b,c,d} and
Oext = {x,y}. Assume that the target implementation of
M1 has an output fault, where t11 produces x instead of c

in response to input a. A test case TC = rccb is applied to
the faulty implementation and the expected and observed
output sequences are shown in Table 1. Here, for
analyzing the problem, we list each global transition and
its corresponding traversed local transitions separately.

Based on the observed outputs of Table 1, if we
assume there is a single output fault, the diagnostic
candidate should include the following candidate: t11

produces x instead of c in response to the input a in
CFSM M1. By observing, the local transition t11 is not
traversed by the final global transition.

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 243

Table 1: Expected and observed output sequences of M1

Test Case TC = rccb

Inputs c c b

Local transitions t21, t12 t23, t11, t13 t12

Expected outputs y x y

Observed outputs y x x

Another issue to be considered is that, for a faulty
implementation, it might not be possible to guarantee the
precise localization of a single fault. Z. Pap et al. [18] and
K. El-fakih et al. [19] handled similar problems for FSMs
and a system of two communicating machines called
embedded machine and context machine respectively.
However, fault diagnosis can be guaranteed only if a
faulty implementation of CFSMs is assumed to be a
minimized machine, and the system modeled in the work
of K. El-fakih et al. is not suitable for general FSMs. We
extend this issue to the SCFSM with arbitrary number of
component machines. We first illustrate the problem with
two examples and present a fault diagnostic method
which is a modified version of that of K. El-fakih et al..
The proposed method exactly locates the difference
between an implementation and its specification, or
provide the set of all potential single faults.

The SCFSM M1 shows a situation that we cannot
distinguish different faults for one local transition. If the
local transition t12 is falsely implemented to produce x or
c instead of y, we get a symptom easily by a test case rb.
However, we cannot distinguish the diagnostic candidates
between the above two changes since only one external
output x can be observed in the faulty implementation.

Table 2: Two faulty implementations of M1

Faulty machine Original transition Faulty transition

M ′
1 t13: s12 [a/x〉s11 t ′13: s12 [a/y〉s11

M ′′
1 t23: s22 [c/a〉s22 t ′′23: s22 [c/b〉s22

Let us consider the case when we cannot distinguish
between faults in different machines. Suppose there are
two faulty implementations M ′

1 and M ′′
1 formed by

injecting different single faults to M1 as listed in Table 2.
Table 3 shows the expected and observed output
sequences when a test case TC = rca is fed into the faulty
implementation M ′

1 of M1.

Table 3: Observation of the faulty implementation M ′
1

Test Case TC

Inputs rca

Local transitions t21, t12, t11, t23, t13

Expected outputs in M1 yx

Observed outputs in M ′
1 yy

Based on Table 3, a symptom is identified and the
further fault diagnosis should be executed to locate the
faulty transition. Unfortunately, we cannot be sure that
these observed outputs have been from the faulty
transitions t ′13 of M1 in M ′

1 or from t ′′23 of M2 in M ′′
1 . The

above two examples show that some faulty
implementations with different singles faults can be
observably equivalent.

Note also that the work of [16] and [17] did not
consider the cost of fault diagnosis. Fault diagnosis of an
SCFSM requires generation of its OPM. If we remove the
limitation of interactions, when discriminating diagnostic
candidates by additional tests with distinguishing tests
[13] or when identifying diagnostic candidates by
conformance testing the mutant implementations
generated by injecting those diagnostic candidates. Since
the generation cost of OPMs and test sequence based on
the OPMs are quite high, we need to reduce the number
of diagnostic candidates as much as possible in order to
reduce generation of OPMs.

3.3 The proposed fault diagnosis method

Now we present a diagnostic approach for a system
modeled by an SCFSM. The proposed method starts by
detecting a symptom when applying a given test suite to
the implementation. In order to explain the symptom, a
conflict set of local transitions which are supposed to
participate in generation of the symptom is derived. For
each transition tk in the conflict set, its corresponding
diagnostic candidates may include three kinds of
diagnosis: Out puts(tk), EndStates(tk), and OutStates(tk)
which are formed by analyzing all possible single output
faults, all possible single transfer faults, and both types of
faults respectively. Usually, as the total number of
diagnostic candidates is very large, an adaptive procedure
of test case selection for discriminating diagnostic
candidates is adopted. In this procedure, each selected test
case updates the current conflict set and diagnostic
candidates until at most one diagnostic candidate is left or
other termination conditions are satisfied. A fast
procedure using so-called cross verification [13] is used
in case that the remaining number of diagnostic
candidates is more than one after the previous procedure.
Finally, the fault diagnosis is sure to produce one of the
following results: exact localization with one single fault,
a set of possible single faults but no exact localization, or
multiple faults.

Algorithm 1. The proposed fault diagnosis
algorithm

Step 1: Detecting a single symptom

Given a specification SCFSM MS = {Mk = (Sk, Ik,
Ok, δk, λk, sk1) : 1 ≤ k ≤ L} and its implementation
MI = {M′k = (S ′

k , I ′k , O ′k, δ ′k, λ ′k, s′k1) : 1 ≤ k ≤ L}, a
test suite T S = {tc1, ..., tcp} can be derived using the test
selection methods proposed in our previous work[9]

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

244 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

based on the OPM P(MS) = (Σ r
s ,Iext ,Oext ,δp,λp,σ1).

Each test case tck = 〈ak,1,ak,2, · · · ,ak,mk
〉 ∈ T S generates

its expected output sequences 〈ok,1,ok,2, · · · ,ok,mk
〉 and

observed output sequences 〈o′k,1,o
′
k,2, · · · ,o

′
k,mk
〉 by

applying tck to both MS and MI , where ok,mk
is the

expected output and o′k,mk
is the observed output after

input ak,mk
, respectively. If differences between

ok = 〈ok,1,ok,2, · · · ,ok,mk
〉 and o′k = 〈o′k,1,o

′
k,2, · · · ,o

′
k,mk
〉

exist, MI has at least one faulty transition. The first
difference between ok and o′k denoted by (ok,l 6= o′k,l),
where 1≤ l ≤ mk, is a symptom.

Step 2: Generating a conflict set

With each symptom for MS and MI , a conflict set
is generated which is a set of local transitions supposed to
be traversed for generation of the symptom. Since MI

has only one single faulty transition, one of these local
transitions must be faulty and the transitions after the
symptom in the test case can be ignored. Suppose, for a
symptom (ok,l 6= o′k,l), the sequence of expected global

transitions in P(MS) is 〈τk,1, ...,τk,l〉, where each τk,l

consists of one or more local transitions. Therefore, the
conflict set is the union of all local transitions
constructing 〈τk,1, ...,τk,l〉, represented as CStr =

⋃
1≤i≤l

LOCAL(τk,i) = {tk,1, tk,2,..., tk,n}, where tk,i is a local
transition for 1 ≤ i ≤ n ≤ ∑1≤k≤L(|Sk||Ik|), and
LOCAL(τ) is the set of local transitions constructing a
global transition τ . Note that the maximum size of the
conflict set is the number of total local transitions, that is

∑1≤k≤L(|Sk||Ik|) when a global transition traverses all
local transitions.

Step 3: Generating diagnostic candidates

Given CStr = {tk,1, tk,2, ..., tk,n}, we need to determine
fault candidates of each local transition that might lead to
the observed symptom (ok,l 6= o′k,l). A number of

diagnostic candidates for each local transition tk,i ∈ CStr

that are suspected to be faulty can be formed by injecting
a possible output fault, transfer fault or both to tk,i with all
remaining local transitions of MS unchanged; this leads
to a mutant specification SCFSM M̃S . If the expected
external output sequences of a test case tck for M̃S and
the observed output sequences of tck for MI are equal,
the output fault, transfer fault or both faults under
consideration will be included in the corresponding
diagnostic candidate set,Out puts(tk,i), EndStates(tk,i), or
OutStates(tk,i), respectively. If Out puts(tk,i),
EndStates(tk,i), and OutStates(tk,i) are all empty for
some tk,i, the conflict set CStr is updated by removing this
local transition tk,i.

Step 4: Minimizing the size of diagnostic candidates

For convenience of presentation, we let DCtr denote
the set of total diagnostic candidates, and DCtr(tk,i)
denote the set of total diagnostic candidates for a single
local transition tk,i such that DCtr(tk,i) =
Out puts(tk,i) ∪ EndStates(tk,i) ∪OutStates(tk,i). Given a
test suite T S = {tc1, ..., tcp}, if the first symptom is
observed by applying the test case tck in the step 1, we
reduce the size of diagnostic candidates by using the

adaptive procedures shown in Figure 2 and Figure 3 for
the following two sub test suites: TS1 = {tc1, ..., tck−1}
and T S2 = {tck+1, ..., tcp}, respectively. The former has
been already applied to the faulty implementation and the
latter has not been tested yet.

input : MS , MI , T S1, CStr, DCtr

output: Updated CStr, Updated DCtr

1 foreach tci ∈ T S1 and LOCAL(tci)∩CStr 6= /0 do

2 if |DCtr| ≤ 1 then e;

3 xit;

4 o′← ObservedOutputSequence(MI ,

tci);

5 foreach tk, j ∈ LOCAL(tci)∩CStr do

6 foreach diagnostic candidate

dcl ∈ Out puts(tk, j) do

7 M̃S ← GenerateMutant(MS);

8 õ←

ExpectedOutputSequence(M̃S ,

tci);

9 if õ 6= o′ then

10 update DCtr by removing dcl from

Out puts(tk, j);

11 end

12 end

13 foreach diagnostic candidate

dcl ∈ Endstates(tk, j) do

14 M̃S ← GenerateMutant(MS);

15 õ←

ExpectedOutputSequence(M̃S ,

tci);

16 if õ 6= o′ then

17 update DCtr by removing dcl from

Endstates(tk, j);

18 end

19 end

20 foreach diagnostic candidate

dcl ∈ OutStates(tk, j) do

21 M̃S ← GenerateMutant(MS);

22 õ←

ExpectedOutputSequence(M̃S ,

tci);

23 if õ 6= o′ then

24 update DCtr by removing dcl from

OutStates(tk, j);

25 end

26 end

27 if DCtr(tk, j) = /0 then

28 update CStr by removing tk, j;

29 end

30 end

31 end

Fig. 2: Adaptive minimizing procedure based on T S1

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 245

In the procedure presented in Figure 2, we need only
to consider tci ∈ TS1 if tci traverses some local transitions
in the conflict set, that is LOCAL(tci)∩CStr 6= /0 where
LOCAL(tci) represents the set of local transitions
traversed by executing tci. This is because we assume
only one local transition has faults. We now check
diagnostic candidates for each local transition that exists
in the intersection of LOCAL(tci) and CStr. First, the
function GenerateMutant in the Figure 2 generates a
mutant M̃S that is formed by injecting a possible
diagnostic candidate in a local transition of MS . Then
we compare the expected output sequence of M̃S and the
observed output sequence of MI (the observed output
sequence has been already observed in Step 1). If a
symptom is found, we remove the corresponding
diagnostic candidate since MI can never be equivalent to
the mutant M̃S . If DCtr(tk, j) turns to be empty for a
certain local transition tk, j ∈ CStr , we remove tk, j from
CStr since we have considered all possible fault
candidates for that local transition.

For each tci ∈ T S2, we apply the input sequence to
MI and compare the observed output sequence with the
expected output sequence of MS if tci traverses some
local transitions in the conflict set. If a symptom is found,
we generate a new conflict set with tci by the process in
step 2, and update the original conflict set by making an
intersection with this new conflict set. At the same time,
we can reduce the diagnostic candidates if some local
transitions are removed from the conflict set. The above
process is represented from lines 3 to 11 in the procedure
shown in Figure 3. Lines 12 to 37 in Figure 3 do the same
checking as lines 4 to 29 in Figure 2 for reducing the
number of diagnostic candidates.

Note that we terminate both procedures if at most one
diagnostic candidate remains in the procedures shown in
Figure 2 and Figure 3. However, if the test suite for
conformance testing is too long, we can relax the
terminate condition, such as if the number of total
diagnostic candidates is less than some reasonable
constant or if the diagnostic candidates are not reduced
after a few test cases that are examined in the procedure.

For each diagnostic candidate in the candidate sets
DCtr, a mutant specification SCFSM is generated by
assigning the output fault, transfer fault or both faults to
the conjectured local transition. Assuming the number of
total diagnostic candidates denoted by |DCtr | is n, the set

of mutant SCFSMs is {M̃1, · · · ,M̃n} and the set of

OPMs is {P(M̃1), · · · ,P(M̃n)}, where each OPM is
assumed to be minimized.

Now we examine a pair of OPMs,
(P(M̃ j),P(M̃ j+1)), j = 1, · · · ,n − 1. If they are
equivalent, we group the corresponding fault candidates
by using P(M̃ j,M̃ j+1) to represent the equivalent OPM

and consider the next pair (P(M̃ j,M̃ j+1),P(M̃ j+2)).
Otherwise, we can easily derive a test sequence that
distinguishes the two machines [20], and we apply this
sequence to both machines and also to MI . If the

input : MS , MI , T S2, CStr, DCtr

output: Updated CStr, Updated DCtr

1 foreach tci ∈ T S2 and LOCAL(tci)∩CStr 6= /0 do

2 if |DCtr| ≤ 1 then e;

3 xit;

4 o← ExpectedOutputSequence(MS ,

tci);

5 o′← ObservedOutputSequence(MI ,

tci);

6 if o 6= o′ then

7 CS′tr ← GenerateConflictSet(tci);

8 foreach tk, j ∈CStr and tk, j 6∈CS′tr do

9 update DCtr by removing DCtr(tk, j);
10 end

11 CStr ←CS′tr ∩CStr;

12 end

13 foreach tk, j ∈ LOCAL(tci)∩CStr do

14 foreach diagnostic candidate

dcl ∈ Out puts(tk, j) do

15 M̃S ← GenerateMutant(MS);

16 õ←

ExpectedOutputSequence(M̃S ,

tci);

17 if õ 6= o′ then

18 update DCtr by removing dcl from

Out puts(tk, j);

19 end

20 end

21 foreach diagnostic candidate

dcl ∈ Endstates(tk, j) do

22 M̃S ← GenerateMutant(MS);

23 õ←

ExpectedOutputSequence(M̃S ,

tci);

24 if õ 6= o′ then

25 update DCtr by removing dcl from

Endstates(tk, j);

26 end

27 end

28 foreach diagnostic candidate

dcl ∈ OutStates(tk, j) do

29 M̃S ← GenerateMutant(MS);

30 õ←

ExpectedOutputSequence(M̃S ,

tci);

31 if õ 6= o′ then

32 update DCtr by removing dcl from

OutStates(tk, j);

33 end

34 end

35 if DCtr(tk, j) = /0 then

36 update CStr by removing tk, j;

37 end

38 end

39 end

Fig. 3: Adaptive minimizing procedure based on T S2

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

246 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

observed output sequence of one machine equals to that
of MI , we keep this machine for further checking and
discard the other since that machine can never be
equivalent to MI . If neither of them has the same
observed output sequence as that of MI , we discard both
of them. In each examination, we may remove one or two
machines. Therefore, we can reduce the number of
diagnostic candidates until either no or one machine,
grouped or not, is left. If the set is empty, MI has
multiple faults and does not match our fault model, so the
diagnostic process is finished. If one ungrouped machine
is left, then a single diagnostic candidate is obtained. If
the remaining OPMs are grouped, the single fault can not
be located uniquely.

Step 5: Confirming the fault diagnosis While one
machine is left in the set of OPMs, sometimes we need to
confirm the diagnosis by the final confirmation: do
execute conformance testing on MI by assuming that
remaining machine as the specification. If the remaining
machine is not grouped and is equivalent to MI , we can
locate the fault in the implementation exactly. If the
machine is grouped and is equivalent to MI , we have a
set of possible faults in the implementation so we can not
identify the fault in the implementation uniquely. Since
we have considered all possible fault candidates with a
single fault assumption, if the machine is not equivalent
to MI , we should conclude that the implementation has
multiple faults.

4 Evaluation

4.1 Case studies

First, a case study is given to evaluate the proposed
diagnostic method. Consider the SCFSM specification
M1 shown in the Figure 1, where Iext = {a,b,c,d} and
Oext = {x,y}. Let σ1 represent global state (s11,s21) and
σ2 represent global state (s11,s22). A test suite T S with 11
test cases is listed in the Table 4 derived from the OPM of
Figure 4 by our test case generation method [9].

Faulty implementation 1 Given a faulty
implementation M ′

1 which is equal to M1 except a faulty
transition, t ′11 : s11 [M1,a/x〉s12, converted from t11: s11

[M1,a/c〉s12. We apply the above test suite TS to M ′
1 until a

symptom (otc6,4
,o′tc6,4

) is observed at the 4th input of the

6th test case tc6 where, according to the OPM, σ2 [[d/y〉〉σ1

have produced. The expected and observed outputs of
traversed local transitions in the test cases that have been
executed for detecting the symptom (shown in bold) are
listed in Table 5.

Corresponding to the above symptom and the traversed
local transitions, the following candidate set CStr which
includes local transitions that are suspected to be faulty is
determined as: CStr = {t11, t12, t13, t14, t21, t23, t24}.

A single local transition of the conflict set with one
possible output fault, transfer fault or both faults is

s11,s21

s11,s22

c/y

b/y

d/ya/x

d/x

c/x

a/xb/y

Fig. 4: The OPM of SCFSM M1

replaced in the specification to form a mutant, one at a
time. If the behavior of this mutant for test case tc6 cannot
explain the observed symptom, that fault is not a
diagnostic candidate. For example, if a mutant that
converts the output of t13 in M1 to y instead of x is the
faulty implementation, it must produce the output
sequence xxx for tc6. However, its expected output
sequence for tc6 is yyy. Then, the output fault converting
to y of t13 is not a diagnostic candidate. The whole
diagnostic candidates that correspond to the above
conflict set are shown in Table 6. Since the diagnostic
candidates of t13 and t14 are empty, we update the conflict
set to CStr = {t11, t12, t21, t23, t24} by removing these two
local transitions.

We now consider reducing the number of diagnostic
candidates. For the tested test cases T S1 = {tc1, · · · , tc5},
if the intersection of traversed local transitions for each
test case and the current conflict set is empty, we skip
checking that. Otherwise, we check each test case and
update the conflict set and diagnostic candidates. Table 7
gives the details of test cases in T S1. Column ”Status”
indicates whether the test case requires checking or not.
Column ”New CStr” and ”New DCtr” gives the updated
conflict set and diagnostic candidates after examination of
the test case, respectively. For tc1, the intersection is
{t12, t21} and the corresponding diagnostic candidates of
these two transitions are Out puts(t12) = {x,c},
OutStates(t12) = {(x,s12), (c,s12)}, and OutStates(t21) =
{(x,s21), (a,s21)}. If we convert the output of t12 to x

instead of y in machine M1, the expected output sequence
of tc1 for this mutant is xx, which is different with the
observed output yy in Table 5, so this diagnostic candidate
is eliminated. We can eliminate all diagnostic candidates

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 247

Table 4: Test sequences generated for SCFSM M1

Test Cases tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 tc11

Inputs rbc rcb rcd rdc raab raad rabb rabd racb racd radc

Table 5: Output sequences of M1 and M ′
1

Test Cases tc1 tc2 tc3 tc4 tc5 tc6

Inputs rbc rcb rcd rdc raab raad

t12 t21, t12 t21, t12 t22 t11, t21, t14, t23, t11, t21, t14, t23,
Local t21, t12 t12 t24, t12 t21, t12 t11, t23, t13 t11, t23, t13

transitions t11, t23, t13 t11, t23, t13

t12 t24, t12

Expected yy yy yy xy xxy xxy

Observed yy yy yy xy xxy xxx

Table 6: Initial diagnostic candidates of M ′
1

DCtr Out puts EndStates OutStates

t11 {x} {} {(x,s11)}
t12 {x,c} {} {(x,s12),(c,s12)}
t13 {} {} {}
t14 {} {} {}
t21 {} {} {(x,s21),(a,s21)}
t23 {} {} {(x,s21)}
t24 {x,a} {} {(x,s22),(a,s22)}

related to t12 and t21 in this way and update the conflict
set and diagnostic candidates as shown in Table 7. Neither
tc2 nor tc4 needs to be examined since the test cases do
not contain any local transition related to the conflict set.
tc3 and tc5 are examined in the same way as tc1 except
that the set of considered transitions are {t24} and
{t11, t23}, respectively.

Furthermore, we can discriminate the diagnostic
candidates by examining the remaining untested test cases
T S2 = {tc7, · · · , tc11}. For tc7, a symptom is found
between the specification and the implementation and the
conflict set is updated by interacting with the new conflict
set generated with the new observed symptom. Then,
each diagnostic candidate is examined for discrimination
as the process of T S1. Eventually, the procedure
terminates after t8 is examined since only one diagnostic
candidate is left. The details of examining each test case
in T S2 is shown in table 8.

For the final confirmation, the output of local
transition t11 is converted to x instead of c, which leads to
a mutant SCFSM. We do conformance testing on the
implementation with this mutant specification. As the
mutant SCFSM is equivalent to the implementation, we
have identified that the implementation has a single faulty
transition at t11; upon input a, t11 outputs an external
output x, instead of internal output c.

Faulty implementation 2 Consider another faulty
implementation M ′′

1 where t23 is converted to
s22 [M2,c/b〉s22. We apply the test suite T S in Table 4 to M ′′

1

until a symptom (otc5,2
,o′tc5,2

) is observed at the 2nd input

of the 5th test case tc5 where, according to the OPM,
σ2 [[d/y〉〉σ1 have produced. The expected and observed
outputs with traversed local transitions in the test cases
that have been executed for detecting the symptom
(shown in bold) are listed in Table 9.

Corresponding to the above symptom and the
traversed local transitions, the following candidate set
CStr is determined as: CStr = {t11, t13, t14, t21, t23}. The
whole diagnostic candidates that correspond to the above
conflict set are shown in Table 10.

For the tested test cases T S1 = {tc1, · · · , tc4}, Table
11 gives the details of discriminating diagnostic
candidates by examining each test case in T S1. Since test
cases tc1, tc2, and tc3 include only one local transition t21

in the conflict set, the diagnostic candidate
EndStates(t21) = {s21} is examined. Upon input c, the
machine M2 moves from state s21 to s21. As the output
sequence of test case tc3 is yx, different from the observed
output sequence of the implementation, this candidate is
removed. t21 is also removed from the conflict set since
the other candidate sets related to t21 are all empty. We
need not check the test case tc4 because the intersection
between its traversed local transitions and the current
conflict set is empty.

We now discriminate the diagnostic candidates by
examining the remaining untested test cases
TS2 = {tc6, · · · , tc11}. The details of examining each test
case in T S2 is shown in table 12. Actually, we can
observe that the conflict set and diagnostic candidates are
reduced once only after examining test case tc6. For
avoiding unnecessary check of the remaining test cases,
we can use different termination conditions such as the
minimum threshold number of remaining diagnostic
candidates. In this example, we can set this threshold to 3
and then only tc6 is only to be tested.

The remaining three diagnostic candidates form three
mutants and the corresponding OPMs are shown in
Figure 5. Let P(M̃1), P(M̃2), and P(M̃3) be the
OPMs with Out puts(t13) = {y}, Out puts(t23) = {b}, and

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

248 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

Table 7: Conflict set and diagnostic candidates updated by analyzing T S1

Test Cases Status New CStr New DCtr

Out puts(t11) = {x}
Out puts(t24) = {x,a}

tc1 Y {t11, t23, t24} OutStates(t11) = {(x,s11)}
OutStates(t23) = {(x,s21)}

OutStates(t24) = {(x,s22),(a,s22)}
tc2 N - -

Out puts(t11) = {x}
tc3 Y {t11, t23} OutStates(t11) = {(x,s11)}

OutStates(t23) = {(x,s21)}
tc4 N - -

Out puts(t11) = {x}
tc5 Y {t11, t23} OutStates(t11) = {(x,s11)}

OutStates(t23) = {(x,s21)}

Table 8: Conflict set and diagnostic candidates updated by analyzing T S2

Test Local Status New CStr New DCtr

Cases Transitions

tc7 t11, t12, t13, t14, Out puts(t11) = {x}
(rabb) t21, t23 Y {t11, t23} OutStates(t11) = {(x,s11)}

OutStates(t23) = {(x,s21)}
tc8 t11, t12, t13, t14, Y {t11} Out puts(t11) = {x}(rabd) t21, t23, t24

tc9 t11, t12, t13, t14, N - -
(racb) t21, t23

tc10 t11, t12, t13, t14, N - -
(racd) t21, t23, t24

tc11 t11, t12, t13, t14, N - -
(radc) t21, t23, t24

Table 9: Output sequences of M1 and M ′′
1

Test Cases tc1 tc2 tc3 tc4 tc5

Inputs rbc rcb rcd rdc raab

t12 t21, t12 t21, t12 t22 t11, t21, t14, t23,
Local t21, t12 t12 t24, t12 t21, t12 t11, t23, t13

transitions t11, t23, t13

t12

Expected yy yy yy xy xxy

Observed yy yy yy xy yyy

Table 10: Initial diagnostic candidates of M ′′
1

DCtr Out puts EndStates OutStates

t11 {y} {s11} {(y,s11)}
t13 {y} {} {(y,s12)}
t14 {y} {} {(y,s12)}
t21 {} {s21} {}
t23 {b} {} {(b,s21)}

OutStates(t13) = {(y,s12)}, respectively. Since P(M̃1)
is equivalent to P(M̃2), we group these two mutants and

consider the pair (P(M̃1,M̃2),P(M̃3)). An input

sequence can be easily found that produces different
output sequences from the two machines. If that sequence
is radd, the corresponding output sequence is yyx for
P(M̃1,M̃2), and yyy for P(M̃3). Since the
corresponding output sequence from the faulty
implementation, yyx is different from P(M̃3), the
diagnostic candidate OutStates(t13) = {(y,s12)} is
discarded. The only remaining candidates are
Out puts(t13) = {y} and Out puts(t23) = {b} which have
the equivalent OPM.

For the final confirmation, conformance testing is
done on the implementation with the OPM for the
remaining grouped diagnostic candidates. The mutant

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 249

Table 11: Conflict set and diagnostic candidates updated by analyzing T S1

Test Cases Status New CStr New DCtr

Out puts(t11) = {y},Out puts(t13) = {y}
Out puts(t14) = {y},EndStates(t11) = {s11}
Out puts(t23) = {b},EndStates(t21) = {s21}

tc1 Y {t11, t13, t14, t21, t23} OutStates(t11) = {(y,s11)}
OutStates(t13) = {(y,s12)}
OutStates(t14) = {(y,s12)}
OutStates(t23) = {(b,s21)}

Out puts(t11) = {y},Out puts(t13) = {y}
Out puts(t14) = {y},EndStates(t11) = {s11}
Out puts(t23) = {b},EndStates(t21) = {s21}

tc2 Y {t11, t13, t14, t21, t23} OutStates(t11) = {(y,s11)}
OutStates(t13) = {(y,s12)}
OutStates(t14) = {(y,s12)}
OutStates(t23) = {(b,s21)}

Out puts(t11) = {y},Out puts(t13) = {y}
Out puts(t14) = {y},Out puts(t23) = {b}

EndStates(t11) = {s11}
tc3 Y {t11, t13, t14, t23} OutStates(t11) = {(y,s11)}

OutStates(t13) = {(y,s12)}
OutStates(t14) = {(y,s12)}
OutStates(t23) = {(b,s21)}

tc4 N - -

Table 12: Conflict set and diagnostic candidates updated by analyzing T S2

Test Local Status New CStr New DCtr

Cases Transitions

tc6 t11, t12, t13, t14, Out puts(t13) = {y}
(raad) t21, t23, t24 Y {t13, t23} Out puts(t23) = {b}

OutStates(t13) = {(y,s12)}
tc7 t11, t12, t13, t14, Out puts(t13) = {y}

(rabb) t21, t23 Y {t13, t23} Out puts(t23) = {b}
OutStates(t13) = {(y,s12)}

tc8 t11, t12, t13, t14, Out puts(t13) = {y}
(rabd) t21, t23, t24 Y {t13, t23} Out puts(t23) = {b}

OutStates(t13) = {(y,s12)}
tc9 t11, t12, t13, t14, Out puts(t13) = {y}

(racb) t21, t23 Y {t13, t23} Out puts(t23) = {b}
OutStates(t13) = {(y,s12)}

tc10 t11, t12, t13, t14, Out puts(t13) = {y}
(racd) t21, t23, t24 Y {t13, t23} Out puts(t23) = {b}

OutStates(t13) = {(y,s12)}
tc11 t11, t12, t13, t14, Out puts(t13) = {y}

(radc) t21, t23, t24 Y {t13, t23} Out puts(t23) = {b}
OutStates(t13) = {(y,s12)}

SCFSM turns out to be equivalent to the implementation
by that testing, so we cannot exactly locate the single
fault. Accordingly, the following set of potential single
faults is finally obtained: either t13 with faulty output y

upon input a, or t23 with fault output b upon input c.

4.2 Complexity analysis

In order to easily calculate the complexity of each step of
the diagnostic method, we assume that m is the number
of component machines which have the same number of
states n and the same number of output symbols q. We also
let p be the number of external input symbols of a given
SCFSM and k be the number of internal output symbols of

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

250 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

s11,s21

s11,s22

c/y

b/y

d/ya/y

d/x

c/y

a/yb/y

Outputs(t13) = {y}

s11,s21

s11,s22

c/y

b/y

d/ya/y

d/x

c/y

a/yb/y

Outputs(t23) = {b}

OutStates(t13) = {(y, s12}

s11,s21

s11,s22

c/y

b/y

a/y

a/yd/x

d/y

c/y

b/y

s12,s22

c/y

d/y

a/y

b/y

Fig. 5: The OPMs for diagnostic candidates

that SCFSM. We also let Ls be the length of test sequences
and Lc be the number of inputs in the longest test case.

An OPM is obtained by performing reachability
analysis. The complexity of building such a machine is
the complexity of building its states and transitions. The
number of stable global states is bounded by nm, and the
number of global transitions is bounded by pnm. Each
global transition may traverse all unstable global states in
the worst case. The number of unstable global states is

bounded by knm. Therefore the complexity of building an
OPM is O(nm)+O(pnmknm) = O(pkn2m).

The complexity of Step 1: The worst case is that we
execute all test cases for finding a symptom. The
complexity of this step is O(LsLc).

The complexity of Step 2: In order to determine the
local transitions that are traversed by the test case which
generates the symptom, we insert the local transitions
traversed in Step 1 while executing this test case against
the OPM into a conflict set. This set would include, in the
worst case, all the local transitions of the SCFSM. The
complexity of this step is the number of all local
transitions, that is O(np).

The complexity of Step 3: In order to form the
diagnostic candidates, we need to consider all possible
single faults of each local transition in the conflict set.
The number of possible single faults of a local transition
is nq− 1, so the complexity of generating all diagnostic
candidates is O((nq− 1)np) = O(pqn2). To check each
diagnostic candidate whether it has the same output as the
implementation for the test case, we need to trace the test
case on the mutant machine. As the complexity of this
check is O(Lcknm), the complexity of this step is
O(pqn2Lcknm) = O(Lc pqknm+2).

The complexity of Step 4: First, we consider the
complexity of using test case in T S to eliminate
diagnostic candidates. For each test case, in the worst
case, we need to trace on the mutant machine to compare
with the observed outputs for each diagnostic candidate in
step 3, so this complexity is O(LsLc pqknm+2). Second,
we consider the complexity of using OPMs to eliminate
diagnostic candidates. The complexity of generating
OPMs for all mutant machines is O(pqn2 pkn2m) =
O(p2qkn2m+2). To cross-check a pair of OPMs takes time
O(pnm) and the total time for all mutants is
O(pnm pqn2) = O(p2qnm+2). The complexity of step 4 is
thus O(LsLc pqknm+2) + O(p2qkn2m+2) + O(p2qnm+2) =
O(LsLc pqknm+2) + O(p2qkn2m+2).

The complexity of Step 5: Finally, the confirmation
only considers one product machine, so it takes time
O(pn3m).

Overall Complexity: The overall complexity of the
heuristic method is O(pkn2m) + O(LsLc) + O(np) +
O(Lc pqknm+2) + O(LsLc pqknm+2) + O(p2qkn2m+2) +
O(pn3m) = O(LsLc pqknm+2) + O(p2qkn2m+2) + O(pn3m).

If we use Wp method for generating test sequence TS

without extra states, T S is bounded by O(pn3m) and TC is
bounded by O(2pnm). In this case, the overall complexity
is O(LsLc pqknm+2) + O(p2qkn2m+2) + O(pn3m) =
O(pn3m2pnm pqknm+2) + O(p2qkn2m+2) + O(pn3m) =
O(p3qkn5m+2).

5 Conclusions

This paper studies fault diagnosis for testing a
communication protocol which can be modeled in an
SCFSM. We propose a heuristic method that attempts to

c© 2019 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. 2, 239-252 (2019) / www.naturalspublishing.com/Journals.asp 251

locate a fault of the target implementation which has been
detected by the given test cases under some assumptions.
We have shown the condition required to enable fault
localization in an SCFSM, and have discussed the
possibility of precise locating the fault of an
implementation which is assumed to have only one fault.
According to the organization of component machines
and their communications in the SCFSM, the proposed
method can locate the fault exactly, which explains the
root cause of faulty behavior in the implementation, or
gives a set of all potential faults. We have also evaluated
the proposed method with two case studies and
complexity analysis. Especially we have developed a
software tool in Java which performs the proposed fault
diagnosis method to validate its reliability and
completeness.

When testing an SCFSM based on its OPM, the main
problem is the state explosion problem. Some studies are
attempting to test local transitions individually without
constructing the OPM. However, those methods usually
require strict assumptions or may not guarantee the full
fault coverage. Other studies are trying to use a system of
Communicating Extended Finite-State Machines
(SCEFSM) rather than an SCFSM, which allows
specifications of data elements explicitly. The testing
techniques proposed in this paper could be also applied to
SCEFSM models after some adjustments. We also study
how to reduce the state space required for the proposed
fault diagnosis in order to guarantee its scalability.

Acknowledgement

This paper was supported by Research Fund, Kumoh
National Institute of Technology.

References

[1] ITU, CCITT Specification and Descritpion Language (SDL),

ITU-T, Recommendation Z.100 (2007).

[2] S. Fujiwara, G.V. Bochmann, F. Khendek, M. Amalou and

A. Ghedamsi, Test Selection Based on Finite State Models,

IEEE Trans on Software Eng, Vol.17, pp.591–603 (1991).

[3] C. Furse, P. Smith, C. Lo, Y.C. Chung, P. Pendayala and K.

Nagoti, Spread spectrum sensors for critical fault location

on live wire networks, Structural Control and Health

Monitoring, Vol.12, pp.257–267 (2005).

[4] J. de Kleer and B.C. Williams, Diagnosing multiple faults,

Artificial Intelligence, Vol.32, pp.97–130 (1987).

[5] R. Patton and P. Frank, Fault diagnosis in dynamic systems,

theory and applications Prentice Hall: Englewood Cliffs

(1989).

[6] D. Brand and P. Zafiropulo, On Communicating Finite-State

Machines, J. ACM, Vol.30, pp.323–342 (1983).

[7] G.V. Bochmann, Conformance testing methodologies

and architectures for OSI protocols, IEEE Computer

Society Press: Los Alamitos, CA, USA, Section Finite state

description of communication protocols, pp. 66–77 (1995).

[8] K. Özdemir and H. Ural, Protocol validation by simultaneous

reachability analysis, Computer Communications, Vol.20,

pp.772–788, (1997).

[9] Qi-Ping Yang and Tae-Hyong Kim, Test Generation

for a System of Communicating Finite State Machines,

International Journal of Engineering and Technology (IJET),

Vol. 5, No. 4, pp. 3504–3513 (2013).

[10] D. Lee and M. Yannakakis, Principles and methods of

testing finite state machines-a survey, Proceedings of the

IEEE, Vol.84, pp.1090–1123 (1996).

[11] A. Petrenko, N. Yevtushenko and G.V. Bochmann, Fault

models for testing in context, IFIP TC6/ 6.1 international

conference on formal description techniques IX/protocol

specification, testing and verification XVI on Formal

description techniques IX, Chapman & Hall, Ltd., pp.163–

178 (1996).

[12] A. Ghedamsi and G.V. Bochmann Test result analysis and

diagnostics for finite state machines, Proceedings of the 12th

International Conference on Distributed Computing Systems,

pp. 244–251 (1992).

[13] D. Lee, and K. Sabnani, Reverse-engineering of

communication protocols, Proceedings of the 1st

International Conference on Network Protocols, pp. 208–216

(1993).

[14] M.R. Genesereth, The use of design descriptions in

automated diagnosis, Artif. Intell., Vol.24, pp.411–436

(1984).

[15] A. Ghedamsi, G.V. Bochmann and R. Dssouli, Multiple

fault diagnosis for finite state machines, Proceedings on the

12th Annual Joint Conference of the IEEE Computer and

Communications Societies, Vol.2, pp. 782–791 (1993).

[16] A. Ghedamsi, G.V. Bochmann and R. Dssouli, Diagnostic

tests for communicating finite state machines, Annual

International Phoenix Conference on Computers and

Communications, pp. 254 –260 (1993).

[17] A. Ghedamsi, G.V. Bochmann and R. Dssouli, Diagnosis

of single transition faults in communicating finite state

machines, Proceedings on the 13th International Conference

on Distributed Computing Systems, pp. 157–166 (1993).

[18] Z. Pap, G. Csopaki and S. Dibuz, On FSM-Based Fault

Diagnosis, Lecture Notes in Computer Science, Vol. 3502,

pp. 370–370 (2005).

[19] K. El-fakih and G.V. Bochmann, Locating a Faulty Machine

in a System of Communicating Finite State Machines,

Proceedings of the EEEL Workshop on Software Embedded

Systems and Testing; pp.75–80 (1999).

[20] E.F. Moore, Gedanken Experiments on Sequential

Machines, Automata Studies, Princeton U., pp.129–153

(1956).

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

252 Q.-P. Yang, T.-H. Kim: Fault diagnosis of a protocol...

Qi-Ping Yang received
the PhD degree in Computer
Engineering at Kumoh
National Institute of
Technology (KIT) in
the Republic of Korea in
2012. He joined the Shanghai
Research Center for Wireless
Communications, China
in 2013. His research interests

are computer networks and protocol engineering,
especially formal methods in development of network
protocols and performance analysis of wireless networks.

Tae-Hyong Kim
is a Professor of Computer
Engineering at Kumoh
National Institute of
Technology (KIT) in
the Republic of Korea.
He received the PhD
degree in Electric and
Electronic Engineering at
Yonsei University in the same

country in 2001. He was a post-doctoral researcher at the
University of Ottawa in 2002 and a visiting scholar at the
University of California, Riverside in 2008. His main
research interests are networking and intelligent
processing, especially protocol engineering in formal
methods, next-generation wireless networks, the internet
of things, and data analysis with machine learning.

c© 2019 NSP

Natural Sciences Publishing Cor.

	Introduction
	Preliminary Work
	Fault diagnosis for an SCFSM
	Evaluation
	Conclusions

