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Abstract: We analyse the paraxial field propagation in the realm of classical optics, showing that it can be written as the action of the

fractional Fourier transform, followed by the squeeze operator applied to the initial field. Secondly, we show that a wavelet transform

may be viewed as the application of a displacement and squeeze operator onto the mother wavelet function.
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1 Introduction

In the late seventies, squeezed states were introduced [1,
2]. On the one hand, Yuen [3] defined them squeezing the
vacuum and then displacing the resulting state. On the
other hand, Caves [4] defined them by displacing the
vacuum and then squeezing the produced coherent state.
Squeezed states have been shown to produce ringing
revivals (a fingerprint that a squeezed state is used) in the
interaction between light and matter [5]. Applications of
quantum techniques in classical optics have been the
subject of many studies during the last years [6,7]. Along
the same line, one of the goals of this article is to show,
that in a mathematical sense, the squeeze operator could
have been introduced in the description of free light
propagation, i.e. in the domain of classical optics, at least
hundred years earlier. We also show that we can use such
squeeze operators to write the continuous wavelet
transform as its average with the mother wavelet function,
a displacement operator and the function to be
transformed.

2 Squeezed states

As we already explained in the introduction, there are two
equivalent forms to define the squeezed states. In the first
one, introduced by Yuen [3], squeezed states are obtained

from the vacuum as

|α;r〉 = Ŝ(r)D̂(α)|0〉= Ŝ(r)|α〉, (1)

where

Ŝ(r) = exp
[ r

2

(

â2 − â†2
)]

(2)

is the squeeze operator and D̂(α) is the Glauber

displacement operator [8]. Here â = 1√
2
(x + d/dx) and

â† = 1√
2
(x − d/dx) are the ladder operators [9]. In this

view, squeezed states are created displacing the vacuum,
and after, squeezing it. Note that when the squeeze
parameter r is set to zero, the squeezed states reduce to
the coherent states. In this work, we will consider only
real squeeze parameters, as that is enough for our
intentions.
In the definition of the squeezed states followed by Caves
[4], the vacuum is squeezed and the resulting state is then
displaced; which means that in this approach, they are
given by the expression

|α ′;r′〉= D̂
(

α ′) Ŝ
(

r′
)

|0〉. (3)

Both definitions of the squeezed states agree when the
squeeze factor is the same, r′ = r, and when the modified
amplitude α ′ of the Caves approach is given by

α ′ = µα −να∗, (4)
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being

µ = cosh r (5)

and

ν = sinh r. (6)

To analyse the uncertainties in the position and in the
momentum of the squeezed states, we introduce,
following Loudon and Knight [1], the quadrature
operators

X̂ =
â+ â†

2
=

x̂√
2

(7)

and

Ŷ =
â− â†

2i
=

p̂√
2
. (8)

In order to show that really the squeezed states are
minimum uncertainty states, we need to calculate the
expected values in the squeezed state (1) of the quadrature
operators (7) and (8), and its squares. Using (7) and (1),
we obtain

〈α;r|X̂ |α;r〉= 〈α|Ŝ†(r)
â+ â†

2
Ŝ(r)|α〉. (9)

The action of the squeeze operator on the creation and
annihilation operators is obtained using the Hadamard’s
lemma [10,11,12],

Ŝ†(r)âŜ(r) = µ â−ν â†, Ŝ†(r)â†Ŝ(r) = µ â† −ν â, (10)

such that

Ŝ†(r)
â+ â†

2
Ŝ(r) = e−rX̂ . (11)

Therefore, as â|α〉 = α|α〉 and 〈α|â† = 〈α|α∗, it is easy
to see that

〈α;r|X̂ |α;r〉 = e−r α +α∗

2
, (12)

and that

〈α;r|X̂2|α;r〉= e−2r 1+ 2 |α|2 +α2 +α∗2

4
. (13)

So, we obtain for the uncertainty in the quadrature operator
X̂ ,

∆ X ≡
√

〈α;r|X̂2|α;r〉− 〈α;r|X̂ |α;r〉2 =
e−r

2
. (14)

Proceeding in exactly the same way for the quadrature
operator Ŷ , we obtain

∆ Y ≡
√

〈α;r|Ŷ 2|α;r〉− 〈α;r|Ŷ |α;r〉2 =
er

2
. (15)

As mentioned before, we can then think in the position
eigenstates and in the momentum eigenstates as limiting
cases of squeezed states.

3 Squeeze and fractional Fourier operators

in paraxial optics

The propagation of light in free space can be described by
the paraxial equation

i
∂E(x,y,z)

∂ z
=−1

2

∂ 2E(x,y,z)

∂x2
− 1

2

∂ 2E(x,y,z)

∂y2
, (16)

where we have set the wavevector k equal to one. We
define p̂α = −i∂/∂α , with α = x,y such that we rewrite
the above equation as (we obviate the variables x and y)

i
∂E(z)

∂ z
=

p̂x
2 + p̂y

2

2
E(z), (17)

that allows to give the simple formal solution

E(z) = exp
[

−i
z

2
(p̂x

2 + p̂y
2)
]

E(0). (18)

We use the annihilation and creation operators for the
harmonic oscillator,

âα =
α̂ + ip̂α√

2
, â†

α =
α̂ − ip̂α√

2
, α = x,y (19)

to cast Eq. (18) into

E(z) = exp

[

−i
z

2

(

n̂x +
1

2
− â2

x

2
− â†2

x

2

)]

(20)

× exp

[

−i
z

2

(

n̂y +
1

2
−

â2
y

2
−

â†2
y

2

)]

E(0),

with n̂α = â
†
α âα , the number operator for each variable. In

the following, we show how to factorize this exponential as
the product of a squeeze and a fractional Fourier transform
operators[13].

3.1 Evolution operator factorization

Each exponential in (20) may be written as

exp
[

−i
z

2

(

2K̂0 − K̂+− K̂−
)

]

, (21)

with (for simplicity, we drop the α subindexes of the
annihilation and creation operators)

K̂0 =
1

2

(

â†â+
1

2

)

, K̂+ =
â†2

2
, K̂− =

â2

2
, (22)

which are the elements of a Lie Algebra su(1,1) [12] and
satisfy the following commutation relations

[

K̂−, K̂+

]

= 2K̂0,
[

K̂0, K̂+

]

= K̂+,
[

K̂0, K̂−
]

=−K̂−.
(23)
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According to Fisher et al. [14] the generators of the
su(1,1) algebra admit the matrix representation

K̂0 =

(

1/2 0
0 −1/2

)

(24)

and

K̂+ =

(

0 1
0 0

)

, K̂− =

(

0 0
−1 0

)

, (25)

such that Eq. (21) may be rewritten as

exp
[

−i
z

2

(

2K̂0 − K̂+− K̂−
)

]

=

(

1− i z
2

i z
2

−i z
2

1+ i z
2

)

, (26)

because
(

1 −1
1 −1

)n

= 0 for all n = 2,3, . . . . (27)

We now assume that two complex numbers, ξ = reiθ and
ω , exist, such that

(

1− i z
2

i z
2

−i z
2

1+ i z
2

)

= exp
[

−i
z

2

(

2K̂0 − K̂+− K̂−
)

]

= exp(−i2ωK̂0)exp
(

ξ K̂+− ξ ∗K̂−
)

=

(

e−iω coshr ei(θ−ω) sinhr

ei(ω−θ) sinhr eiω coshr

)

,

(28)

with

1+ i
z

2
= eiω coshr, −i

z

2
= e−iθ eiω sinhr, (29)

or

eiω =
1+ i z

2
√

1+
(

z
2

)2
, eiθ = ieiω , (30)

and

r = ln

(

√

1+
( z

2

)2

− z

2

)

. (31)

Therefore, we may write

exp
(

−i
z

2
p̂2
)

= Ŝ
(

ire−iω
)

exp

[

−iω

(

â†â+
1

2

)]

(32)

= Ŝ(ξ ) F̂(ω),

where Ŝ(ξ ) is the squeeze operator [4,3], Eq. (2), and
F̂(ω) is the fractional Fourier transform (see for instance
Namias [13]), with

ξ = ire−iω . (33)

Then the solution to the paraxial wave equation reads

E(z) = Ŝx (ξ ) Ŝy (ξ ) F̂x(ω)F̂y(ω)E(0), (34)

that is nothing but the application of squeeze operators
applied to the two-dimensional fractional Fourier

transform of the field at z = 0. It is not difficult to show
that for large z, ω → π/2 such that ξ → r and the
fractional Fourier transform becomes the (complete)
Fourier transform. The solution to the paraxial equation
for z large therefore reads

E(x,y,z) = Ŝx(r)Ŝy(r)Ẽ(x,y,0), (35)

where Ẽ(x,y,0) is the two-dimensional Fourier transform
of E(x,y,0). Further application of the squeeze operator
yields

E(x,y,z) = e−rẼ(xe−r,ye−r,0). (36)

As can also be shown from Eqs.(30), when z is very large
r → ln(z), thus

E(x,y,z) =
1

z
Ẽ

(

x

z
,

y

z
,0

)

, (37)

which, up to a phase, is the expected expression [15,16,
17].

4 Wavelet transforms

The integral (continuous) wavelet transform of a function
f (x) is given by [18,19,20]

F (a,b) =
1
√

|a|

∫ ∞

−∞
ψ∗
(

x− b

a

)

f (x)dx, (38)

where ψ(x) is the so called mother wavelet function.
Because exp(ibp̂)g(x) = g(x+ b) the above equation may
be written in the form

F (a,b) =
1
√

|a|

∫ ∞

−∞
ψ∗
( x

a

)

exp(ibp̂) f (x)dx, (39)

and using the squeeze operator introduced above and the
equations presented in the Appendix, we may write in
Dirac notation the simple form

F (a,b) = 〈ψ |Ŝ†(r)exp(ibp̂)| f 〉. (40)

If we choose the very simple mother wavelet function,
namely the state |0〉, i.e., the Hermite-Gaussian ψ0(x), the
wavelet integral transform reduces to [21,22]

F (a,b) = 〈b,r| f 〉. (41)

where |b,r〉 has the form of a squeezed state, equation (3)
with r =− lna.

5 Conclusions

We have shown that some techniques that are common in
quantum mechanics may be applied in classical scenarios
used in optics. In particular, we have written the free
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propagation of a field as the application of the product of
squeeze operators corresponding to the variables x and y

and the two-dimensional fractional Fourier operator to the
field at z = 0. Finally we show that it is possible to write
the continuous wavelet transform as the application of a
”bra” mother wavelet to a ”ket” that corresponds to the
function to be transformed.

Appendix

A function ψ(x) may be expanded in Hermite-Gaussian
functions as

ψ(x) =
∞

∑
n=0

cnψn(x), (42)

with

ψn(x) =
1

√

2nn!
√

π
exp(−x2

2
)Hn(x), (43)

where Hn(x) are the Hermite polynomials of order n. The
coefficients cn may be calculated from the integral
cn =

∫ ∞
−∞ ψ(x)ψn(x)dx. In Dirac notation the above may

be casted as

|ψ〉=
∞

∑
n=0

cn|n〉, (44)

where the states |n〉 are the number or Fock states. The
coefficients cn are calculated by the quantity cn = 〈n|ψ〉.
If we apply a squeeze operator to the function ψ(x) we
obtain

S(r)ψ(x)1 = S(r)ψ(x)S†(r)S(r)1, (45)

where we have multiplied by 1 and we have introduced an
extra 1, namely S†(r)S(r), in the right hand side of the
equation above. From (11), we can see that
S(r)ψ(x)S†(r) = ψ(xe−r) and the action of S(r) on 1 is

S(r)1 = exp
[

−i
r

2
(xp̂+ p̂x)

]

1 (46)

= exp
[

i
r

2
(2xp̂− i)

]

1 = exp(−r/2).

Now, the integral of two functions is given by

∫ ∞

−∞
ψ∗(x) f (x)dx =

∞

∑
n=0

∞

∑
m=0

∫ ∞

−∞
c
(ψ)∗
n c

( f )
m ψn(x)ψm(x),

(47)
where we have made explicitly that the coefficients are
related to specific functions. Because of orthogonality it
reduces to

∫ ∞

−∞
ψ∗(x) f (x)dx =

∞

∑
n=0

c
(ψ)∗
n c

( f )
n = 〈ψ | f 〉. (48)
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Óptica y Electrónica
in Puebla, Mexico where
he works on Quantum Optics.
He has published over 170
papers in international peer

reviewed journals. He is fellow of the Alexander von
Humboldt Foundation.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Squeezed states
	Squeeze and fractional Fourier operators in paraxial optics
	Wavelet transforms
	Conclusions

