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Abstract: In this paper, a new approach is used to study analytically the axisymmetric fluid squeezed between two parallel plates.

This new approach depends mainly on the coefficients of powers series resulting from integrating nth order differential equation with

known data. We obtianed an analytical-approximate solution for the squeezing flow between two parallel plates. The steady non-linear

governing partial differential equations are converted by using the suitable similarity transformation into ordinary differential equation.

In addition, some theorems are introduced to prove the convergence of a new approach theoretically and explain the verifications of

these theorems computationally. The results domenstrate this new approach is efficient and reasonable which compare with the results

of the other methods.
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1 Introduction

Squeezing flow occurs by the restriction of fluid
particularly a viscoelastic fluid in the gap either between
two parallel plates or coaxial disks which result in both
shear and longitudinal deformation. Some practical
examples of squeezing flow include polymer processing,
modeling of synthetics transportation inside living bodies,
hydro-mechanical machinery, injection molding and
compression processes. Squeezing flows motivate when
normal stresses or vertical velocities are externally
applied by means of a mobile boundary. The squeezing
flows have been studied and taken a considerable
attention since 19th century due to their wide range of
practical applications in physical and biophysical fields.
Stefan [1] published article on squeezing flow depended
on lubrication approximation, and Reynolds [2] obtained
a solution for elliptic plates.
Many researchers [3]-[6] have provided the theoretical
and experimental studies of squeezing flows, which used
to solve the governing nonlinear equation to find
analytical-approximate solutions of the equations for the
squeezing flow between two infinite plates. The

importance of research includes the study of nonlinear
differential equations which naturally describe the
nonlinearity of many physical phenomena. In the recent
years, several methods have been used to find
analytical-approximate solutions to nonlinear differential
equations such as; Adomians decomposition method (
Sheikholeslami et al.[7], Birajdar [8]), differential
transform method (Muhammad et al. [9] ), homotopy
perturbation method( Domairry and Aziz [10], Umar et
al.[11]), homotopy analysis method (Bouremel[12], Ran
et al. [13], Mustafa et al.[14] and Dayyan et al.[15]). The
objective of this job is the search for an
analytical-approximate solution for the nonlinear
problem, which describes a viscous, incompressible fluid,
squeezed between two infinite parallel plates, so that the
plates are moving towards each other with a certain
velocity V , see Figure 1.
In this paper, we introduce a new approach that depends
on the coefficients of the power series as essential manner
to find an analytical-approximate solution for the problem
of squeezing flow between two parallel plates. The
analytical-approximate solution is compared with Runge
-Kutta of fourth order, Homotopy Analysis
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Method(HAM) [13] and Successive Linearization
Method(SLM)[16]. The comparison shows that the
solutions are compatible and have a good convergence.
The organization of this paper is as follows: the governing
equations are derived in section 2. Detailed derivation of
the new approach has been written as steps in section 3.
The performance of the new approach for the squeezing
flow has been applied in section 4. In section 5 the
analysis of converges are explained. Results and
discussions are given in section 6. The paper ends with
conclusions.

Fig. 1: squeezed between two infinite parallel plates

2 Governing Equations

The problem under consideration is that of a
two-dimensional quasi -steady axisymmetric
incompressible viscous flow between two infinite parallel
plates as in [13]. The governing equations in the radial
and axial coordinates (r,z) can be expressed as:

∂ p

∂ r
+

ρ

r

∂ 2ψ

∂ t∂ z
−ρ

∂ψ

∂ r

E2ψ

r2
−

µ

r

∂E2ψ

∂ z
= 0, (1)

∂ p

∂ r
+

ρ

r

∂ 2ψ

∂ t∂ z
−ρ

∂ψ

∂ z

E2ψ

z2
+

µ

r

∂E2ψ

∂ z
= 0, (2)

where ρ is the fluid density, µ is the coefficient of
kinematic viscosity, p is the pressure

E2 =
∂ 2

∂ r2
−

1

r

∂

∂ r
+

∂ 2

∂ z2
. (3)

and ψ(r,z) is the stokes stream function given by

ur(r,z, t) =
1

r

∂ψ

∂ z
,uz(r,z, t) =−

1

r

∂ψ

∂ r
(4)

Upon eliminating the generalized pressure p in Equations
(1)and (2) we get

ρ [
1

r

∂E2ψ

∂ t
−

∂ (ψ , E2ψ
r2 )

∂ (r,z)
] =

µ

r
E4ψ , (5)

for small values of the approach velocity u of the two
plates, the gap 2H changes slowly with time and can be
assumed to be constant, hence from Equation (5), we have

−ρ [
∂ (ψ , E2ψ

r2 )

∂ (r,z)
] =

µ

r
E4ψ , (6)

with the boundary conditions

ur = 0, uz =−V at z = H,

uz = 0,
∂ur

∂ z
= 0 at z = 0, (7)

the stream function can be expressed by similarity
transformation as

ψ(r,z) = r2 f (z), (8)

and introducing the non-dimensional parameters

f ∗ =
f

V/2
, z∗ =

z

H
, M =

ρH

µ/V
, (9)

After we use the definitions in Equation (9) and drop (*),
Equation (6) with boundary conditions Equation (7) in
non-dimensional forms becomes:

f iv(z)+M f (z) f ′′′(z) = 0, (10)

f (0) = 0, f ′′(0) = 0, f (1) = 1, f ′(1) = 0, (11)

Recently, semi-analytical approximate methods HAM
[13] and SLM [16] are used to solve this regime and
compared with numerical method. These methods have
limitations (linearizion, discretization, uses polynomials,
choice auxiliary parameters and especially for SLM the
determination of the number of collocation points is not
straightforward) in the study of nonlinear problems.
These drawbacks may produce unnecessary computations
not only imply a divergence in the solution but more from
that taking away long computation time. So, in this work
we propose a new approach to overcome some of these
limitations.

3 The basic steps of the new approach

This section describes how to obtain a new approach and
to calculate the coefficients of the power series solution
resulting from solving nonlinear ordinary differential
equations to find analytical-approximate solution. These
coefficients are important bases to construct the solution
formula, therefore they can be computed recursively by
differentiation ways. To illustrate the computation and
operations for these coefficients and derivation the new
approach, we summarize the detail of a new outlook in
the following steps:
Step 1: Consider the non-linear differential equation as
follows:

H( f (z), f ′(z), f ′′(z), ..., f (n−1)(z), f (n)(z)) = 0, (12)

integrating Equation (12) with respect to z on [0,z] acquire

f (z) = f (0)+ f ′(0)z+ f ′′(0)
z2

2!
+ ...+
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f (n−1)(0)
zn−1

(n− 1)!
+L−1G[ f (z)], (13)

where,

G[ f (z)] = H( f (z), f ′(z), f ′′(z), ..., f (n−1)(z)),

L−1 =
∫ z

0

∫ z

0
...

∫ z

0
(dz)n, (14)

Step 2 : Assume that

G[ f (z)] =
∞

∑
n=1

dn−1G( f0(z))

dzn−1
, (15)

rewriting the Equation (15)

G[ f (z)] = G[ f0(z)]+G′[ f0(z)]+G′′[ f0(z)]+ ..., (16)

substituting Equation (16) in Equation (13), we obtain

f (z) = f0 + f1 + f2 + f3 + f4 + ..., (17)

where,

f0 = f (0)+ f ′(0)z+ f ′′(0)
z2

2!
...+ f (n−1)(0)

z(n−1)

(n− 1)!
,

f1 = L−1G[ f0(z)], f2 = L−1G′[ f0(z)],

f3 = L−1G′′[ f0(z)], f4 = L−1G′′′[ f0(z)], ... (18)

Step 3 : We focus on computing the derivatives of G with
respect to z which is the crucial part of the proposed
method. Let start calculating G[ f (z)],G′[ f (z)],G′′[ f (z)],
G′′′[ f (z)], ....

G[ f (z)] = H( f (z), f ′(z), f ′′(z), ..., f (n−1)(z)), (19)

G′[ f (z)] =
dG[ f (z)]

dz
= G f . fz +G f ′ .( fz)

′

+...+G
f (n−1).( fz)

(n−1), (20)

G′′[ f (z)] =
d2G[ f (z)]

dz2
= G f f .( fz)

2 +G f f ′ .( fz)
′
fz

+G f f ′′ . fz( fz)
′′+ ...+G

f f (n−1).( fz)( fz)
(n−1)+G f

. fzz +G f ′ f .( fz)
′. fz +G f ′ f ′ .( fz)

′2 + ...+G
f ′ f (n−1)

.( fz)
′( fz)

(n−1)+G f ′ .( fzz)
′+G f ′′ f .( fz)

′′. fz +G f ′′ f ′ .

( fz)
′
( fz)

′′+G f ′′ f ′′ .( fz)
′′2 +G f ′′ f ′ .( fz)

′
( fz)

′′+

...+G f ′′ f (n−1) .( fz)
′′( fz)

(n−1)+G f ′′ .( fzz)
′′+ ...+

G
f (n−1) f

.( fz)
(n−1). fz +G

f (n−1) f ′
( fz)

(n−1).( fz)
′+ ...+

G
f (n−1) f (n−1) .( fz)

(n−1)2 +G
f (n−1).( fzz)

(n−1), (21)

G′′′[ f (z)] =
d3G[ f (z)]

dz3
= G f f f .( fz)

3 +G f f f ′ .( fz)
2

( fz)
′+ ...+G

f f f (n−1).( fz)
2.( fz)

(n−1)+G f f .2( fz). fzz

+G f f ′ f .( fz)
′( fz)

2 +G f f ′ f ′ .( fz)
′2( fz)+ ...+G

f f ′ f (n−1)

.( fz)
′( fz).( fz)

(n−1)+G f f ′ .[( fzz)
′. fz +( fz)

′. fzz]+G f f ′′ f

.( fz)
′′
( fz)

2 +G f f ′′ f ′ .( fz)
′′
( fz).( fz)

′+ ...+G
f f ′′ f (n−1)

.( fz)
′′
( fz).( fz)

(n−1)+G f f ′′ .[ fzz.( fz)
′′+ fz.( fzz)

′′]+ ...+

G f f (n−1) f .( fz)
2.( fz)

(n−1)+G
f f (n−1) f ′ .( fz).( fz)

′.( fz)
(n−1)

+...+G
f f (n−1) f (n−1) .( fz).( fz)

(n−1)2 +G
f f (n−1) .[( fzz)

.( fz)
(n−1)+( fz)( fzz)

(n−1)]+G f f . fzz.( fz)+G f f ′ . fzz.( fz)
′

+..+G f f (n−1). fzz.( fz)
(n−1)+Gz. fzzz +G f ′ f f .( fz)

′( fz)
2+

G f ′ f ′ f .( fz)
′2( fz)+ ...+G

f ′ f f (n−1) .( fz)
′( fz).( fz)

(n−1)

+G f ′ f .[( fzz)
′. fz +( fz)

′. fzz]+G f ′ f ′ f .( fz)
′2. fz +G f ′ f ′ f ′

.( fz)
′3 + ...+G

f ′ f ′ f (n−1) .( fz)
′2.( fz)

(n−1)+G f ′ f ′ .2( fz)
′

.( fzz)
′+ ...+G

f (n−1) f (n−1) f
.( fz)

(n−1)2. fz +G
f (n−1) f (n−1) f ′

.

( fz)
(n−1)2.( fz)

′+ ...+G
f (n−1) f (n−1) f (n−1) .( fz)

(n−1)3

.( fzz)
(n−1). fz +G

f (n−1) f ′
.( fzz)

(n−1).( fz)
′+ ...+G

f (n−1)

f (n−1).( fzz)
(n−1).( fz)

(n−1)+G
f (n−1) .( fzzz)

(n−1). (22)

...

The calculations are more complicated in the second and
third derivatives because of the product rules.
Consequently, the systematic structure on calculation is
extremely important. Fortunately, due to the assumption
that the operator G and the solution f are analytic
functions, then the mixed derivatives are equivalence.
We note that the derivatives function to f unknown, so we
suggest the following hypothesis

fz = f1 = L−1G[ f0(z)], fzz = f2 = L−1G′[ f0(z)],

fzzz = f3 = L−1G′′[ f0(z)], fzzzz = f4 = L−1G′′′[ f0(z)], ...
(23)

Therefore Equations (19)- (22) are evaluated by

G[ f0(z)] = H( f0(z), f ′0(z), ..., f
(n−1)
0 (z)), (24)
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G′[ f0(z)] = G f0 . f1 +G f ′0
.( f1)

′+ ...+G
f
(n−1)
0

.( f1)
(n−1),

(25)

G′′[ f0(z)] = G f0 f0 .( f1)
2 +G f0 f ′0

.( f1)
′
f1 +G f0 f ′′0

. f1

( f1)
′′+ ...+G

f0 f
(n−1)
0

.( f1)( f1)
(n−1)+G f0 . f2 +G f ′0 f0

.( f1)
′. f (1)+G f ′0 f ′0

.( f1)
′2 + ...+G

f ′0 f
(n−1)
0

.( f1)
′

( f1)
(n−1)+G f ′0

.( f2)
′+G f ′′0 f0

.( f1)
′′. f1 +G f ′′0 f ′0

.

( f1)
′
( f1)

′′+G f ′′0 f ′′0
.( f1)

′′2 + ...+G
f ′′0 f

(n−1)
0

.

( f1)
′′( f1)

(n−1)+G f ′′0
.( f2)

′′+G
f (n−1) f

.( f1)
(n−1). f1

+G
f
(n−1)
0 f ′0

.( f1)
(n−1).( f1)

′+ ...+G
f
(n−1)
0 f

(n−1)
0

.( f1)
(n−1)2 + ...+G

f
(n−1)
0

.( f2)
(n−1), (26)

G′′′[ f0(z)] = G f0 f0 f0 .( f1)
3 +G f0 f0 f ′0

.( f1)
2( f1)

′+

...+G
f0 f0 f

(n−1)
0

.( f1)
2.( f1)

(n−1)+G f0 f0 .2( f1). f2

+G f0 f ′0 f0
.( f1)

′( f1)
2 +G f0 f ′0 f ′0

.( f1)
′2( f1)+ ...+

G
f0 f ′0 f

(n−1)
0

( f1)
2 +G f0 f ′′0 f ′0

.( f1)
′′
.( f1)

′( f1)

.( f1)
(n−1)+G f0 f ′0

.[( f2)
′. fz +( f1)

′. f2]+G f0 f ′′0 f0
.

( f1)
′′
( f1).( f1)

′+ ...+G
f0 f ′′0 f

(n−1)
0

.( f1)
′′

f1).( f ((1)
(n−1)

+G f0 f ′′0
.[ f2.( f1)

′′+ f1.( f2)
′′]+ ...+G

f0 f
(n−1)
0 f0

.( f1)
2

.( f1)
(n−1)+G

f0 f
(n−1)
0 f ′0

.( f1).( f1)
′.( f1)

(n−1)+ ...+

G
f0 f

(n−1)
0 f

(n−1)
0

.( f1).( f1)
2(n−1)+G

f0 f
(n−1)
0

.[( f2).( f2)
(n−1)+( f1)( f2)

(n−1)]+G f0 f0 . f2.( f1)+G f0 f ′0

. f2.( f1)
′+ ..+G

f0 f
(n−1)
0

. f2.( f1)
(n−1)+G f0 . f3 +G f ′0 f0 f0

.( f1)
′( f1)

2 +G f ′0 f ′0 f0
.( f1)

′2( f1)+ ...+G
f ′0 f0 f

(n−1)
0

.( f1)
′

( f1).( f1)
(n−1)+G f ′0 f0

.[( f2)
′. f1 +( f1)

′. f1]+G f ′0 f ′0 f0
.

( f1)
′2. f1 +G f ′0 f ′0 f ′0

.( f1)
′3 + ...+G

f ′0 f ′0 f
(n−1)
0

.( f1)
′2.

( f1)
(n−1)+G f ′0 f ′0

.2( f1)
′.( f2)

′+ ...+G
f
(n−1)
0 f

(n−1)
0 f0

.( f1)
(n−1)2

. f1+G
f
(n−1)
0 f

(n−1)
0 f ′0

.( f1)
(n−1)2.( f1)

′+ ...+G
f
(n−1)
0 f

(n−1)
0 f

(n−1)
0

.( f1)
(n−1)3 +G

f
(n−1)
0 f

(n−1)
0

.2.( f1)
(n−1).( f2)

(n−1)+G
f
(n−1)
0 f0

.( f
(n−1)
2 . f1 +G

f
(n−1)
0 f ′0

.( f2)
(n−1).( f1)

′+ ...+G
f
(n−1)
0 f

(n−1)
0

.( f2)
(n−1).( f1)

(n−1)+G
f
(n−1)
0

.( f3)
(n−1), (27)

...

Step4 : Substitute of Equations( 24)-(27) in Equation (17)
gives the required analytical-approximate solution for the
Equation (12).

4 Application

The new approach described in the previous section can
be used as a powerful solver to the nonlinear differential
equations of squeezing flow between two parallel plates
(10) - (11) in order to find new an analytical-approximate
solution.
From step 1 we have

f (z) = f (0)+ f ′(0)z+ f ′′(0)
z2

2!
+ f ′′′(0)

z3

3!

+L−1[−M f (z) f ′′′(z)], (28)

rewrite the Equation(28) as follows

f (z) = A1 +A2z+A3

z2

2!
+A4

z3

3!
+L−1[G[ f (z)]], (29)

where,

A1 = f (0), A2 = f ′(0), A3 = f ′′(0), A4 = f ′′′(0),

G[ f ] =−M f (z) f ′′′(z),L−1(.) =
∫ z

0

∫ z

0

∫ z

0

∫ z

0
(.)(dz)4.

(30)
From the boundary conditions the Equation (29) can be
written as follow

f (z) = A2z+A4
z3

3!
+L−1[G[ f (z)]]. (31)

From step 2, we have

f0 = A2z+A4
z3

3!
, f1 = L−1G[ f0(z)], f2 = L−1G′[ f0(z)],
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f3 = L−1G′′[ f0(z)], f4 = L−1G′′′[ f0(z)], .... (32)

From step 3, yields

G[ f (z)] =−M f (z). f ′′′(z), (33)

G′[ f (z)] =
dG[ f (z)]

dz
= G f . fz +G f ′′′ .( fz)

′′′, (34)

G′′[ f (z)] =
d2G[ f (z)]

dz2
= G f f .( fz)

2 +G f ′′′ f ′′′ .( fz)
′′′2

+2.G f f ′′′ . fz( fz)
′′′+G f . fzz +G f ′′′ .( fzz)

′′′, (35)

G′′′[ f (z)] =
d3G[ f (z)]

dz3
= G f f f .( fz)

3 +G f f f ′′′ .( fz)
2

.( fz)
′′′+ 3.G f f . fz. fzz +G f ′′′ f ′′′ f .( fz)

′′′2. fz +G f ′′′ f ′′′ f ′′′ .

( fz)
′′′3 + 3.G f ′′′ f ′′′ .( fz)

′′′
.( fzz)

′′′
+ 2.G f f ′′′ f .

( fz)
2.( fz)

′′′+ 2.G f f ′′′ f ′′′ . fz.( fz)
′′′2 + 3.G f f ′′′. fzz.( fz)

′′′

+3.G f f ′′′.( fzz)
′′′. fz +G f . fzzz +G f ′′′.( fzzz)

′′′, (36)

...

We note that the derivatives of f with respect z that are
given in (23), can be computed by Equations( 33)-(36) as

G[ f0(z)] =−M. f0. f
′′′
0 , (37)

G′[ f0(z)] = G f0 . f1 +G f ′′′0
.( f1)

′′′, (38)

G′′[ f0(z)] = G f0 f0 .( f1)
2 +G f ′′′0 f ′′′0

.( f1)
′′′2 + 2.G f0 f ′′0

.

f1.( f1)
′′′,+G f0 . f2 +G f ′′′0

.( f2)
′′′, (39)

G′′′[ f0(z)] = G f0 f0 f0 .( f1)
3 +G f0 f0 f ′′′0

.( f1)
2.( f1)

′′′

+3.G f0 f0 . f1 f2 ++G f ′′′0 f ′′′0 f0
.( f1)

′′′2. f1 +G f ′′′0 f ′′′0 f ′′′0
.

( f1)
′′′3 + 3.G f ′′′0 f ′′′0

.( f1)
′′′
( f2)

′′′
+ 2.G f0 f ′′′0 f0

.( f1)
2.( f1)

′′′+ 2.G f0 f ′′′0 f ′′′0
. f1.( f1)

′′′2 + 3.G f0 f ′′′0
. f2.

( f1)
′′′+ 3.G f0 f ′′′0

. f1.( f2)
′′′+G f0 . f3 +G f ′′′0

.( f3)
′′′, (40)

...

Now, we need to extract the first derivatives of G as follows

G f0 =−M f ′′′0 (z), G f0 f0 = 0, G f0 f ′′′0
=−M,

G f0 f0 f0 = 0, G f ′′′0
=−M f0(z), G f ′′′0 f ′′′0

= 0,

G f ′′′0 f0
=−M, G f ′′′0 f ′′′0 f ′′′0

= 0, (41)

from Equation( 32) by using Equations (37)-(40), we
obtain

f0 =
1

6
A4z3 +A2z, (42)

f1 =−
1

5040
MA2

4z7 −
1

120
MA2A4z5, (43)

f2 =
1

1108800
M2A3

4z11 +
1

22680
M2A2

A2
4z9 +

1

1680
M2A2

2A4z7, (44)

f3 =−
79

1556755000
M3A4

4z15 −
251

778377600
M3A2A3

4z13

−
131

19958400
M3A2

2A2
4z11 −

1

24192
M3A3

2A4z9. (45)

...

Substituting Equations( 42) - (45) in Equation (17), we get
the analytical approximate solution:

f (z) = A2z+
1

6
A4z3 −

1

120
MA2A4z5 − (

1

5040
MA2

4

−
1

1680
M2A2

2A4)z
7 − (

1

24192
M3A3

2A4 −
1

22680
M2A2

A2
4)z

9 − (
131

19958400
M3A2

2A2
4 −

1

1108800
M2A3

4)z
11+

−
251

778377600
M3A2A3

4z13 −
79

1556755000
M3A4

4z15 + ....,

(46)

5 The analysis of convergence

Here, we study the analysis of convergence for the
analytical-approximate solution that are resulted from the
application of new power series approach for solving the
problem of the squeezing flow between two parallel
plates.
Definition 5.1. Suppose that H is Banach space, R is the

real numbers and G[F] is a nonlinear operator defined by
G[F] : H −→ R. Then the sequence of the solutions
generated by a new approach can be written as

Fn+1 = G[Fn], Fn =
n

∑
k=0

fk, n = 0,1,2,3, ... (47)

where G[F] satisfies Lipschitz condition such that for γ >
0, γ ∈ R, we have

‖ G[Fn]−G[Fn−1]6 γ ‖ Fn −Fn−1 ‖, (48)
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Theorem 5.1. The series of the analytical-approximate
solution f (z) = ∑∞

k=0 fk(z) generated by new approach
converge if the following condition is satisfied:

‖ Fn −Fm ‖−→ 0, m −→ ∞ f or 0 6 γ < 1, (49)

Proof. From the above definition, we have

‖ Fn −Fm ‖=‖
n

∑
k=0

fk −
m

∑
k=0

fk ‖,

=‖ [ f0 +L−1 ∑n
k=1

d(k−1)G[ f0(z)]

dz(k−1) ]− [ f0 +L−1 ∑m
k=1

d(k−1)G[ f0(z)]

dz(k−1) ] ‖,

=‖ [L−1G[∑n−1
k=0 fk]]− [L−1G[∑m−1

k=0 fk]] ‖,(since Fn = G[Fn−1])

=‖ [L−1G[
n−1

∑
k=0

fk]]− [L−1G[
m−1

∑
k=0

fk]] ‖,

6|Ł−1| ‖ G[
n−1

∑
k=0

fk]−G[
m−1

∑
k=0

fk] ‖,

6|L−1| ‖ G[Fn−1]−G[Fm−1] ‖

6 γ ‖ Fn−1 −Fm−1 ‖, (50)

since G[F] satisfies Lipchitz condition. Let n =m+1, then

‖ Fm+1 −Fm ‖6 γ ‖ Fm −Fm−1 ‖, (51)

hence,

‖ Fm−Fm−1 ‖6 γ ‖ Fm−1−Fm−2 ‖6 ...6 γm−1 ‖ F1−F0 ‖,
(52)

from Equation (52) we get

‖ F2 −F1 ‖6 γ ‖ F1 −F0 ‖,

Using triangle inequality

‖ Fn −Fm ‖=‖ Fn −Fn−1−Fn−2− ...−Fm+1−Fm ‖,

6‖ Fn +Fn−1 ‖+...+ ‖ Fm+1 −Fm ‖,

6 [γn−1 + γn−2 + ...+ γm] ‖ F1 −F0 ‖,

= γm[γn−m−1 + γn−m−2 + ...+ 1] ‖ F1 −F0 ‖,

6
γm

1− γ
‖ F1 −F0 ‖,

as m −→ ∞, we have ‖ Fn − Fm ‖−→ 0, then Fn is a
Cauchy sequence in Banach space H. �

Theorem 5.2. The convergence of the
analytical-approximate solution

∑∞
k=0(ak0

z4k+1

(4k+1)! + ak1
z4k+3

(4(k+3)!) generated by the new

procedure will be verified when

∃0 6 γ < 1,‖ Fn+1 −Fn ‖−→ 0, asn −→ ∞. (53)

Proof. The series solution can be indicated by Fk where k

is the nth term of solution (46), we get that

F0 = f0 = a00z+ a01
z3

3!
,

F1 = f0 + f1 = a00z+ a01
z3

3!
+ a10

z5

5!
+ a11

z7

7!
,

F2 = f0 + f1 + f2 = a00z+ a01
z3

3!
+ ...+ a20

z9

9!
+ a21

z11

11!
,

= a00z+ a01
z3

3!
+ ...+ a21

z11

11!
+ a30

z13

13!
+ a31

z15

15!
,

...
Fn = f0 + f1 + f2 + f3 + f4 + f5...+ fn−1 + fn,

= a00z+ a01
z3

3!
+ ...+ an0

z4n+1

(4n+ 1)!
+ an1

z4n+3

(4n+ 3)!
,

‖ Fn+1 −Fn ‖=‖
n+1

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4k+ 3)!
)

−
n

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4k+ 3)!
) ‖,

6 γ ‖
n

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4(k+ 3)!
)

−
n−1

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4k+ 3)!
) ‖

6 γ2 ‖
n−1

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4(k+ 3)!
)

−
n−2

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4k+ 3)!
) ‖,

...

6 γn ‖
1

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4(k+ 3)!
)

−
0

∑
k=0

(ak0

z4k+1

(4k+ 1)!
+ ak1

z4k+3

(4k+ 3)!
) ‖,

= γn ‖ a00z+ a01

z3

3!
+ a10

z5

5!
+ a11

z7

7!
− z−

z3

3!
‖

= γn ‖ F1 −F0 ‖, (54)

as n −→ ∞, then ‖ Fn+1 −Fn ‖−→ 0 for 0 6 γ < 1.�
In practice, the theorems (5.1)-(5.2) suggest to compute
the value of γ as described in the following definition
Definition 5.2. For k = 1,2,3, ...

γk =

{

‖Fk+1−Fk‖
‖F1−F0‖

=
‖ fk+1‖
‖ f1‖

, ‖ f1 ‖6= 0,

0, ‖ f1 ‖= 0,
(55)
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Now, we apply definition (5.2) on the squeezing flow
between two parallel plates to find convergence, then we
obtain for examples:

if we put
M = 0.2,A2 = 1.506733871,A4 = −3.083763288, the
value of γ will be

‖ F2 −F1 ‖26 γ ‖ F1 −F0 ‖2=⇒ γ = 0.02174535< 1,

‖ F3 −F2 ‖26 γ2 ‖ F1 −F0 ‖2=⇒ γ2 = 0.00047330< 1,

‖ F4 −F3 ‖26 γ3 ‖ F1 −F0 ‖2=⇒ γ3 = 0.00001028< 1,

...

‖ F2 −F1 ‖+∞6 γ ‖ F1 −F0 ‖+∞=⇒ γ = 0.02152477< 1,

‖F3−F2 ‖+∞6 γ2 ‖F1−F0 ‖+∞=⇒ γ2 = 0.00045044< 1,

‖F4−F3 ‖+∞6 γ3 ‖F1−F0 ‖+∞=⇒ γ3 = 0.00000864< 1,

...

Also, if we choose M = 1,A2 = 1.532547,A4 =−3.42130,
then obtain

‖ F2 −F1 ‖26 γ ‖ F1 −F0 ‖2=⇒ γ = 0.11080095< 1,

‖ F3 −F2 ‖26 γ2 ‖ F1 −F0 ‖2=⇒ γ2 = 0.01235149< 1,

‖ F4 −F3 ‖26 γ3 ‖ F1 −F0 ‖2=⇒ γ3 = 0.00139008< 1,

...

‖ F2 −F1 ‖+∞6 γ ‖ F1 −F0 ‖+∞=⇒ γ = 0.10946764< 1,

‖F3−F2 ‖+∞6 γ2 ‖F1−F0 ‖+∞=⇒ γ2 = 0.01165021< 1,

‖F4−F3 ‖+∞6 γ3 ‖F1−F0 ‖+∞=⇒ γ3 = 0.00113620< 1,

...
And when compensation for M = 2,A2 = −3.8433,A4 =
1.5620, so that the result is

‖ F2 −F1 ‖26 γ ‖ F1 −F0 ‖2=⇒ γ = 0.22643980< 1,

‖ F3 −F2 ‖26 γ2 ‖ F1 −F0 ‖2=⇒ γ2 = 0.05193447< 1,

‖ F4 −F3 ‖26 γ3 ‖ F1 −F0 ‖2=⇒ γ3 = 0.01220471< 1,

...

‖ F2 −F1 ‖+∞6 γ ‖ F1 −F0 ‖+∞=⇒ γ = 0.22314285< 1,

‖F3−F2 ‖+∞6 γ2 ‖F1−F0 ‖+∞=⇒ γ2 = 0.04840960< 1,

‖F4−F3 ‖+∞6 γ3 ‖F1−F0 ‖+∞=⇒ γ3 = 0.00962383< 1,

...
Then ∑∞

k=0 fk(z) converges to the solution f (z) when 0 6

γk < 1, k = 1,2, ....

6 Results and discussions

In this section the influences of the magnetic number M
on the axial f (z) and radial velocities f ′(z) are
characterized. A comparison between the
analytical-approximate solutions obtained by the new
power series approach and the solutions that are obtained
by fourth-order Runge-Kutta method(RK-4), the
Homotopy Analysis Method (HAM) [13] and Successive
Linearization Method(SLM)[16] are shown in Table 1 for
the axial f(z). It confirms that, there is acceptable
agreement between analytical- approximate solution
obtained by the new power series approach and these
methods. The numerical values of the unknown constants
A2 and A4 are important to find the
analytical-approximate solutions and their convergence
analysis, where we note that in Table 2 the values of A2

and A4 are constant at the fifth approximations for
M = 0.2,1 while for M = 2 is constant at the sixth
approximations. It explains that f (z) reaches its steady
state value with small iterations for various values of M.
Exactly, according to fixity of A2 and A4 which increases
with increase of the values M. A comparison between the
analytical-approximate solutions and the numerical
solutions of RK-4 for the regime studied represents the
squeezing flow between two parallel plates are given in
Table 3 for the axial f (z)and radial velocities f ′(z) are in
agreement with small errors. To demonstrate the
efficiency and accuracy of the new approach for the
regime studied, we have presented in Table 3 the values of
f (z) and f ′(z) obtained by sixth order of the new approach
in comparison with numerical solutions of RK-4 method
for M = 0.2,1. We observe that the agreement is verified
and the values of f (z) and f ′(z) are identical with 5 or 6
decimal. The effects for various values of M on the
functions f (z) and f ′(z) are illustrated in Figures 2 and 3
. In Figure 2 the analytical approximate solution f (z)
increases with increasing M. Also the effects of
increasing M on the radial velocity f ′(z) is demonstrated
in Figure 3 where the curves of f ′(z) are pushing towards
the upper plate for z 6 0.5 with increasing M, while this
case inversely change for 0.5 < z 6 1. Also we conclude
that the distribution of radial velocity f ′(z) is parabolic
due to the axisymmetric of region for −1 6 z 6 1, that is
the nature of the curves is the same for positive and
negative values of z, moreover f ′(z) increases
monotonically. The distributions of the non-dimensional
stream function ψ(r,z) and velocities ur(r,z) and uz(r,z)
are shown in Figures 4-6. In these figures, we see that
when M = 2,10,15 the 8th approximation magnitude of
ψ(r,z) increases with increasing in the values r and z, and
the magnitude of ur(r,z) increases with r and decreases
with z, while the magnitude of uz(r,z) decreases with
increasing of z. From these figures, we note that the
change of the squeezing flow between two infinite parallel
plates happen about M = 10 and it is clear more about
M = 15. This change may imply that the influences of
forces domination that enter in constructing the magnetic
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number M on each other. Eventually, we note that the
convergence of analytical solutions resulting from using
the new approach depends on the values of M, if the value
of M is small in the analytical-approximate solution with
the components A2 , A2 give very good convergence.

Table 1: Camparion of f(z) for M = 2

z present results HAM [13] SLM [16] Rk−4

0.10 0.15556045 - 0.15558330 0.155559450

0.15 0.23214561 0.2321790 - 0.232138143

0.20 0.30730726 - 0.30735107 0.307305382

0.30 0.45154229 0.4516030 0.45160336 0.451539813

0.40 0.58478538 - 0.5847854 0.584782721

0.45 0.64627714 0.6463530 - 0.646262691

0.50 0.70385384 - 0.703993178 0.703851389

0.60 0.80591233 0.8059870 0.805987500 0.805910921

0.70 0.88849440 - 0.888558530 0.888495366

0.75 0.92181061 0.9218660 - 0.921811113

0.80 0.94950550 - 0.94954223 0.949502875

0.90 0.98717143 0.9871760 0.98717592 0.987171428

Fig. 2: Effect of the values M on f (z)

Fig. 3: Effect of the values M on f ′(z)

Fig. 4: Effect of the value M = 2 on analytical- approximate

solution

Fig. 5: Effect of the value M = 10 on analytical- approximate

solution

7 Conclusions

In this paper, a new approach based on the coefficients of
power series resulting from integrating differential
equations with appropriate conditions is proposed, and it
is applied to obtain a new analytical-approximate solution
for non-linear squeezing flow between two infinite
parallel plates successfully. It has been found that the
construction of this approach possess good convergent
series. According to invariability of A2 and A4 we
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Table 2: convergence of analytical- approximate solution for M = 0.2,1,2

order of M = 0.2 M = 1 M = 2

approximations A2 A4 A2 A4 A2 A4

2terms 1.506995590 -3.086214870 1.540001 -3.49455 1.5983 -4.2224

3terms 1.506727353 -3.086214870 1.531626 -3.41318 1.5539 -3.7671

4terms 1.506733971 -3.083763688 1.532618 -3.42190 1.5633 -3.8436

5terms 1.506733871 -3.083763288 1.532547 -3.42130 1.5621 -3.8425

6terms 1.506733871 -3.083763288 1.532547 -3.42130 1.5620 -3.8433

7terms 1.506733871 -3.083763288 1.532547 -3.42130 1.5620 -3.8433

8terms 1.506733871 -3.083763288 1.532547 -3.42130 1.5620 -3.8433

Table 3: Comparison between the analytical- approximate and numerical solutions for M=0.2,1

M = 0.2 M = 1

z f (z) RK −4 f ′(z) RK −4 f (z) RK −4 f ′(z) RK −4

0.1 0.150159504 0.150159427 1.49131892 1.49131893 0.152684911 0.152684483 1.51546221 1.51546235

0.2 0.297237561 0.297237409 1.44512031 1.44512036 0.301961559 0.301960717 1.46446740 1.46446775

0.3 0.438161926 0.438161708 1.36827531 1.36827551 0.444472898 0.444471734 1.38032261 1.38032349

0.4 0.569878488 0.569878217 1.26100861 1.26100883 0.576961050 0.576959689 1.26423941 1.26424109

0.5 0.689359672 0.689359368 1.12362495 1.12362521 0.696308764 0.696307366 1.11780478 1.11780730

0.6 0.793612070 0.793611756 0.95650112 0.95650164 0.799572356 0.799571121 0.94288653 0.94289054

0.7 0.879683091 0.879682795 0.76007475 0.76007547 0.884004796 0.884004031 0.74153261 0.74154006

0.8 0.944666434 0.944666190 0.53483192 0.53483291 0.947068648 0.947068978 0.51587102 0.51588691

0.9 0.985706262 0.985706117 0.28129336 0.28129548 0.947068648 0.947068978 0.26801778 0.26805529

Fig. 6: Effect of the value M = 15 on analytical- approximate

solution

conclude that the iterations that attain to steady state
solution of f (z) increase with an increase in the value of
M. The results obtained by the application of proposed
approach are well-founded with good accuracy and
convergence. Its application is simple and it has
superiority over the other methods in case of computation

nonlinearity. Furthermore, the resulting solution is near to
the numerical solution rapidly. Analysis of convergence
confirm that the new approach is an efficient technique as
compared to other methods introduced in this paper. As
can be seen from the comparison, the present solution and
other solutions are identical with 5th or 6th decimal
places. Even, they reach to steady state with 5terms for
M = 0.2,1 and 6terms with M = 2, that means the reach
ability to steady state is verified and related with values of
M and the fixity of the series components A2 and A4.
Finally, from analysis of results, we can conclude that the
new approach is easy and straightforward to solve
nonlinear problems, and give chance to employ it for
handle unsteady state non-linear squeezing flow between
two infinite parallel plates which present as complicate
problems in future works.
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