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Abstract: We propose and study integer-valued time series models with the discrete Laplace marginal distribution. These models allow

for positive and negative values. The model with symmetric discrete Laplace marginal allows for positive and negative autocorrelation.

As an illustration, we have applied the proposed models to real-life data sets.
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1 Introduction

In the last three decades, integer-valued time series
models have received considerable attention in the
literature. Integer-valued time series can be used to model
count data, for example, the number of patients in a
hospital at the end of the day and the number of claims an
insurance company receives during each day. In many
applications in real life we may encounter time series data
with negative and positive integer values. Some of these
data are obtained when the difference operator is applied
to a non-stationary count data. In addition, most of the
proposed integer-valued time series models have positive
autocorrelation functions. Kozubowski and Podgŏrstki
(2000) introduced and studied the asymmetric Laplace
distributions. Jayakumar and Kuttykrishnan (2006)
introduced and studied time-series models with
asymmetric Laplace distribution marginals. Krishna and
Jose (2011) introduced and studied the generalized
Marshall-Olkin asymmetric Laplace distribution. In this
paper we introduce and study stationary integer-valued
autoregressive models with discrete Laplace (DL) and
skew DL (SDL) marginals. Based on the results of
Freeland (2010), Barreto-Souza and Bourguignon (2015)
introduced and studied a stationary integer-valued
autoregressive model with SDL marginal
(SDL − INAR(1,θ1,θ2)) and Nastić et al. (2016)
introduced and studied a stationary integer-valued
autoregressive model with DL marginal

(DL − INAR(1,θ )). These models are essentially
developed by taking the difference of two independent
versions of Ristić et al. (2009) geometric INAR model.
Using a totally different approach, in this paper we
introduce and study new stationary
(SDL − INAR(1,θ1,θ2)) and DL − INAR(1,θ ) models.
These models allow for positive- and negative-integer
values. The stationary integer-valued autoregressive
model with DL marginal allows for positive and negative
autocorrelation function.

In Section 2 we review important results of the DL
distribution. In Section 3 we introduce and study
stationary integer-valued autoregressive models with SDL
marginals. In Section 4 we introduce and study stationary
integer-valued autoregressive models with DL marginals.
In Sections 5 we consider the problem of estimating the
parameters of the models of Sections 3 and 4. In Sections
6 and 7 we report the results of Monte Carlo studies and
give some applications of the proposed models.

2 The DL distribution

First we present briefly some results of Inusah and
Kozubowski (2006) and Kozubowski and Inusah (2006)
regarding the Discrete Laplace (DL) and the Skew DL
distributions (SDL). Assume that Z has the SDL
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distribution (SDL(θ1,θ2)) with parameters 0 < θ1,θ2 < 1.
Then, the following results hold.

P(Z = z) =





θ1θ2θ
z
2

1−θ 1θ 2
, if z = 0,−1,−2, ...

θ1θ2θ
|z|
1

1−θ 1θ 2
, if z = 0,1,2, ...

, (1)

where θ 1 = 1−θ1,θ 2 = 1−θ2.

MZ (t) = E
(
etZ
)
=

θ1θ2

θ1θ2 −θ1ξ (t)−θ2ξ (−t)
, (2)

where ξ (t) = et − 1

µ = E (Z) =
θ1

θ1

− θ 2

θ2

=
θ2 −θ1

θ1θ2

, (3)

and

σ2 =V (Z) =

(
θ2 −θ1

θ1θ2

)2

+
θ 1 +θ2

θ1θ2

. (4)

The special case of SDL(θ1,θ2) when θ1 = θ2 = θ is
referred to as the DL distribution and is denoted by
DL(θ ). By taking θ1 = θ2 = θ in (1)-(4) we obtain the
corresponding results for the DL(θ ) distribution.

Note that if Z = X1 − X2, where X1 and X2 are
independent random variables such that X1 ∼ Geo(θ1)
and X2 ∼ Geo(θ2), then, Z has SDL(θ1,θ2).

Assume that M(t) is the MGF of a random variable.
Following Marshall-Olkin (1997), the corresponding
Marshall-Olkin family of distributions, with moment
generating function Ψ (t) , is defined by

Ψ (t) =
β M (t)

1−βM (t)
,β > 0. (5)

Assume that X1,X2, · · · are iidrv, N(β ) is a geometric
random variable with

P(N(β ) = k) = β β
k−1

,k = 1,2,3, ... and N(β ) and the
X ′

i s are independent. For 0 < β ≤ 1,Ψ (t) is the MGF of

∑
N(β )
i=1 Xi when the MGF of X1 is M(t). For β > 1,M(t) is

the MGF of ∑
N( 1

β
)

i=1 Xi when the MGF of X1 is Ψ (t) .
Applying (5) to the SDL(θ1,θ2) with MGF (2) we

obtain the Marshall-Olkin SDL distribution,
MOSDL(β ,θ1,θ2), with MGF,

Ψ (t) =
θ1θ2

θ1θ2 − 1
β

[
θ1ξ (t)+θ2ξ (−t)

] . (6)

We can show that MOSDL(β ,θ1,θ2)
D
= SDL(δ1,δ2) ,

where for i = 1,2;0 ≤ δi ≤ 1 and

δi =
2θ1θ2

θ1θ2 +
(−1)i

β (θ1 −θ2)+
√

∆
.

where ∆ = θ 2
1 θ 2

2 + 2θ1θ2(θ1−θ2)
β + (θ1−θ2)

2

β 2 + 4θ 1θ1θ2
β

Note that if X ∼ MOSDL(β ,θ1,θ2) , then

X
D
=

N(p)

∑
i=1

Yp,i,

where Yp,i , i = 1,2, ... are i.i.d MOSDL
(

β
p
,θ1,θ2

)
and

independent of N(p).
The Marshall-Olkin discrete Laplace distribution

(MODL(β ,θ )) with parameters β > 0 and 0 < θ < 1 is a
special case of (2) when θ1 = θ2 = θ . We can show that

MODL(β ,θ )
D
= DL

(
2θ/(θ +

√
θ 2 + 4θ

β )
)
.

3 The SDL− INAR(1,θ1,θ2) model

We introduce and study a stationary INAR(1) time series
with SDL(θ1,θ2) which is denoted by
SDL− INAR(1,θ1,θ2). Consider the time-series model

Zt = It (α)Zt−1 + εt , t = 1,2, ..., (7)

where It (α) ,Zt−1 and εt are independent random
variables, It (α) is Bernoulli with parameter α,0 < α < 1

Theorem 1. The process Zt of (7) is a stationary SDL−
INAR(1,θ1,θ2) if and only if εt

D
= MODL( 1

α ,θ1,θ2) and
Z0 is SDL(θ1,θ2) .

Proof. Let MZt (t) be the MGF of Zt of (7). Then,

MZt (t) =
{

α +αMZt−1
(t)
}

Mε (t) . (8)

By the stationarity of Zt , we obtain

Mε (t) =
MZt (t)

α +αMZt (t)
. (9)

If Zt ∼ SDL(θ1,θ2), then

Mε (t) =
θ1θ2

θ1θ2 −α
[
θ 1ξ (t)+θ2ξ (−t)

] ,

i.e., εt
D
= MOSDL( 1

α ,θ1,θ2).

For the only if part, assume εt
D
= MOSDL( 1

α ,θ1,θ2)
and Z0 is SDL(θ1,θ2) . Then, by (8)

MZ1
(t) =

θ1θ2

θ1θ2 −
[
θ 1ξ (t)+θ2ξ (−t)

] .

Hence Z1 is SDL(θ1,θ2) . Similarly, we can show that if
Zt is SDL(θ1,θ2) , then Zt+1 is SDL(θ1,θ2) . Hence the
required result follows by induction.220e

Note that the mean and the variance of εt are given by

µε = αµ ,σ2
ε = ασ2 −ααµ2,

where µ and σ2 are as in (3) and (4)

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 2, 163-171 (2019) / www.naturalspublishing.com/Journals.asp 165

Theorem 2. The process Zt can be written as

Zt
D
= εt +

∞

∑
j=1

(
j−1

∏
i=0

It−i (α)

)
εt− j.

Proof.

Zt = It (α)Zt−1 + εt = It (α)(It−1 (α)Zt−2 + εt−1)+ εt

= It (α) It−1 (α)Zt−2 + It (α)εt−1 + εt = · · ·

= εt +

(
k−1

∏
i=0

It−i (α)

)
Zt−k +

k−1

∑
j=1

(
j−1

∏
i=0

It−i (α)

)
εt− j

...

D
= εt +

∞

∑
j=1

(
j−1

∏
i=0

It−i (α)

)
εt− j .

Theorem 3. The autocorrelation function ρk of Zt is given
by

ρk = αk,k ≥ 0.

Proof. From the definition of Zt we obtain

γk =Cov(Zt ,Zt−k) = αCov(Zt−1 + εt ,Zt−k)

= αCov(Zt−1,Zt−k) = α2Cov(Zt−2,Zt−k)

...

= αkV (Zt−k) = αkγ0.

Theorem 4. The conditional mean and variance of {Zt}
are given by

E (Zt |Zt−1) = αZt−1 + µε

and

V (Zt |Zt−1) = α (1−α)Z2
t−1 +σ2

ε . (10)

Proof.

E (Zt |Zt−1) = E (It (α)Zt−1 + εt |Zt−1)

= E (It (α)Zt−1|Zt−1)+ µε

= Zt−1E (It (α))+ µε

= αZt−1 + µε .

For the conditional variance of {Zt} we have

V (Zt |Zt−1) = E
(
Z2

t |Zt−1

)
− [E (Zt |Zt−1)]

2

= E
(
(It (α)Zt−1 + εt)

2 |Zt−1

)
− [αZt−1 + µε ]

2

= E
((

(It (α))2
Z2

t−1 + 2It (α)Zt−1εt + ε2
t

)
|Zt−1

)

−α2Z2
t−1 − 2αµεZt−1 − µ2

ε

= αZ2
t−1 +E

(
ε2

t

)
−α2Z2

t−1 − µ2
ε

= ααZ2
t−1 +E

(
ε2

t

)
− µ2

ε = ααZ2
t−1 +σ2

ε .

Note that the conditional mean is linear in Zt−1. The
conditional variance is quadratic in Zt−1 where as in
Barreto-Souza and Bourguignon (2013) the conditional
variance is linear in |Zt−1|.

Theorem 5. The joint MGF of {Zt ,Zt−1} is given by

MZt ,Zt−1
(t1, t2) = Mεt (t1) [M1 (t1, t2)+M2 (t2)] . (11)

where

M1 (t1, t2) =
αθ1θ2

θ1θ2 −θ1ξ (t1 + t2)−θ2ξ (−(t1 + t2))
,

M2 (t2)
αθ1θ2

θ1θ2 −θ1ξ (t2)−θ2ξ (−t2)
.

Proof: (11) follows from

MZt ,Zt−1
(t1, t2) = E

(
et1Zt et2Zt−1

)

= E
(

et1(It (α)Zt−1+εt)et2Zt

)

= Mεt (t1)E
(

et1It (α)Zt−1et2Zt−1

)

= Mεt (t1)E
(

e(t1It+t2)Zt−1

)

= Mεt (t1)E
(

e(t1It+t2)Zt−1

)
.

The integer-valued autoregressive model of order p is
defined as

Zt =





εt w.p. α0

Zt−1 + εt w.p. α1

Zt−2 + εt w.p. α2

... ...
Zt−p + εt w.p. αp

, (12)

where {εt} is a sequence of
iidrv,∑

p
i=0 αi = 1,0 < αi < 1, i = 1,2, , ..., p. Note that Zt

of (12) is a stationary INAR(p) process with
MOSDL(β ,θ1,θ2) marginal if and only if

εt
D
= MODL( β

α◦
,θ1,θ2) and Z0 is MOSDL(β ,θ1,θ2) .

4 The DL− INAR(1,θ) model

Consider the time series model

Zt = κIt (α)Zt−1 + εt , (13)

where It (α) ,Zt−1 and εt are independent random
variables, It (α) is Bernoulli with parameter α,0 < α < 1
and the constant κ = 1 if the time series has positive lag 1
correlation and κ = −1 if the time series has negative lag
1 correlation.

Theorem 6. The process Zt of (13) is a stationary DL−
INAR(1,θ ) time series if and only if εt is MODL

(
1
α ,θ

)

and Z0 is DL(θ ) .
Proof. The proof is similar to that of Theorem 1.
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The process Zt can be written as

Zt
D
= εt +

∞

∑
j=1

(κ) j

(
j−1

∏
i=0

It−i (α)

)
εt− j.

Theorem 7. Let γk = Cov(Zt ,Zt−k) . The autocorrelation
function ρk of Zt is given by

ρk =
γk

γ0

= (κα)k ,k = 1,2, ..., (14)

Proof. The proof is similar to that of Theorem 3.

Theorem 8. The conditional mean and variance of
{Zt} are given by

E (Zt |Zt−1) = καZt−1 (15)

and

V (Zt |Zt−1) = ααZ2
t−1 +

2αθ

θ 2
. (16)

Note that the conditional mean is linear in Zt−1. The
conditional variance is quadratic in Zt−1 where as in
Nastić et al. (2016) the conditional variance is linear in
|Zt−1|.

Proof: The proof is similar to that of Theorem 4.
Theorem 9. The joint MGF of {Zt ,Zt−1} is given by

MZt ,Zt−1
(t1, t2)=

(
θ 2

θ 2 −αθ [ξ (t1)+ ξ (−t1)]

)
× [∆1 +∆2]

(17)
where

∆1 =
αθ 2

θ 2 −θ [ξ (κt1 + t2)+ ξ (−(κt1 + t2))]
,

∆2 =
αθ 2

θ 2 −θ [ξ (t2)+ ξ (−t2)]
.

By the lack of symmetry of (17) the process is not time
reversible.

Remark. Note that

Zt =





εt w.p. α0

κZt−1 + εt w.p. α1

κZt−2 + εt w.p. α2

... ...
κZt−p + εt w.p. αp

(18)

is a stationary INAR(p) process with MODL(β ,θ )

marginal if and only if εt
D
= MODL( β

α◦ ,θ ) and Z0 is

MODL(β ,θ ) . Note also that Zt of (18) is a stationary
INAR(1) process with MODL(β ,θ ) marginal
(MODL − INAR(1,β ,θ )) if and only if

εt
D
= MODL( β

α ,θ ) and Z0 is MODL(β ,θ ) .

5 Parameters estimation

5.1 Conditional least squares estimators for the

SDL− INAR(1,θ1,θ2) model

Theorem 10. The two step conditional least squares
estimators of α,θ1 and θ2 are given by

α̂cls =
(N − 1)∑N

t=2 ZtZt−1 −
(
∑N

t=2 Zt

)(
∑N

t=2 Zt−1

)

(N − 1)∑N
t=2 Z2

t−1 −
(
∑N

t=2 Zt−1

)2
,

θ̂1cls =
(1+ µ̂cls)−

√
(1+ µ̂cls)

2 − 2
(
µ̂cls (1+ µ̂cls)− σ̂2

cls

)

µ̂cls (1+ µ̂cls)− σ̂2
cls

and

θ̂2cls =

(
1

θ̂1

− µ̂cls

)−1

,

where

µ̂cls =
∑N

t=2 Zt − α̂ ∑N
t=2 Zt−1

(N − 1)(1− α̂)
.

Proof. First we estimate α and µ . Note that

E (Zt |Zt−1) = αZt−1 + µε ,µε = αµ

We minimize the quadratic function

Q = ∑
N

t=2
[Zt −E (Zt |Zt−1)]

2

= ∑
N

t=2
[Zt −αZt−1 − (1−α)µ ]2 .

By solving ∂Q
∂α = 0 and ∂Q

∂ µ = 0 we obtain

α̂cls =
(N − 1)∑N

t=2 Zt Zt−1 −
(
∑N

t=2 Zt

)(
∑N

t=2 Zt−1

)

(N − 1)∑N
t=2 Z2

t−1 −
(
∑N

t=2 Zt−1

)2
(19)

and

µ̂cls =
∑N

t=2 Zt − α̂cls ∑N
t=2 Zt−1

(N − 1)(1− α̂cls)
. (20)

In the second step, we estimate σ2. Define the random
variable Vt as

Vt = (Zt −E (Zt |Zt−1))
2

= (Zt −αZt−1 − (1−α)µ)2 .

Note that

E (Vt |Zt−1) = V (Zt |Zt−1) = α (1−α)Z2
t−1 +σ2

ε

= α (1−α)Z2
t−1 +ασ2 −ααµ2.

Now, the conditional least squares estimator of σ2 is
obtained by minimizing the quadratic function

QN

(
σ2
)
= ∑

N

t=2
[Vt −E (Vt |Zt−1)]

2

= ∑
N

t=2

[
Vt −α (1−α)Z2

t−1 −ασ2 +ααµ2
]2
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By solving ∂Q

∂σ2 = 0 we obtain

σ̂2
cls =

∑N
t=2 [Zt − α̂clsZt−1 − (1− α̂cls) µ̂cls]

2

(N − 1)(1− α̂cls)

−∑N
t=2 α̂cls (1− α̂cls)

(
Z2

t−1 − µ̂2
cls

)

(N − 1)(1− α̂cls)
.

Using the fact that the estimators α̂cls and µ̂cls are the
solutions of the normal equations, we can simplify the
estimator σ̂2

cls as follows

σ̂2
cls =

∑N
t=2 Z2

t − α̂cls ∑N
t=2 ZtZt−1

(N − 1)(1− α̂cls)

− µ̂cls ∑N
t=2 Zt + α̂cls ∑N

t=2 Z2
t−1

(N − 1)

+α̂clsµ̂2
cls. (21)

Finally, by
1

θ2

=
1

θ1

− µ

and

σ2 =
1

θ1

(
1

θ1

− 1

)
+

1

θ2

(
1

θ2

− 1

)

The conditional least squares estimators of θ1 and θ2 are

θ̂1cls =
(1+ µ̂cls)−

√
(1+ µ̂cls)

2 − 2
(
µ̂cls (1+ µ̂cls)− σ̂2

cls

)

µ̂cls (1+ µ̂cls)− σ̂2
cls

.

and

θ̂2cls =

(
1

θ̂1cls

− µ̂cls

)−1

.

5.2 Yule-Walker estimators for the

SDL− INAR(1,θ1,θ2) model

The Yule-Walker estimator of α is the sample
autocorrelation at lag 1,

α̂yw =
∑N

t=2

(
Zt −Z

)(
Zt−1 −Z

)

∑N
t=1

(
Zt −Z

)2
.

To obtain the Yule-Walker estimators of θ1,θ2 we solve

Z =
1

θ̂1yw

− 1

θ̂2yw

and

s2
z =

θ̂ 1yw

θ̂ 2
1yw

+
θ̂ 2yw

θ̂ 2
2yw

,

where

Z =
∑N

t=1 Zt

N
,

and

s2
z =

∑N
t=1

(
Zt −Z

)2

N − 1
.

The solutions of the above two equations are

θ̂1yw =

(
1+Z

)
−
√(

1+Z
)2 − 2

(
Z
(
1+Z

)
− s2

z

)

Z
(
1+Z

)
− s2

z

and

θ̂2yw =

(
1

θ̂1yw

−Z

)−1

.

5.3 Conditional least squares estimators for the

DL− INAR(1,θ) model

Theorem 11. The conditional least squares estimators of
α and θ are given by

α̂cls = κ
∑N

t=2 ZtZt−1

∑N
t=2 Z2

t−1

,

and

θ̂cls =
2

1+

√
1+

2∑N
t=1 Z2

t

N

.

Proof. First, we minimize the quadratic function

Q = ∑
N

t=2
[Zt −E (Zt |Zt−1)]

2

= ∑
N

t=2
[Zt −καZt−1]

2 .

By solving ∂Q
∂α = 0 for α we obtain

α̂cls = κ
∑N

t=2 ZtZt−1

∑N
t=2 Z2

t−1

.

To estimate θ we note that V (Zt) =
2θ
θ 2 . By solving

V (Zt) =
2θ

θ 2
=

∑N
t=1 Z2

t

N
,

we obtain

θ̂cls =
2

1+

√
1+

2∑N
t=1 Z2

t

N

.

Theorem 12. α̂cls has the following asymptotic
distribution

√
N (α̂cls −α)

D→ N
(
0,σ2

0

)
, (22)

where

σ2
0 = α +

αα
(

θ 3 + 14θθ 2 + 36θ
2
θ + 24θ

3
)

2θθ 4
(
1+θ

) . (23)
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Proof. We will only prove the result in the case κ = 1.
Note that

√
N (α̂cls −α) =

N− 1
2 ∑N

t=2 Zt−1 (Zt −αZt−1)

N−1 ∑N
t=2 Z2

t−1

.

Note that {Zt} is a stationary ergodic Markov chain.
Hence, by the ergodic Theorem,

N−1 ∑
N

t=2
Z2

t−1
a.s.−→V (Zt) = σ2 = 2θθ−2. (24)

Hence, by Slutsky’s Theorem,
√

N (α̂cls −α) has the same
asymptotic distribution as

1

σ2
N− 1

2 MN with MN =
N

∑
t=2

Zt−1 (Zt −αZt−1) . (25)

Next we prove that MN is a discrete time martingale. Let
̥N =(Z1, ...,ZN) be the σ field generated by Z1,Z2, ...,ZN .
Note that

E (MN+1|N) = E ({MN +ZN (ZN+1 −αZN)}|N)
= MN +E (ZN (ZN+1 −αZN) |N)
= MN +ZNE (ZN+1|N)−αZ2

N

= MN +ZN (αZN)−αZ2
N

= MN +αZ2
N −αZ2

N = MN

Following the proof of Theorem 1 of Freeland (2010) we
obtain

N− 1
2 MN

D→ N
(
0,E

{
Z2

t−1(Zt −αZt−1)
2
})

. (26)

By (25) and (26) we obtain

√
N (α̂cls −α)

D→N

(
0,

(
1

σ2

)2

E
{

Z2
t−1(Zt −αZt−1)

2
}
)
.

(27)
Next we compute the expected value,

E
{

Z2
t−1(Zt −αZt−1)

2
}
= E

{
E
(
Z2

t−1(Zt −αZt−1)
2|Zt−1

)}

= E
{

Z2
t−1E

(
(Zt −αZt−1)

2|Zt−1

)}

= E
{

Z2
t−1V (Zt |Zt−1)

}

= ααE
(
Z4

t−1

)
+σ2

ε V (Zt−1)

= σ2σ2
ε +ααE

(
Z4

t−1

)
. (28)

By the results of Inusah and Kozubowski (2006) we
obtain

E
(
Z4

t−1

)
=

2θ(
1+θ

)
θ 4

{
θ 3 + 14θθ 2 + 36θ

2
θ + 24θ

3
}
.

(29)
By (27), (28) and (29) we obtain (22).

Remark. Note that, by (24), θ̂cls satisfies

θ̂cls =
2

1+

√
1+ 2

∑N
t=1 Z2

t

N

,

θ̂cls
a.s.−→ 2

1+
√

1+ 4θθ−2
= θ .

5.4 Yule-Walker estimators for the

DL− INAR(1,θ) model

Since σ2 = 2θ
θ 2 and α = κρ1,we can derive estimators of

α and θ as

α̂yw = κ
∑N

t=2

(
Zt −ZN

)(
Zt−1 −ZN

)

∑N
t=1

(
Zt −ZN

)2
,

and

θ̂yw = θ̂cls.

5.5 Prediction for the DL− INAR(1,θ) model

For m ≥ 1,

ẐN (m) = E (ZN+m|FN) = E (κItZN+m−1|FN)

= καE (ZN+m−1|FN) = καẐN (m− 1)

= (κ)m−1 αm−1ẐN (1) = (κ)m αmZN ,

The prediction formula of DL− INAR(1,θ ) is the same as
that of AR(1).

6 Monte Carlo Results

We have simulated 1000 samples of size N = 100,500
and 1000 from the DL − INAR(1,θ ) process for
θ = 0.4,0.6,0.8 and α = 0.3,0.5 and 0.7. In each case we
have computed the mean and Standard Error (SE) of

α̂cls, α̂yw and θ̂cls. The results are presented in Table 1-3.

The results of Tables 1-3 show that α̂cls, α̂yw and θ̂cls

become very close to their true values as the sample size
N increases.

Table 1: Mean(SE) of estimators of α and θ for α = 0.3

θ N θ̂ α̂YW α̂CLS

0.4 100 0.41(0.045) 0.27(0.125) 0.28(0.122)
500 0.40(0.020) 0.29(0.061) 0.30(0.062)
1000 0.40(0.013) 0.30(0.044) 0.30(0.044)

0.6 100 0.61(0.049) 0.26(0.117) 0.28(0.118)
500 0.60(0.022) 0.31(0.061) 0.31(0.061)
1000 0.60(0.017) 0.30(0.050) 0.30(0.050)

0.8 100 0.81(0.041) 0.27(0.123) 0.28(0.120)
500 0.80(0.020) 0.30(0.062) 0.30(0.062)
1000 0.80(0.014) 0.29(0.047) 0.29(0.047)
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Table 2: Mean (SE) of estimators of α and θ for α = 0.5

θ N θ̂ α̂YW α̂CLS

0.4 100 0.42(0.051) 0.46(0.118) 0.47(0.118)
500 0.40(0.018) 0.47(0.046) 0.48(0.046)
1000 0.40(0.002) 0.49(0.006) 0.49(0.006)

0.6 100 0.61(0.058) 0.46(0.112) 0.47(0.113)
500 0.60(0.020) 0.49(0.043) 0.50(0.043)
1000 0.60(0.003) 0.49(0.006) 0.50(0.006)

0.8 100 0.80(0.058) 0.45(0.133) 0.46(0.133)
500 0.81(0.020) 0.47(0.043) 0.48(0.043)
1000 0.80(0.003) 0.49(0.006) 0.50(0.006)

Table 3: Mean (SE) of estimators of α and θ for α = 0.7

θ N θ̂ α̂YW α̂CLS

0.4 100 0.42(0.070) 0.64(0.108) 0.66(0.108)
500 0.40(0.024) 0.69(0.038) 0.70(0.038)
1000 0.40(0.003) 0.69(0.005) 0.69(0.005)

0.6 100 0.63(0.077) 0.62(0.102) 0.66(0.103)
500 0.61(0.030) 0.68(0.039) 0.68(0.039)
1000 0.60(0.004) 0.69(0.005) 0.69(0.005)

0.8 100 0.82(0.062) 0.63(0.108) 0.65(0.111)
500 0.81(0.023) 0.68(0.041) 0.69(0.041)
1000 0.80(0.003) 0.70(0.005) 0.70(0.005)

Secondly we simulated 1000 samples of size
N = 100,500 and 1000 from the SDL − INAR(1,θ1,θ2)
process for θ1 = 0.4,0.6,0.8,θ2 = 0.3,0.5,0.7 and
α = 0.3,0.5 and 0.7. In each case we have computed the

mean and standard error (SE) of α̂cls, α̂yw, θ̂1cls, θ̂2cls, θ̂1yw

and θ̂2yw. The results are presented in Tables 4-6. The
results of Tables 4-6 show that all the estimators become
very close to their true values as the sample size N

increases.

7 Applications

In this section we present two applications of the
DL − INAR(1,θ ) model using the data for the Saudi
Telecommunication Company (STC) stock and the
electricity stock of the Saudi Stock Market TASI in 2007.
Note that the minimum amount of change (a tick) is SR
0.25 for all stocks. The daily close number of ticks of any
Stock equals the close price times 4.

The graphs of the two series show that they are
nonstationary indicating that differencing is needed. The
two differenced series are stationary in the mean. For the
STC data the lag-one correlation is positive and
significant hence a DL − INAR(1,θ ) with κ = 1 is
proposed to model the differenced series of the STC data.
For the electricity data the lag one correlation is negative
and significant hence a DL− INAR(1,θ ) with κ = −1 is

proposed to model the differenced series of the electricity
data. In Table 7, we give the Yule-Walker and the
conditional least squares estimates of α and θ for both
data sets.

To study the adequacy of the model, in Figures 1 and
2, we plotted each data set and the corresponding fitted
DL distribution. Clearly the STC data and the electricity
data can be fitted by discrete Laplace distribution. The
residuals plots indicate that residuals are white noise and
the proposed model is a good fit for each data set.

Fig. 1: Relative frequency of STC and fitted discrete Laplace.

Fig. 2: Relative frequency of electricity and fitted discrete

Laplace.

Next, we re-examine the STC data using the SDL−
INAR(1,θ1,θ2) model. The conditional least squares and
the Yule-Walker estimators are reported in Table 8.

In Figure 3 the STC data is plotted together with the
fitted SDL distribution. Clearly the proposed model is a
good fit for the STC data. The residuals plot indicate that
the residuals are white noise. We notice from Table 8 that
the estimated values of θ1 and θ2 are almost equal
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Table 4: Mean(SE) of estimators ofα ,θ1 and θ2 for α = θ2 = 0.3

θ1 N θ̂1YW θ̂2YW α̂YW θ̂1CLS θ̂2CLS α̂CLS

0.4 100 0.41(0.062) 0.31(0.038) 0.28(0.123) 0.42(0.063) 0.31(0.039) 0.28(0.108)
500 0.40(0.030) 0.30(0.019) 0.29(0.059) 0.41(0.027) 0.30(0.018) 0.29(0.059)
1000 0.41(0.019) 0.30(0.014) 0.30(0.047) 0.40(0.018) 0.30(0.012) 0.30(0.046)

0.6 100 0.62(0.100) 0.31(0.037) 0.29(0.126) 0.64(0.132) 0.31(0.045) 0.29(0.125)
500 0.60(0.053) 0.30(0.024) 0.30(0.069) 0.61(0.049) 0.31(0.019) 0.30(0.069)
1000 0.60(0.035) 0.30(0.014) 0.30(0.050) 0.60(0.035) 0.30(0.013) 0.30(0.052)

0.8 100 0.88(0.201) 0.31(0.038) 0.25(0.122) 0.89(0.176) 0.32(0.042) 0.24(0.121)
500 0.81(0.075) 0.30(0.019) 0.29(0.072) 0.81(0.078) 0.30(0.021) 0.29(0.072)
1000 0.81(0.060) 0.30(0.015) 0.29(0.051) 0.81(0.064) 0.30(0.015) 0.29(0.061)

Table 5: Mean(SE) of estimators ofα,θ1 and θ2 for α = θ2 = 0.5

θ1 N θ̂1YW θ̂2YW α̂YW θ̂1CLS θ̂2CLS α̂CLS

0.4 100 0.43(0.062) 0.54(0.083) 0.44(0.118) 0.42(0.055) 0.53(0.078) 0.44(0.118)
500 0.41(0.027) 0.51(0.032) 0.49(0.054) 0.41(0.030) 0.50(0.039) 0.49(0.065)
1000 0.40(0.021) 0.50(0.027) 0.50(0.042) 0.40(0.019) 0.50(0.025) 0.50(0.046)

0.6 100 0.63(0.080) 0.52(0.064) 0.46(0.102) 0.64(0.076) 0.51(0.069) 0.45(0.124)
500 0.60(0.043) 0.51(0.035) 0.50(0.069) 0.61(0.038) 0.51(0.037) 0.50(0.067)
1000 0.60(0.028) 0.50(0.025) 0.49(0.048) 0.60(0.025) 0.50(0.024) 0.50(0.043)

0.8 100 0.85(0.122) 0.52(0.075) 0.44(0.123) 0.84(0.101) 0.52(0.066) 0.46(0.125)
500 0.81(0.054) 0.50(0.032) 0.49(0.071) 0.81(0.056) 0.50(0.032) 0.50(0.067)
1000 0.80(0.035) 0.50(0.024) 0.49(0.044) 0.80(0.035) 0.50(0.025) 0.49(0.053)

Table 6: Mean(SE) of estimators of α,θ1 and θ2 for al pha = θ2 = 0.7

θ1 N θ̂1YW θ̂2YW α̂YW θ̂1CLS θ̂2CLS α̂CLS

0.4 100 0.43(0.083) 0.79(0.241) 0.65(0.110) 0.43(0.081) 0.84(0.253) 0.63(0.120)
500 0.41(0.036) 0.72(0.075) 0.68(0.055) 0.41(0.041) 0.72(0.080) 0.68(0.062)
1000 0.40(0.031) 0.71(0.059) 0.69(0.048) 0.41(0.029) 0.72(0.052) 0.68(0.043)

0.6 100 0.63(0.091) 0.73(0.118) 0.65(0.112) 0.63(0.091) 0.75(0.121) 0.64(0.117)
500 0.61(0.041) 0.71(0.046) 0.68(0.047) 0.61(0.051) 0.71(0.051) 0.69(0.052)
1000 0.60(0.036) 0.70(0.037) 0.70(0.044) 0.61(0.037) 0.70(0.035) 0.69(0.040)

0.8 100 0.85(0.095) 0.74(0.080) 0.60(0.124) 0.83(0.102) 0.71(0.098) 0.65(0.112)
500 0.81(0.042) 0.71(0.045) 0.68(0.052) 0.81(0.040) 0.70(0.050) 0.69(0.056)
1000 0.80(0.033) 0.70(0.034) 0.69(0.037) 0.81(0.032) 0.71(0.035) 0.69(0.046)

Table 7: Estimation result for STC and electricity

Stock Parameter YW CLS

STC α 0.218139 0.218139

θ 0.258756 0.258756

electricity α 0.243627 0.243108

θ 0.654261 0.654261

Table 8: Estimation result for STC data

Stock Parameter YW CLS

STC α 0.21813 0.21814

θ1 0.25817 0.25775

θ2 0.25844 0.25888

suggesting that the DL − INAR(1,θ ) model might be
more appropriate for this data.

Fig. 3: Relative frequency of STC and fitted discrete Laplace.
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8 Perspective

In this paper we introduce and study stationary
integer-valued autoregressive models with discrete
Laplace (DL) and Skew DL (SDL) marginals. These
models allow for positive- and negative-integer values.
The stationary integer-valued autoregressive model with
DL marginal allows positive and negative autocorrelation
function.

we can make an extension of this model to higher
order autoregressive model of order p with discrete
Laplace marginal and we think in the moving average
model of order 1 and higher order of order q.
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