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Abstract: The SIR model with unknown parameters is an important issue for scientists in the study of epidemiology and medical

care for the injured people. In this work, an efficient technique based on the generalized Taylor series, called the residual power series

method, is applied to solve the SIR epidemic model of fractional order. The fractional derivative is described in the Caputo sense. The

use of the residual power series method enables us to get an analytic solution of the SIR model in the form of a convergent power series

in addition to the approximate solution. To show the efficiency of the proposed technique, we apply it to the fractional SIR model and

compare the results with the fourth-order Runge-Kutta method. The numerical and graphical results show that the residual power series

method can be considered as an alternative technique for solving many real-life problems involving differential equations of any order.

Keywords: Fractional derivative, Caputo concept, Residual power series method, Fractional SIR epidemic model.

1 Introduction

Building mathematical models for real-world phenomena
and developing effective techniques to address them is
one of the most critical issues in applied mathematics,
physics, engineering, biology, and other fields of science.
The spread of infectious diseases and epidemic has
always been a threat to public health, which causes
serious problems not only for the survival of human
beings but also for the economics and the social
development of human society. Recently, many diseases
and epidemics have emerged and spread in the poor and
overcrowded cities, and refugee camps. This alerts to the
real danger that should be controlled. Indeed, infectious
diseases have had a long history, and great progress has
been achieved, especially during the 20th century.

Physicians rely on the field of applied mathematics
for studying the development of diseases and epidemics,
and how people are affected and treated. In general,
dealing with epidemics requires many mathematical
stages, including model creation, model analysis, solving
differential equations, and statistical analysis. One of the
most popular models in mathematical epidemiology is the
Kermack-McKendrick Susceptible-Infected-Recovered

(SIR) compartmental epidemic model which was studied
by Kermack and McKendrick in 1927 [1,2,3]. In this
model, the population is divided into three groups
(compartments); a susceptible, labeled S(t), in which all
individuals are susceptible if they contact with a disease
but are at risk of being infected at time t; an infected
compartment, labeled I(t),in which all individuals are
infected by the disease and can transmit it to others at
time t; and a removed compartment, labeled R(t),
represent the number of removed or recovered individuals
from the disease at time t. The SIR model is described in
the following non-linear system of first-order ordinary
differential equations:



























dS

dt
=−p1S(t)I(t),

dI

dt
= p1S(t)I(t)− p2I(t),

dR

dt
= p2I(t),

(1)

subject to S(0) = S0, I(0) = I0, and R(0) = R0. Here, p1

and p2 are positive constants, which are called the
infection rate and the removal rate, respectively. Using
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this model, we don’t consider a mild, short-lived
epidemic, e.g. influenza, in a closed (no immigration or
emigration) population. Moreover, given the time scale of
influenza epidemics, we will not consider demographic
turnover (birth or death), and all infections are assumed to
end with recovery. The size of the population (S+ I +R)
is therefore constant and equal to the initial population
size. The history and solutions to epidemic models were
studied [2,3,4,5].

Due to the importance of the SIR model, many studies
have been attempted to solve it and other epidemic
models. For example, in [6], the authors solved the SIR
model by the homotopy analysis method. Later, in [7],
exact solution of the SIR model had been proposed. The
homotopy perturbation method and the differential
transform method were applied to this model in [8] and
[9], respectively. Lyapunov function for a variety of SIR
models in epidemiology was constructed in [10].

On the other hand, the last decades witness
fundamental developments in the fractional calculus
which includes integrals and derivatives of arbitrary order.
Many real problems in different areas were translated into
mathematical models via fractional differential equations
because of the ability of fractional calculus to keep not
only the behavior of the original physical system, but also
all of their historical states [11,12,13,14]. For example,
half-order derivatives and integrals were shown to be
more useful in formulation some electrochemical
problems than classical ones [15,16,17,18,19]. A large
amount of studies and applications for the fractional
calculus in fluid dynamics, visceolasticity, physics,
entropy theory and engineering can be found in [20,21,
22,23,24].Therefore, most of the differential equations of
integer order were generalized to fractional order. The
purpose of the present work is to study the solution
behavior of the SIR model of fractional order in the
following form:











D
α1
0 S(t) =−p1S(t)I(t),

D
α2
0 I(t) = p1S(t)I(t)− p2I(t),

D
α3
0 R(t) = p2I(t),

(2)

subject to

S(0) = S0, I(0) = I0,R(0) = R0, (3)

where D
α1
0 S(t), D

α2
0 I(t) and D

α3
0 R(t) are the Caputo

derivatives of orders α1, α2 and α3 for S(t), I(t) and R(t),
respectively, and 0 < αi ≤ 1, i = 1,2,3.

Unfortunately, there are no methods in literature that
produce exact solutions for non-linear differential
equations of fractional order. So, many techniques have
been developed to obtain approximate solutions. Among
the methods that were used to get approximate solutions
for the SIR model of fractional order are the homotopy
analysis method [25], the homotopy analysis method for

fractional SEIR epidemic model [26] and the multi-step
generalized differential transform method [27]. The
RPSM was initially developed to get numerical solutions
of fuzzy differential equations of fractional order [28]. It
provides a power series solution with rapid convergence
and can be applied to linear and nonlinear differential
equations [29,30,31,32,33,34,35].

In this work, we extend the application of the residual
power series (RPS) method to approximate the numerical
solution of the fractional SIR model as well as we
compare the numerical results with the fourth-order
Runge-Kutta method. The pattern of this paper is as
follows: in the next section, we review some definitions
and theorems of fractional calculus and fractional power
series. In section 3, the application of the RPS method to
the fractional SIR model is discussed. In section 4, the
solution for the SIR model is presented in graphs and
tables. A short conclusion is presented in section 5.

2 Preliminaries

Many definitions for derivatives of non-integer order can
be found in literature, for example, Riemann-Liouville,
Riesz, Grünwald-Letnikovand, and Caputo derivatives.
Many researchers prefer to use the Caputo definition in
modeling real-life problems because in the Caputo sense,
the derivative of any constant is zero, and the initial
conditions of fractional differential equations take on the
classical form, similar to those for integer order. Next, the
definition of Caputo derivative is given. For details, see
[36,37,38]. In this section, we introduce some necessary
definitions of fractional calculus.

Definition 2.1.The Riemann-Liouville fractional integral

of order α > 0 for a function f (t) is defined by

(Jα
a+ f )(t) =

1

Γ (α)
)

∫ t

a

f (z)

(t − z)1−α
dz, t > a.

For α = 0, (Jα
a+ f )(t) is the identity operator. That is,

(J0
a+ f )(t) = f (t).

Definition 2.2.The Caputo fractional derivative of order

α > 0 is given by

Dα
a f (t) =

1

Γ (n−α)

∫ t

a

f (n)(z)

(t − z)α−n+1
dz,

t > a, n− 1 < α 6 n, n ∈ N.

The Caputo’s derivative satisfies the following

properties: (Jα
a+Dα

a+ f )(t) = f (t)−Σn−1
k=0

f (k)(a)
k!

(t −a)k and
(Dα

a+Jα
a+ f )(t) = f (t). Another important property that

gives the derivative of functions of the form

f (t) = (t − a)β−1is
For α, β > 0, we have
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(Dα
a+(t − a)β−1(x) = Γ (β )

Γ (β−α)(x− a)β−α−1 f orβ > n, and

(Dα
a+(t − a)k)(x) = 0 for k = 0,1,2, . . . ,n− 1.

Next, some definitions and results related to fractional
power series in the sense of Caputo derivative are given.
For detailed instructions, see [36].

Definition 2.3.A fractional power series (FPS) about

t = t0 is defined as

Σ∞
m=0cm(t − t0)

mα = c0 + c1(t − t0)
α + c2(t − t0)

2α + · · · ;

n−1 < α ≤ n, n ∈ N, t ≤ t0, where the constants cm, m =
0,1,2, · · · , are called the coefficients of the power series.

Theorem 2.1.Let f have a FPS representation at t = t0 of

the form

f (t) = Σ∞
m=0cm(t − t0)

mα ;

t0 6 t < t0+ρ . It was found that if Dmα
t0

f (t), m= 0,1,2, · · ·

are continuous on (t0, t0 +ρ), then cm =
Dmα

t0
f (t0)

Γ (1+mα)
. Where

Γ is the gamma function, Dmα
t0

= Dα
t0

Dα
t0
· · ·Dα

t0
(m-times),

and ρ is the radius of convergence.

A simple example of the FPS expansion about t = 0 is the
hyperbolic sine and cosine functions of order α . They are
given by the formulas:

sinh(xα
,α) = Σ∞

m=0

x(2m+1)α

Γ (1+(2m+ 1)α)
,

and

cosh(xα
,α) = Σ∞

m=0

x(2m)α

Γ (1+(2m)α)
,

α > 0, 0 6 x.

3 The RPS method for solving the SIR

epidemic model of fractional order

To construct a solution for the non-linear fractional SIR
model described in system 2 and 3, we do the following
steps:
Step1: Suppose that S(t), I(t), and R(t) have the FPS about
t0 = 0 as follows:































S(t) = Σ∞
k=0

ak

Γ (1+ kα1)
tkα1 ,

I(t) = Σ∞
k=0

bk

Γ (1+ kα2)
tkα2 ,

R(t) = Σ∞
k=0

ck

Γ (1+ kα3)
tkα3 ,

(4)

where 0 6 t < ρ for some ρ > 0.

Then, we can denote the n − th truncated series of
S(t), I(t), and R(t), respectively, by Sn(t), In(t), and Rn(t)

whose definitions are































Sn(t) = Σn
k=0

ak

Γ (1+ kα1)
tkα1 ,

In(t) = Σn
k=0

bk

Γ (1+ kα2)
tkα2 ,

Rn(t) = Σn
k=0

ck

Γ (1+ kα3)
tkα3 .

(5)

For n = 0, by using the initial conditions in Eq. (3), we
have S0(t) = a0 = S0(0) = S0, I0(t) = b0 = I0(0) = I0, and
R0(t) = c0 = R0(0) = R0. So, the n− th truncated series in
Eq. (5) can be written in the form:































Sn(t) = S0 +Σn
k=1

ak

Γ (1+ kα1)
tkα1 ,

In(t) = I0 +Σn
k=1

bk

Γ (1+ kα2)
tkα2 ,

Rn(t) = R0 +Σn
k=1

ck

Γ (1+ kα3)
tkα3 .

(6)

Step2: Define the residual functions for the model in Eq.
(2) as:











ResS(t) = D
α1
0 S(t)+ p1S(t)I(t),

ResI(t) = D
α2
0 I(t)− p1S(t)I(t)+ p2I(t),

ResR(t) = D
α3
0 R(t)− p2I(t).

(7)
Hence, the n− th residual functions of S(t), I(t), and R(t),
respectively, are











ResS,n(t) = D
α1
0 Sn(t)+ p1Sn(t)In(t),

ResI,n(t) = D
α2
0 In(t)− p1Sn(t)In(t)+ p2In(t),

ResR,n(t) = D
α3
0 Rn(t)− p2I(t).

(8)

Obviously, ResS(t) = ResI(t) = ResR(t) = 0, for all t ≥ 0,
limn→∞ ResS,n(t) = ResS(t), limn→∞ ResI,n(t) = ResI(t),
and limn→∞ ResR,n(t) = ResR(t). Since the Caputo
derivative of any constant is zero, one can deduce that

D
(k−1)α1

0 ResS(0) = D
(k−1)α1

0 ResS,k(0),

D
(k−1)α2

0 ResI(0) = D
(k−1)α2

0 ResI,k(0),

D
(k−1)α3

0 ResR(0) = D
(k−1)α3

0 ResR,k(0), for k = 1, · · · ,n.
See [29]. Actually, this idea is the basis of the RPS
method as it appears in the following step.

Step3: To obtain the coefficients ak, bk, ck,

k = 1,2,3, · · · ,n, we substitute the n− th truncated series
of S(t), I(t), and R(t) into Eq. (8), and then apply the

Caputo fractional derivative operators D
(n−1)α1

0 , D
(n−1)α2

0 ,

and D
(n−1)α3

0 on ResS,n(t), ResI,n(t), and ResR,n(t),
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respectively. Consequently, we have the equations:















D
(n−1)α1

0 ResS,n(0) = 0,

D
(n−1)α2

0 ResI,n(0) = 0,

D
(n−1)α3

0 ResR,n(0) = 0,

(9)

for n = 1,2,3, · · · .
Step4: Solve the algebraic system (9) for the values of ak,

bk, ck, k = 1,2,3, · · · ,n to get the n− th residual power
series approximate solution of system (2) and (3).

Step5: We repeat the procedure to obtain sufficient
number of coefficients. Higher accuracy for the solution
can be achieved by evaluating more terms in the series
solution.

4 Application and Numerical Results

In this section, we give numerical results for the solution
of the fractional SIR model in Eqs. (2) and (3) to
demonstrate the performance and the efficiency of the
RPS method in handling such epidemic models. Using
our proposed method, we obtain an analytic solution for
the SIR model in the form of a rapid convergent series.
The approximate solutions are presented in graphics and
tabulated values of S(t), I(t) and R(t). We compare the
results of the RPS method with the fourth order
Runge-Kutta method. The computations are performed
using Mathematica10 software package.

Consider the following fractional SIR model:







Dα
0 S(t) =−0.001S(t)I(t),

Dα
0 I(t) = 0.001S(t)I(t)− 0.072I(t),

Dα
0 R(t) = 0.072I(t),

(10)

subject to S(0) = 620, I(0) = 10 and R(0) = 70. Here, α
is the order of the fractional derivative described in the
Caputo sense where 0 < α 6 1.

Following the steps of the RPS method discussed in
the previous section, the first truncated power series
approximations have the forms

S1(t) = 620+
a1

Γ (1+α)
tα
,

I1(t) = 10+
b1

Γ (1+α)
tα
,

R1(t) = 70+
c1

Γ (1+α)
tα
.

According Eq. (8), the first residual functions of S(t),
I(t), and R(t), respectively, are:
ResS,1(t) =

Dα
0 (620+ a1tα

Γ (1+α))+ 0.001(620+ a1tα

Γ (1+α))(10+ b1tα

Γ (1+α))

= 6.2+ a1+
0.01tα a1
Γ (1+α) +

0.62tα b1
Γ (1+α) +

0.001t2α a1b1

Γ (1+α)2 ,

ResI,1(t) = Dα
0 In(t) − 0.001(620 + a1tα

Γ (1+α))(10 +
b1tα

Γ (1+α))+ 0.072(10+ b1tα

Γ (1+α))

= −4.464− 0.0072tα a1
Γ (1+α) + b1 −

0.8928tα b1
Γ (1+α) − 0.00144t2α a1b1

Γ (1+α)2 −

0.04464t2αb2
1

Γ (1+α)2 −
0.000072t3αa1b2

1

Γ (1+α)3 ,

ResR,1(t) = Dα
0 (70 + c1tα

Γ (1+α)) − 0.072(10 + b1tα

Γ (1+α)) =

−0.72− 0.072tα b1
Γ (1+α) + c1.

Equating ResS,1(0), ResI,1(0) and ResR,1(0) by zero gives
the values of a1, b1, and c1. So that

S1(t) = 620−
6.2tα

Γ (1+α)
,

I1(t) = 10+
4.464tα

Γ (1+α)
,

R1(t) = 70+
0.72tα

Γ (1+α)
.

For n = 2, the second truncated power series
approximations have the forms

S2(t) = 620−
6.2tα

Γ (1+α)
+

a2t2α

2Γ (1+α)
,

I2(t) = 10+
4.464tα

Γ (1+α)
+

b2t2α

Γ (1+ 2α)
,

R2(t) = 70+
0.72tα

Γ (1+α)
+

c2t2α

Γ (1+ 2α)
,

and the second residual functions are

ResS,2(t) = Dα
0 (620 − 6.2tα

Γ (1+α) + a2t2α

Γ (1+2α)) +

0.001(620− 6.2tα

Γ (1+α) +
a2t2α

Γ (1+2α))(10+ 4.464tα

Γ (1+α) +
b2t2α

Γ (1+2α)),

ResI,2(t) =

Dα
0 In(t)− 0.001(620− 6.2tα

Γ (1+α) +
a2t2α

Γ (1+2α))(10+ 4.464tα

Γ (1+α) +

b2t2α

Γ (1+2α))+ 0.072(10+ 4.464tα

Γ (1+α) +
b2t2α

Γ (1+2α)),

ResR,2(t) = Dα
0 (70 + 0.72tα

Γ (1+α) +
c2t2α

Γ (1+2α)) − 0.072(10 +

4.464tα

Γ (1+α)
+ b2t2α

Γ (1+2α)
).

Applying the operator Dα
0 to ResS,2(t), ResI,2(t), and

ResR,2(t), we get

Dα
0 ResS,2(t) =− 0.0553536tααΓ (2α)

Γ (1+α)3 + 2.70568+ a2+

0.013392t2ααΓ (3α)a2

Γ (1+α)Γ (1+2α)2 + 0.01tα a2
Γ (1+α) −

0.0186t2α αΓ (3α)b2

Γ (1+α)Γ (1+2α)2 +

0.62tα b2

Γ (1+α)
+ 0.004t3α αΓ (4α)a2b2

Γ (1+2α)2Γ (1+3α)
,

Dα
0 ResI,2(t) = − 1.6994tααΓ (2α)

Γ (1+α)3 − 3.94082 +

0.0266866t2ααΓ (3α)
Γ (1+α)3Γ (1+2α)

− 0.0192844t2ααΓ (3α)a2

Γ (1+α)Γ (1+2α)2 − 0.0072tα a2
Γ (1+α) −

0.00573906t3ααΓ (4α)a2

Γ (1+α)2Γ (1+2α)Γ (1+3α)
+

αΓ (α)b2

Γ (1+α) −
1.168854t2ααΓ (3α)b2

Γ (1+α)Γ (1+2α)2 −
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0.8928tα b2
Γ (1+α) +

0.0159418t3ααΓ (4α)b2

Γ (1+α)2Γ (1+ 2α)Γ (1+ 3α)
−

0.00576t3α αΓ (4α)a2b2

Γ (1+2α)2Γ (1+3α)
− 0.00321408t4ααΓ (5α)a2b2

Γ (1+α)Γ (1+2α)2Γ (1+4α)
−

0.17856t3α αΓ (4α)b2
2

Γ (1+2α)2Γ (1+3α)
+

0.002232t4ααΓ (5α)b2
2

Γ (1+α)Γ (1+2α)2Γ (1+4α)
−

0.000432t5ααΓ (6α)a2b2
2

Γ (1+2α)3Γ (1+5α)
,

Dα
0 ResR,2(t) =−0.321408− 0.072tα b2

Γ (1+α) + c2.

Again, using the fact that
Dα

0 ResS,2(0) = Dα
0 ResI,2(0) = Dα

0 ResR,2(0) = 0, we get
the values of a2, b2, and c2. Hence,

S2(t) = 620−
6.2tα

Γ (1+α)
−

2.70568t2α

Γ (1+ 2α)
,

I2(t) = 10+
4.464tα

Γ (1+α)
+

3.9408t2α

Γ (1+ 2α)
,

R2(t) = 70+
0.72tα

Γ (1+α)
+

0.3214t2α

Γ (1+ 2α)
.

Continuing this process, we get the fourth
approximations:

S4(t) = 620 − 6.2tα

Γ (1+α)
− 2.70568t2α

Γ (1+2α)
+

(0.027677Γ (1+2α)−2.4162Γ (1+α)2)t3α

Γ (1+α)2+Γ (1+3α)
+ ( 0.024161735700197237

Γ (1+4α) −

1.053639846743295αΓ(2α)

Γ (1+α)2Γ (1+4α)
− 2.169355

Γ (1+4α)
−

2.7676298018377063Γ(1+2α)

10000Γ (1+α)2Γ (1+4α)
+ 0.03651202749140894Γ(1+3α)

Γ (1+α)Γ (1+2α)Γ (1+4α)
)t4α ,

I4(t) = 10 + 4.464tα

Γ (1+α) + 3.9408t2α

Γ (1+2α) −

t3α αΓ (2α)(−1.6994−
6.9978Γ(1+α)2

Γ (1+2α)
)

Γ (1+α)2Γ (1+3α)
+ ( 4.55405αΓ (3α)

Γ (1+α)Γ (1+2α)Γ (1+4α)
−

0.0267α3Γ (3α)
Γ (1+α)3Γ (1+4α)

+ 0.0004α3Γ (2α)
Γ (1+α)2Γ (1+4α)

+ 37.48
12Γ (1+4α) +

1.51723Γ (2α)

Γ (1+α)2Γ (1+4α)
− 0.104

6Γ (1+4α)
)t4α ,

R4(t) = 70 + 0.72tα

Γ (1+α) + 0.32141t2α

Γ (1+2α) + 0.28374t3α

Γ (1+3α) +

3.023Γ (1+α)2+0.7341Γ (1+α)

12Γ (1+α)2Γ (1+4α)
t4α .

In order to show the accuracy of the RPS method for
approximating the solution of the SIR model, a numerical
comparison between the 15th-RPS solution and the
fourth-order Runge-Kutta (4RK) solution for α = 1 is
given in Tables 1, 2 and 3. It is convenient to have a
notation for the error of the approximation. Accordingly,
in Table 1, we compute the absolute error AbsS(t) and the
relative error RelS(t) for S(t), where the absolute error is
defined using the formula AbsS(ti)=|4RKS(ti)−RPSS(ti)|
and the relative error is defined using the formula

RelS(ti)=|
(RKS(ti)−RPSS(ti))

RKS(ti)
|, i = 0,1,2, · · · ,10. Similarly to

compute the absolute and relative errors for I(t) and R(t)
as in Tables 2 and 3, respectively. From these Tables, it
can be seen that the accuracy obtained using the RPS
technique is advanced by using only a few approximation
terms. Also, it can be observed that the error estimate is
more accurate at the beginning of the independent values
of the interval [0,1]. In addition, it can be concluded that

higher accuracy can be achieved by evaluating more
components of the RPS-solution. Anyhow, the results
reported in these tables confirm the effectiveness of the
RPS technique.

While Figures 1, 2, and 3 show the behavior of the
RPS-solution and 4RK solution at the fractional order
α = 1, and n = 15 with step size h = 0.5 over the interval
[0,1]. From these graphical results, it is clear that the
approximations obtained by the RPS method are very
efficient and the efficiency can be achieved using
relatively small number of terms; 15 terms in our
example. However, the efficiency can be dramatically
increased by increasing the number of terms in the power
series. These graphs also show that the presented method
can predict the behavior of the compartments S(t), I(t)
and R(t) accurately for the region under consideration,
where the behavior of such approximations are in good
agreement with each other.

However, for α = 1, the solution of the SIR model
can be approximated using the RPS method by these
polynomials:
S15(t) = 620 − 6.2t − 1.6678t2 − 0.2870228t3 −
0.0337364506t4 − 2.43675566216 × 10−3t5 −
2.96979291 × 10−6t6 + 2.99448399 × 10−5t7 +
5.229584121432554× 10−6t8 + 5.35791399× 10−7t9 +
2.830270564 × 10−8t10 − 1.701299185 × 10−9t11 −
6.43806345 × 10−10t12 − 9.0619602856 × 10−11t13 −
7.767239656×10−12t14 − 2.28152532×10−13t15

,

I15(t) = 10 + 5.48t + 1.47052t2 + 0.25173032t3 +
0.029205t4 + 0.0020161993t5 − 2.1224598359888 ×
10−5t6 − 2.972652977× 10−5t7 − 4.9620454× 10−6t8 −
4.96095036 × 10−7t9 − 2.473082137 × 10−8t10 +
1.8631736525 × 10−9t11 + 6.32627306 × 10−10t12 +
8.7115821 × 10−11t13 + 7.31921543 × 10−12t14 +
1.930202976×10−13t15,

R15(t) = 70 + 0.72t + 0.19728t2 + 0.03529248t3 +
0.00453114576t4 + 0.000420556389696t5 +
2.4194391269568× 10−5t6 − 2.1831015456× 10−7t7 −
2.675387679 × 10−7t8 − 3.969636283 × 10−8t9 −
3.57188426 × 10−9t10 − 1.61874467179 × 10−10t11 +
1.1179× 10−11t12 + 3.503782× 10−12t13 + 4.4802422×
10−13t14 + 3.5132234× 10−14t15.

Moreover, to show the effect of the fractional
derivative to the SIR model, the graphs of the
RPS-approximate solutions of susceptible, infected and
recovered population for different values of α such that
αi = 0.1i, i = 2,3, · · · ,10 are established in Figures 4, 5
and 6 with step size h = 0.2 over the interval [0,1]. From
these graphs, it is obvious that fractional order derivative
provides a greater degree of freedom as compared to
integer-order derivative. By taking non-integer values of
fractional parameter, remarkable responses of the
compartments of the proposed model are obtained.
However, it is clear that the curves of various
compartments S(t), I(t) and R(t) of the fractional SIR
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Table 1: Approximate solution of S(t) using RK and RPS

methods.

ti 4RK S(ti), α = 1 RPS S(ti),α = 1

0 620 620

0.1 619.3630315796735 619.3630315791873

0.2 618.6909370609654 618.6909370597241

0.3 617.9818692109469 617.9818692025717

0.4 617.2338939798807 617.2338939757545

0.5 616.4449876950995 616.4449876822653

0.6 615.6130341588159 615.6130341421871

0.7 614.7358219653072 614.7358219528321

0.8 613.811041871202 613.8110418536481

0.9 612.8362842538178 612.8362842258337

1. 611.809036780519 611.8090367600192

ti AbsS(ti) RelS(ti)
0 0 0

0.1 4.8612492×10−10 7.8487881×10−13

0.2 1.2413466×10−9 2.0064082×10−12

0.3 8.3751956×10−9 1.3552494×10−11

0.4 4.1261501×10−9 6.6849052×10−12

0.5 1.2834221×10−8 2.0819734×10−11

0.6 1.6628860×10−8 2.7011871×10−11

0.7 1.2475084×10−8 2.0293407×10−11

0.8 1.7553816×10−8 2.8598078×10−11

0.9 2.7984129×10−8 4.5663303×10−11

1. 2.0499783×10−8 3.3506833×10−11

Table 2: Approximate solution of I(t) using RK and RPS

methods.

ti 4RK I(ti), α = 1 RPS I(ti),α = 1

0 10 10

0.1 10.562959870557034 10.56295987098823

0.2 11.156882013379226 11.15688201447968

0.3 11.783384951388577 11.783384958664044

0.4 12.444162099479442 12.444162103140075

0.5 13.140984032348298 13.1409840435319

0.6 13.87570081089476 13.875700825391162

0.7 14.650244093149224 14.650244104180128

0.8 15.466629169899582 15.466629185349186

0.9 16.32695689112441 16.326956915534016

1. 17.23341537452655 17.233415392703552

ti AbsI(ti) RelI(ti)
0 0 0

0.1 4.3119641×10−10 4.0821552×10−11

0.2 1.10045306×10−9 9.8634463×10−11

0.3 7.27546734×10−9 6.1743441×10−10

0.4 3.66063269×10−9 2.9416466×10−10

0.5 1.11836016×10−8 8.5104750×10−10

0.6 1.44964023×10−8 1.0447330×10−9

0.7 1.10309042×10−8 7.5295020×10−10

0.8 1.54496043×10−8 9.9889925×10−10

0.9 2.44096050×10−8 1.49504927×10−9

1. 1.81770012×10−8 1.05475327×10−9

model approach those of classical SIR model as the
fractional order approaches the integer order.

Table 3: Approximate solution of R(t) using RK and RPS

methods.

ti 4RK R(ti), α = 1 RPS R(ti),α = 1

0 70 70

0.1 70.07400854976943 70.07400854982431

0.2 70.15218092565529 70.1521809257962

0.3 70.23474583766449 70.23474583876428

0.4 70.32194392063991 70.32194392110532

0.5 70.41402827255223 70.41402827420283

0.6 70.51126503028927 70.51126503242176

0.7 70.6139339415436 70.61393394298769

0.8 70.72232895889846 70.72232896100263

0.9 70.83675885505782 70.83675885863217

1. 70.95754784495439 70.95754784727708

ti AbsR(ti) RelR(ti)
0 0 0

0.1 5.48823209×10−11 7.83205101×10−13

0.2 1.40914835×10−10 2.00870213×10−12

0.3 1.099792257×10−9 1.56588060×10−11

0.4 4.654054919×10−10 6.61821141×10−12

0.5 1.650604986×10−9 2.34414225×10−11

0.6 2.132495069×10−9 3.02433245×10−11

0.7 1.444078634×10−9 2.04503354×10−11

0.8 2.104172836×10−9 2.97525954×10−11

0.9 3.574342600×10−9 5.04588671×10−11

1. 2.322693149×10−9 3.27335600×10−11

Fig. 1: Comparison between the RK and the RPS solutions of

S(t) for α = 1.

5 Conclusions

In this work, we have applied the RPS method to solve
one of the important epidemic models; the SIR model of
fractional order. We have observed that the proposed
method yields accurate approximations by comparing its
results by those of the fourth order Runge-Kutta method.
It has the objective of approximating the solution of any
non-linear differential equation by a rapid convergent
series. To see the effect of the fractional derivative to the
SIR model, we have solved it for different values of α and
observed that the curves of the solutions of the fractional
SIR approach those of classical SIR models.
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Fig. 2: Comparison between the RK and the RPS solutions of

I(t) for α = 1.

Fig. 3: Comparison between the RK and the RPS solutions of

R(t) for α = 1.

Fig. 4: The RPS solution of S(t) for different values of α.
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