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Abstract: In this paper, we consider the Lane-Emden equation of the first kind which arises in the study of stellar structures. We use

multiple algorithms, based on Homotopy Analysis Method (HAM) to find the convergent series solutions to the singular, non-linear,

initial value problem. It is found that the radius of convergence for the solutions is affected by three factors: the choice of initial value,

the order and type of non-linearity, and the linear operator used. We then compare analytical results to the 20th order series solution,

the Pade approximant to the series, and the approximate solution obtained via the Runge-Kutta-Fehlberg method (RKF45).

Keywords: Lane-Emden equation, stellar configuration, Homotopy Analysis Method, Runge-Kutta-Fehlberg method, Pade

approximant

1 Introduction

Astrophysicist J. Homer Lane derived and studied an
equation that models the equilibrium of stellar
configurations in [7]. Later, Emden extended this work in
[6]. This is known as the Lane-Emden equation that
describes the polytropic models and can be written as

x−2 d

dx

(

x2 dy

dx

)

+ yM = 0. (1)

Where yM is the polynomial non-linearity, and M is a
constant whose value depends on the physical phenomena
modeled by (1). With the inclusion of polynomial
non-linearity, (1) can be used to model spherical clouds of
gas. While the behavoir of such clouds is subject to laws
of thermodynamics. Furthermore, if the form of the
non-linearity is changed from yM to ey, then (1) yields the
Lane-Emden equation.

To derive the Lane-Emden equation we start with the
equation of hydrostatic equilibrium

r2

ρ

dP

dr
=−GMr. (2)

where P is pressure, ρ is density, Mr is the mass of a ball
with radius r, and G is the gravitational constant. Taking

the derivative with respect to r and expressing the mass in
terms of density and volume, we obtain

1

r2

d

dr

(

r2

ρ

dP

dr

)

=−4πGρ . (3)

We seek solution in the form P(ρ) = Kρa, where K and a

are constant. Using this substitution, (3) becomes as
follows;

Ka

r2

d

dr

(

r2ρa−2 dρ

dr

)

=−4πGρ . (4)

Let a = (M + 1)/M, where M is the polytropic index. We
introduce a new variable y by ρ(r) = ρc[y(r)]

M , where
0 ≤ y ≤ 1 allows (4) to be written as

[

(M + 1)
Kρ (1−M)/M

4πG

]

1

r2

d

dr

[

r2 dy

dr

]

=−yM. (5)

Introducing a new constant l2
M =

[

(M + 1)Kρ(1−M)/M

4πG

]

and

rescaling the variable r by r = lMx the equation (5)
simplifies to

1

x2

d

dx

[

x2 dy

dx

]

=−yM. (6)
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Equation (6) then simplifies to the standard Lane-Emden
equation.
The Lane-Emden equation has been widely studied.
While Chandrasekhar [5] and Carroll [4] were the first to
model and study the Lane-Emden equation analytically.
Several analytical studies for these types of equations
using the Adomian Decomposition Method (ADM) have
been presented in [3], [18], [22], [25], [19]. Variational
Iteration Method (VIM) has also been used in [24], [23],
[19], [17] to study the Lane-Emden-Fowler-type of
equations. Homotopy Perturbation Method(HPM) which
is another choice of finding the convergent series solution
to non-linear problems has been used in [12] to study the
Lane-Emden equation. In [14], [15], [13], [2] the authors
indicate that HPM may not always be an excellent choice
for solving problems with strong non-linearity. In [1] the
authors also used the HPM approach to find the analytical
solution to a diffusive flux study for the biofilm modeling
and found the same challenge as proposed in [14].
Liao in his doctoral thesis [11], proposed a new analytical
approach named Homotopy Analysis Method (HAM).
HAM is based on the idea of topology. The focus of the
HAM scheme is to transform a given non-linear
differential equation into several linear differential
equations, and then to combine the solutions to develop
an infinite series of the actual solution. In [16], [10], [9],
[8] the HAM approach is applied to find the convergent
series solution to Lane-Emden-type equations. In [16] an
analytical solution to the standard second-order
Lane-Emden initial value problem of the first kind is
presented. They compared the HAM series solution with
the traditional power series solution. They found that
HAM gives a larger interval of convergence than that of
the power series solution. In this current study, we employ
a variety of algorithms based on HAM. The solutions
generated by these HAM algorithms are then compared to
the Pade series solution. We observe that the HAM
algorithms are faster, and they achieve a larger interval of
convergence than the interval presented by the authors in
[16].
This paper is organized as follows;
In section 2, we compare the 20th order power series
solution and its Pade approximant with the numerical
solution. The Pade approximant gives the larger and faster
interval of convergence than the traditional power series
solution. We show that an increase in the initial value and
an increase in the value of M reduces the radius of
convergence. In Section 3, we present the detailed proof
of obtaining various HAM algorithms, showing that
H1(x; p) has the largest interval of convergence. We
notice that the auxiliary parameter h̄ in the construction of
HAM algorithm plays a vital role in finding the
convergent solution with the largest radius of
convergence.

2 Analysis via Pade Approximant on Power

Series

We start with the standard second-order Lane-Emden
initial value problem:

x−2 d

dx

(

x2 dy

dx

)

+ y3(x) = 0; y(0) = a,y′(0) = 0 (7)

The Pade approximant on a series solution is a useful
technique to increase the radius of convergence for the
solution of non-linear problems. In the figures 1(a-c): we
plot the numerical comparison for the 20th order power
series solution to its Pade approximant. It is important to
note that an increase in the initial value a decreases the
radius of convergence overall.

Observing the case when a = 1 in figure 1(a): the
power series solution diverges from the values greater
than 2.32, while its Pade approximant diverges from the
values greater than 6.66. Considering the situation when
a = 5 in figure 1(b), the power series solution diverges
from the values greater than 1.28, while its Pade
approximant diverges from the values greater than 0.44.
The power series solution diverges from the values
greater than 0.66 in figure 1(c) for a = 10, while its Pade
approximant diverges from the values greater than 0.22.
The plots in figures 1(a-c) show an approximate
three-fold increase in the interval of convergence.

We look at the effects of increasing values of M in yM

on the interval of convergence for the solution of a Lane-
Emden equation and we also analyze the whole situation
with changing initial values in the model. For this purpose,
we compare the 20th order Pade approximant with RKF45,
a numerical scheme.

In the figures 2(a-c), we plot the Pade approximant to
a 20th order power series for increasing non-linearities
M = 3,4,5,6 with initial values a = 1, a = 5 and a = 10
respectively. Looking at the case when a = 1 in figure
2(a), there is a one-fourth reduction in the interval of
convergence from (0,6.50) for M = 3 to (0,1.35) for
M = 6. Considering the situation when a = 5 in 2(b)
where Pade series solution for M = 3 starts diverging at
1.28 and for the higher non-linearities M = 4,5,6, the
Pade solution never converges to the actual solution.
Observing the case when a = 10 in 2(b) where the Pade
series solution for M = 3 starts diverging at 0.64 and for
the higher non-linearities M = 4,5,6,it never converges to
the actual solution.

3 HAM Algorithm for the Lane-Emden

Initial Value Problem

3.1 Basic Idea of HAM

The idea of homotopy comes from topology. Homotopic
equations for the non-linear problems provide a mapping,
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(a) Taylor series solution vs its Pade approximant for a = 1

(b) Taylor series solution vs its Pade approximant for a = 5

(c) Taylor series solution vs its Pade approximant for a = 10

Fig. 1: Numerical comparison for the Lane-Emden model with

the 20th order power and its Pade approximant when a = 1 in (a)

when a = 5 in (b) and when a = 10 in (c).

starting from an initial guess to the actual solution of the
problem. Homotopy Analysis Method (HAM) does not
even require a small parameter in the model. Moreover, it
transforms a non-linear problem into a recursive sequence
of linear problems which are comparitvely easy to solve.
Adding the solutions of linear problems provides an

(a) non-linearity analysis for Pade approximant with a = 1

(b) non-linearity analysis for Pade approximant with a = 5

(c) non-linearity analysis for Pade approximant with a = 10

Fig. 2: Numerical comparisons of the model with Pade

approximant when a = 1 for increasing non-linearities M in (a)

when a = 5 for increasing non-linearities M in (b) and when

a = 10 for increasing non-linearities M in (c).

approximate convergent series solution of the model. It is
always interesting to use the HAM approach to problems
not having the exact solution. So the numerical
comparison, in this case, is helpful to visualize the rate of
convergence for HAM approximation.
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The selection of the linear operator in the construction of
the homotopy equation and the value of auxiliary
parameter h̄ in the homotopy equation plays an essential
role in finding a quick convergent series solution.
Additionally, we name the auxiliary parameter h̄ as a
convergence controlling agent, as it helps to not only
obtain a convergent solution but also to enhance the
interval of convergence.

We define for p ∈ [0,1] the homotopy as

H1(x, p) :=
(1− p)L [v(x; p)− y0(x)] = h̄p

[

L v(x; p)+ v3(x; p)
]

,
v(0; p) = a, v′(0; p) = 0.

(8)
Where

L [v] = x−2 ∂

∂x

(

x2 ∂

∂x

)

[v]

It is easy to verify that for p = 1 this is equivalent to (7).
Moreover, every function that satisfies the boundary
conditions is a valid solution of (8) for p = 0. We expand
v(x; p) in a power series about p = 0 to obtain

v(x; p) = v(x;0)+
+∞

∑
m=0

(

v(m)(x; p)|p=0

m!

)

pm. (9)

Sufficient regularity is formally provided in the problem to
support series convergence, therefore,

v(x;1) = v(x;0)+
+∞

∑
m=0

v(m)(x; p)|p=0

m!
. (10)

We call the terms under the sum the mth-order deformation
derivative, defined as

ym(x) :=
v(m)(x; p)|p=0

m!
.

The solution of (7) is then

y(x) = y0 +
+∞

∑
m=1

ym(x), (11)

where y0(x) = v(x;0) and ym(x) is the mth-order
approximation to the actual solution. It is expected in
general that the mth-order approaches the actual solution.
However, several problems in the literature require only a
few terms of HAM solution to compare with their closed
form solution.

3.2 Recursive Linear Algorithm for H1(x; p)

The deformation derivatives can be computed in analogy
to the theory summarized in [8]. For our specific problem,
the following algorithm applies.

Theorem 3.1. For y0 = a, the deformation derivative ym

associated with homotopy H1 are obtained recursively as

solutions of the initial value problem

L [ym(x)] = (h̄+ χm)L [ym−1(x)]+ h̄[
m−1

∑
k=0

ym−1−k

k

∑
l=0

ylyk−l ]

ym(0) = a,y′m(0) = 0,
(12)

where

L [·] = x−2 d

dx

(

x2 d

dx

)

[·] .

Moreover,

χm =

{

1 m ≤ 1
0 m > 1

Proof. Substituting (9) into (8) and applying Leibniz’
Rule, we obtain for the left-hand side of (8)

L.H.S =
m

∑
l=0

(

m

l

)

(1− p)(l)L [v(x; p)− y0(x)]
(m−l)

= m!L

[

v(m)(x; p)|p=0

m!
−

v(m−1)(x; p)|p=0

(m− 1)!

]

= m!L [ym(x)− χmym−1(x)]

also, for the right-hand side of (8), we have

m

∑
l=0

(

m

l

)

(h̄p)(l)
[

L v(x; p)+ v3(x; p)
](m−l)

= m!h̄

[

L

(

v(m−1)(x; p)|p=0

(m− 1)!

)

+
m−1

∑
k=0

v(m−1−k)(x; p)|p=0

(m− 1− k)!

k

∑
l=0

v(l)(x; p)|p=0

l!

v(k−l)(x; p)|p=0

(k− l)!

]

= m!h̄

[

L ym−1(x)+
m−1

∑
k=0

ym−1−k(x)
k

∑
l=0

yl(x)yk−l(x)

]

Thus, for the mth-deformation derivative we obtain with
the initial conditions in (8) the recursive linear initial value
problem as follows;

L [ym(x)] = (h̄+ χm)L [ym−1(x)]+ h̄[
m−1

∑
k=0

ym−1−k

k

∑
l=0

ylyk−l ]

ym(0) = a,y′m(0) = 0

⊓⊔

3.3 Numerical Comparison with HAM for the

Lane-Emden IVP

HAM algorithm is based on the fact that the auxiliary
parameter h̄, used in constructing the homotopy equation,
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not only controls the interval of convergence but also
helps in finding the convergent series solution of the
problem.

We present a numerical comparison of model with
various choices of auxiliary parameter values
h̄ = −0.09,−0.12,−0.15 for the 20th order HAM
solution based on the homotopy construction defined in
(8). It is shown in the figures 5(a-c) that h̄ controls the
interval of convergence with various choices of the initial
values a = 1,5,10. Additionally, the increasing values of
a in figures 5(a-d) reduce the interval of convergence in
general. In figure 5(a) with a = 1, we have the interval of
convergence for h̄ = −0.09 (0,10.80), h̄ = −0.12
(0,9.50) and h̄ = −0.15 (0,8.27). In figure 5(b) with
a = 5, we observe the maximum interval of convergence
for h̄ = −0.09 which is (0,1.10). Lastly, in figure 5(c)
with a = 10, we observe the maximum interval of
convergence for h̄ =−0.09 which is (0,2.25).

We present the numerical comparison between the
30th order power series, Pade approximant on it and 20th

order HAM series solution. It is shown in the figures
3(a-c) that HAM converges faster and has a bigger
interval of convergence with various choices of the initial
values a = 1,5,10 than the traditional power series
solution and its associated Pade series. Moreover,
increasing the initial value reduces the interval of
convergence in general. In figure 3(a) with a = 1, we
compare the 20th order HAM series, 30th order power
series and Pade approximant with RKF45. We notice that
the interval of convergence for HAM (0,10.60), power
series (0,2.21) and Pade solution (0,5.36). It is observed
that HAM achieves a bigger interval of convergence with
the substantial small number of approximations that we
obtained in the case of power series and its Pade
approximant. In figure 3(c) with a = 5, we have the
interval of convergence for HAM, power and Pade as
(0,2.20), (0,0.44) and (0,1.05) respectively. finally, in
figure 3(c) with a = 10, the interval of convergence for
HAM, power and Pade are (0,1.07), (0,0.23) and
(0,0.51) respectively. It is important to note that with the
increasing initial values, HAM interval of convergence is
significantly larger than the traditional series method.

3.4 Other Possible HAM Algorithms for the

Lane-Emden IVP

We define for p ∈ [0,1] the homotopy

H2(x, p) := (1− p)L [v(x; p)− y0(x)]

= h̄p
[

L v(x; p)+ 2
x

∂v(x;p)
∂x

+ v3(x; p)
]

,

v(0; p) = a, v′(0; p) = 0,

(13)

where

L [v] =
∂ 2

∂x2
[v] .

Theorem 3.2. For y0 = a, the deformation derivative ym

associated with homotopy H2 are obtained recursively as

(a) HAM series solution of the model for a = 1

(b) HAM series solution of the model for a = 5

(c) HAM series solution of the model for a = 10

Fig. 3: Numerical comparison with the 20th order HAM series

solution for differenent values of auxiliary parameter h̄ when a =
1 in (a), when a = 5 in (b) and when a = 10 in (c).

solutions of the initial value problem

L [ym(x)]

= (h̄+ xm)L [ym−1(x)]+ h̄[ 2
x
y
(1)
m−1 +

m−1

∑
k=0

ym−1−k

k

∑
l=0

ylyk−l ]

ym(0) = a,y′m(0) = 0,
(14)
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(a) h-curve for the HAM series solution with a = 1

(b) h-curve for the HAM series solution with a = 5

(c) h-curve for the HAM series solution with a = 10

Fig. 4: h-curve analysis for the 20th order HAM series solution

with a = 1 in (a), with a = 5 in (b) and with a = 10 in (c).

where

L [·] =
d2

dx2
[·]

and

χm =

{

1 m ≤ 1
0 m > 1.

Proof. Substituting (9) into (13) and applying Leibniz’
Rule, we obtain for the left-hand side of (13)

L.H.S =
m

∑
l=0

(

m

l

)

(1− p)(l)L [v(x; p)− y0(x)]
(m−l)

= m!L

[

v(m)(x; p)|p=0

m!
−

v(m−1)(x; p)|p=0

(m− 1)!

]

= m!L [ym(x)− χmym−1(x)]

so for the right-hand side of (13), we have

(a) solution comparison for Taylor, Pade and HAM when a = 1

(b) solution comparison for Taylor, Pade and HAM when a = 5

(c) solution comparison for Taylor, Pade and HAM when a = 10

Fig. 5: Numerical comparison with 30th order power, its Pade

approximant and 20th order HAM series solution when a = 1 in

(a), when a = 5 in (b) and when a = 10 in (c).

m

∑
l=0

(

m

l

)

(h̄p)(l)
[

L v(x; p)+
2

x

∂v(x; p)

∂x
+ v3(x; p)

](m−l)

= m!h̄









L

(

v(m−1)(x;p)|p=0

(m−1)!

)

+ 2
x

∂
∂x

(

v(m−1)(x;p)|p=0

(m−1)!

)

+
m−1

∑
k=0

v(m−1−k)(x;p)|p=0

(m−1−k)!

k

∑
l=0

v(l)(x;p)|p=0

l!

v(k−l)(x;p)|p=0

(k−l)!
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= m!h̄

[

L ym−1(x)+
2

x
y
(1)
m−1

+
m−1

∑
k=0

ym−1−k(x)
k

∑
l=0

yl(x)yk−l(x)

]

Thus, for the mth-deformation derivative, we obtain
with the initial conditions in (13) the recursive linear
initial value problem.

L [ym(x)]

= (h̄+ xm)L [ym−1(x)]+ h̄[ 2
x
y
(1)
m−1 +

m−1

∑
k=0

ym−1−k

k

∑
l=0

ylyk−l ],

ym(0) = a,y′m(0) = 0

⊓⊔
The next theorem justifies one more possible HAM

algorithm. The proof of this theorem is similar to the
proofs of the previous theorems, that is why it is omitted.
We define for p ∈ [0,1] the homotopy

H3(x, p) := (1− p)L [v(x; p)− y0(x)]

= h̄p
[

∂ 2v(x;p)

∂x2 +L v(x; p)+ v3(x; p)
]

= 0,

v(0; p) = a, v′(0; p) = 0.

(15)

where

L [v] =

(

2

x

∂

∂x

)

[v]

Theorem 3.3. For y0 = a, the deformation derivative ym

associated with homotopy H2 are obtained recursively as

solutions of the initial value problem

L [ym(x)] = (h̄+ xm)L [ym−1(x)]+ h̄[y
(2)
m−1

+
m−1

∑
k=0

ym−1−k

k

∑
l=0

ylyk−l ]

ym(0) = a,y′m(0) = 0

(16)

where

L [·] =

(

2

x

d

dx

)

[·]

and

χm =

{

1 m ≤ 1
0 m > 1.

⊓⊔

3.5 Convergence Interval Analysis for Different

HAM Algorithms

The choice of linear operator plays a vital role in the
construction of the homotopy equation. The figures 6(a-c)
show a numerical comparison of the choice of different
HAM algorithms for the solution convergence of interval
of the Lane-Emden model. We observe the same pattern

that was seen before where the increasing initial values
reduce the interval of convergence in general. Apart from
that, all the plots in figures 6(a-c) show that it is possible
to come up with a HAM algorithm with the largest radius
of convergence.

Looking at the figure 6(a), we have intervals of
convergence for HAM1 (0,3.74), HAM2 (0,5.53) and
HAM3 (0,10.70). Now considering the figure 6(b), we
have intervals of convergence for HAM1 (0,0.36),
HAM2 (0,0.54) and HAM3 (0,1.07). Lastly, for figure
6(c), we have intervals of convergence for HAM1
(0,0.72), HAM2 (0,0.1.04) and HAM3 (0,2.2)

Now, we prove that the series (11) converges to the
solution of the IVP. The proof is similar to the proof of
the Banach fixed-point theorem. From our numerical
simulations, we establish the fact that for two successive

ym and ym+1 we have the relation
||ym+1||
||ym||

< 1. Here ||.||

denotes the usual sup norm. This means that there is
constant c with 0 ≤ c < 1, such that ||ym+1|| ≤ c||ym||. We
illustrate this fact in the next table, where several
calculations are shown. The calculations are done for
different values of the parameter a. The first row of the
table shows the values of a and the corresponding
intervals.

cm = ||ym+1||/||ym || a = 1; [0,10.9] a = 5; [0,1.07] a = 10; [0,0.83]
c1 = ||y1||/||y0|| 0.178 0.597 0.882

c2 = ||y2||/||y1|| 0.694 0.209 0.820

c3 = ||y3||/||y2|| 0.714 0.816 0.424

c4 = ||y4||/||y3|| 0.690 0.375 0.873

.

.

.

.

.

.

.

.

.

.

.

.

c19 = ||y19||/||y18|| 0.861 0.930 0.818

c20 = ||y20||/||y19|| 0.863 0.886 0.965

So, we have that cm < 1 for all m. We can take c = sup
m∈N

sm

Taking into account this observation, we prove the
following theorem.

Theorem 3.4. If ||ym+1|| ≤ c||ym|| with 0 ≤ c < 1, then

the series (11) converges to the solution of the

corresponding solution of the IVP of the Lane-Emden

equation.

Proof. We need only to prove that the series (11) is
convergent. The fact that the series converges to the
solution of the considered IVP follows from a result
proved by Liao in [9].
First, we note that all of our considerations are in the
space of continuous functions defined on closed interval,
namely the space C[a,b] with the norm
|| f || = max

x∈[a,b]
| f (x)|, which is a Banach space. Every

Cauchy sequence in a Banach space is a convergent
sequence. Consider the sequence of the partial sums of
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the series (11):

s0 = y0

s1 = y0 + y1

s2 = y0 + y1 + y2

...

sn = y0 + y1 + y2 + · · ·+ yn

...

We have to show that the sequence of partial sums {sn} is
convergent. We have

||sn+1 − sn||= ||yn+1|| ≤ c||yn|| ≤ c2||yn−1|| ≤ · · · ≤ cn+1||y0||.

Using this relation and the triangle inequality, for n,m∈N,
with n > m, we get

||sn − sm||

= ||(sn − sn−1)+ (sn−1 − sn−2)+ · · ·+(sm+1 − sm)||

≤ ||sn − sn−1||+ ||sn−1 − sn−2||+ · · ·+ ||sm+1 − sm||

≤ cn||y0||+ cn−1||y0||+ cn−2||y0||+ · · ·+ cm+1||y0||

= (cn + cn−1 + cn−2+ · · ·+ cm+1)||y0||

= cm+1 1− cn−m

1− c

Since 0 ≤ c < 1, then lim
m→∞

||sn − sm||= 0. Hence {sn} is a

Cauchy sequence and therefore it is convergent. This
means that the series (11) is convergent. This proves the
theorem. ⊓⊔

4 Conclusion

In this paper, we tried to increase the radius of
convergence for solutions to the the Lane-Emden
equation. To do so, we examined the effect of increasing
the order of non-linearity, M, as well as increasing the
value imposed at the initial point, a. Further, we varied
the linear operator used and studied the resulting effect.
We observed that increasing M and a resulted in a larger
interval of convergence for the solutions. Furthermore, we
have found that the auxiliary parameter h̄ in the homotopy
equation not only provides for convergence of the
solution, but also controls the radius of convergence.
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(a) Three HAM algorithms when a = 1

(b) Three HAM algorithms when a = 5

(c) Three HAM algorithms when a = 10

Fig. 6: Solution interval of convergence comparison between the

three different homotopy constructions of 20th order HAM series

solution when a = 1 in (a), when a = 5 in (b) and when a = 10

in (c).
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