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S. Amat1, M.J. Ĺegaz1 and P. Pedregal2
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Abstract: This paper deals to the study and approximation of stiff delay differential equations based on an analysis of a certain error
functional. In seeking to minimize the error by using standard descent schemes, the procedure can never get stuck in local minima, but
will always and steadily decrease the error until getting to the solution sought. Starting with an initial approximation to the solution,
we improve it, adding the solution of some associated linear problems, in such a way that the error is decreased. The performance is
expected very good due to the fact that we can use very robust methods to approximatelinear stiff delay differential equations.
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1. Introduction

Ordinary differential equations (ODEs) and delay differen-
tial equations (DDEs) are used to describe many physical
models. While ODEs contain derivatives which depend on
the solution at the present value of the independent vari-
able, DDEs contain in addition derivatives which depend
on the solution at previous times. For DDEs we must pro-
vide not just the value of the solution at the initial point, but
also the solution at times prior to the initial point. Despite
the obvious similarities between ODEs and DDEs, solu-
tions of DDE problems can differ from solutions for ODE
problems in several ways. One important thing is the pres-
ence of discontinuities in low-order derivatives. Generally
there is a discontinuity in the first derivative of the solution
at the initial point. Moreover, if the solution has a discon-
tinuity in a derivative somewhere, there are discontinuities
in the rest of the interval at a spacing given by the delays.

A popular approach to solving DDEs is to extend one
of the methods used to solve ODEs (see [9–11] and their
references). Most of the codes are based on Runge-Kutta
methods. The code dde23 [15] takes this approach by ex-
tending the method of the Matlab explicit ODE solver ode23.
The code RADAR5 is developed in FORTRAN-90 and is
based on an adaptation of the 3-stage Radau IIA method
to stiff delay differential equations [12]. Stiff systems are
prevalent in the study of damped oscillators, chemical re-
actions and electrical circuits. Although there have been

numerous attempts to define stiffness, none seem quite sat-
isfactory. One of them is the following “Stiff equations are
problems for which explicit methods don’t work” [14]. On
the other hand, implicit schemes need to solve an auxiliary
nonlinear system of equations in each step. These systems
are approximated via Newton-type iterative methods. In
particular, we have to be able to find a good initial guess
inside of the ball of convergence of the iterative scheme
[4–6].

Recently ([1–3]), a variational approach for the anal-
ysis and approximation of Cauchy problems has been in-
troduced. One main step in the procedure relies on a very
particular linearization of the problem: in some sense, it is
like a globally convergent Newton type method. The per-
formance is astonishingly very good due to the fact that we
can use very robust methods to approximatelinear stiff
problems like implicit collocation schemes. As point out
in [7,8], it is not clear if it is possible to cover in a satis-
factorily way highlynonlinear stiff problems, i.e., prob-
lems where also the nonlinear terms are affected by large
parameters. Moreover, any result should assume that, in
each step, the associated nonlinear system is well approx-
imated. In particular, that we are able to start with a good
initial guess for the iterative scheme. This might be very
restrictive for many stiff problems, however our variational
approach gives good results in these cases, see the numer-
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ical section in [2]. In this paper, we extend this procedure
to the case of DDEs.

The rest of the paper is divided in three sections. In
Section 2 we introduce our variational approach for the
linearization of DDEs. Section 3 introduces the numerical
procedure and present a convergence analysis. Finally, we
conclude with a small conclusion section including some
further research directions.

2. A particular linearization of stiff DDEs via
an error minimization problem

Let C := C1([−τ, 0],Rn) be the vector space of contin-
uous differentiable functions mapping the interval[−τ, 0]
intoRn. The stiff problem we like to analyze can be writ-
ten as

x
′
(t) = f(x(t), x(t− τ)), t ∈ (0, T ), (1)

x(θ) = φ(θ), θ ∈ [−τ, 0], (2)

whereφ ∈ C specifies the initial condition andf suffi-
ciently smooth in both variables.

We consider the error functional

E(x) =
1
2

∫ T

0

|x′(t)− f(x(t), x(t− τ))|2 dx,

to be minimized among the absolutely continuous paths
x : (0, T ) → RN with square-integrable derivative and
such thatx(θ) = φ(θ), θ ∈ [−τ, 0].

It is straightforward to find the Ĝateaux derivative of
E at a given feasiblex in the directiony with y(θ) = 0,
θ ∈ [−τ, 0]. Namely

E′(x)y =
∫ T

0

(x′(t)− f(x(t), x(t− τ)))

· (y′(t)−∇1f(x(t), x(t− τ))y(t)
−∇2f(x(t), x(t− τ))y(t− τ)) dt,

where∇1 and∇2 denote the partial derivative with respect
x(t) andx(t− τ) respectively.

This expression suggests a nice possibility to selecty
from: Choosey such that

y′(t)−∇1f(x(t), x(t− τ))y(t)
−∇2f(x(t), x(t− τ))y(t− τ)
= f(x(t), x(t− τ))− x′(t) in (0, T ),

with y(θ) = 0, θ ∈ [−τ, 0].

We have already pointed out that descent methods can
never get stuck on anything but the solution of the prob-
lem, under global lipschitzianity hypotheses. The follow-
ing proposition states that a minimization scheme will work

fine as they can never get stuck in local minima, and con-
verge steadily to the solution of the problem, no matter
what the initialization is. This is also a fundamental fact
for our approach.

Theorem 1.Let x be a critical point for the error E. Then
x is the solution of the problem (1).

3. Numerical procedure

Our approach is really constructive and an iterative numer-
ical procedure is easily implementable based. Mainly:

1.Start with an initial approximationx0(t) compatible
with the initial conditions.

2.Assume we know the approximationx(j)(t) in [0, T ].
3.Compute its derivative(x(j))

′
(t).

4.Compute the auxiliary functiony(j)(t) as the numeri-
cal solution of thelinear problem (by making use of
a numerical scheme for DDEs with dense output as
RADAR5 [12])

y′(t)−∇1f(x(j)(t), x(j)(t− τ))y(t)

−∇2f(x(j)(t), x(j)(t− τ))y(t− τ)

= f(x(j)(t), x(j)(t− τ))− x′(t) in (0, T ),

with y(θ) = 0, θ ∈ [−τ, 0].
5.Changex(j) to x(j+1) by using the update formula

x(j+1)(t) = x(j)(t) + y(j)(t).

6.Iterate (3), (4) and (5), until numerical convergence
(||y(j)|| ≤ TOL).

Assuming that the problem (1) has a unique solution
and following [2], we can derive the convergence of this
procedure:

Theorem 2.The iterative procedurex(j) = x(j−1) + y(j),
starting from arbitrary feasiblex(0) compatible with the
initial conditions, converges strongly inL∞(0, T ) and in
H1(0, T ) to the solution of (1) assuming thatf is smooth
enough.

A main different in the solution of delay equations com-
pared to ordinary differential equations is the appearance
of breaking points (jump discontinuities in the solution or
in its derivatives) even in the presence of smooth functions.
If the breaking points are not included in the mesh and a
variable step size integration is used, the step sizes may be
severely restricted near the low order jump discontinuities.
Some algorithms are proposed for the detection and com-
putation of breaking points in [13]. This paper includes
theoretical results with regard to errors in the approxima-
tion of these important points. By construction, both the
original problem (1) and the auxiliary linear equation have
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the same number of breaking points and in the same posi-
tion.

If we use the algorithm proposed in [13] for the ap-
proximation of the auxiliary linear equation (without in-
cluding the application of the Newton method since in our
case the associated system of equations is linear) and com-
bine the theoretical results of this paper with Theorem 2
we obtain the convergence of our full discretized algo-
rithm:

Theorem 3.With the notation and hypotheses of Theorem
2, if ỹ(j) is the approximation of the sequencey(j) via
RADAR5 with breaking point detection then for allTOL >
O(h5) existsj ∈ N such that

||y(j)|| ≤ TOL.

On the other hand, for the approximation of stiff prob-
lems implicit schemes are used [14]. A number of conver-
gence results have been derived for the discretization of
nonlinear stiff initial problems. In [7]-[8] the authors ex-
tend theB-convergence theory to be valid for a class of
nonautonomous weakly nonlinear stiff systems; reference
to the (potentially large) one-sided Lipschitz constant is
avoided, in particular, includingthe linear case. Unique
solvability of the system of algebraic equations is shown,
and global error bounds are derived. As point out by the
same authors, it is not clear if it is possible to cover in a sat-
isfactorily way highly nonlinear stiff problems, i.e., prob-
lems where also the nonlinear terms are affected by large
parameters. Moreover, any result should assume that, in
each step, the associated nonlinear system is well approx-
imated. In particular, that we are able to start with a good
initial guess for the iterative scheme. This might be very
restrictive for many stiff problems (see Section 6.2 of our
recent work in [2]).

The results, as in the case of stiff ODEs [2], would be
very satisfactory. For problems verifying the hypotheses
of our theorems we obtain always the convergence to the
true solution. Moreover, taking small tolerances (TOL)
as stopping criterium, the exact and computed solutions
should be indistinguishable in a first look [2]. The compu-
tational cost of the direct approximation of the stiff non-
linear DDE with an implicit scheme and with variational
approach is similar. In each step of the implicit scheme we
use a Newton iterative method to approximate the nonlin-
ear system of equations. In our approach we use an itera-
tive scheme to solve the minimization problem but in each
iteration we only approximate linear system of equations.

4. Conclusions

In this paper we have presented a new variational approach
of DDEs. The main step in the procedure relies on a very
particular linearization of the problem. Therefore, the per-
formance is expected very good due to the fact that we can
use very robust methods to approximatelinear stiff prob-
lems like implicit collocation schemes [13].

The main advantage of our approach is that we only
need to approximate linear problems. We believe that this
procedure can be used in a systematic way to examine
other types of DDEs due to its flexibility and its simplic-
ity. In particular, we are interesting in DDEs with multiple
lags, in DDEs with non-constant lags and in neutral DDEs
with lags in the derivatives.
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