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Abstract: Let K andC be nonempty, closed and convex sets inRn andRm respectively andA be anm × n real matrix. The split
feasibility problem is to findu ∈ K with Au ∈ C. Many problems arising in the image reconstruction can be formulated in this
form. In this paper, we use the auxiliary principle technique to suggest and analyze some new iterative algorithms for solving the split
feasibility problems. Our new algorithms include the previously known ones as special cases. We also study the convergence criteria
of these algorithms under some weaker conditions. In this respect, our results present a refinement and improvement of the previously
known results.
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1. Introduction

In recent years much attention has been given to study
the split feasibility problems, which arise in diverse fields
of pure and applied sciences including image reconstruc-
tion, medical sciences (medical image) and signal process-
ing. Many iterative projection-type algorithms have been
proposed and analyzed for solving split feasibility prob-
lems, see Byrne [2,3], Yang [18,19], and the references
therein. To implement these algorithms, one has to find
the projection on the closed convex sets, which is not pos-
sible except in simple cases. We would like to mention that
these problems can be studied by the variational inequali-
ties approach. In fact, we have shown that the split feasibil-
ity problems are equivalent to the variational inequalities.
This alternative approach is more flexible and allows to
improve the convergence analysis of these iterative-type
projection algorithms. In this paper, we use the auxiliary
principle technique. This technique deals with finding the
auxiliary variational inequality problem and proving that
the solution of the auxiliary problem is the solution of
the original problem by using the fixed point approach.
This technique has been used to suggest and analyze sev-
eral iterative methods for solving variational inequalities
and related optimization problems, see [8-16,20] and the
references therein. It is known that a substantial number

of numerical methods can be obtained as special cases
from this technique. The proposed algorithms include the
projection-type algorithms of Byrne [2,3] and others as
special cases. We also introduce the concept of the weakly
relaxed monotonicity strongly monotonicity, which is a
weaker condition than co-coercivity (inverse strongly mono-
tonicity). We study the convergence criteria under this con-
dition. This clearly improve the convergence of the previ-
ously known algorithms. In fact, we have shown that the
variational inequality approach is more flexible and pro-
vides a natural and unified framework to suggest and an-
alyze iterative methods for solving split feasibility prob-
lems. The main purpose of this paper is to demonstrate
the close connection between the split feasibility problems
and variational inequalities. This unified framework is of
important and significant value, both as a means of sum-
marizing existing techniques and to provide ideas and tools
for explaining relationship and performing convergence anal-
ysis. The unified framework also allows a cross-fertilization
among different areas where both the theory and computa-
tional techniques have been applied. We would like to em-
phasize that the results obtained and discussed in this paper
may motivate and bring a large number of novel, innova-
tive and potential applications in these areas. We have only
given a very brief glimps of these fast growing fields. The
interested reader is advised to explore these fields further
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and discover novel and fascinating applications of these
problems in other areas of pure and applied sciences.

2. Preliminaries
Let K andC be two nonempty, closed and convex sets

in Rn andRm respectively. LetA be ann×m be a matrix.
The inner product and norm are denoted by〈., .〉. and‖.‖
respectively.

We consider the problem of findingu ∈ K such that
Au ∈ C which is known as the split feasibility problem. It
is well known that such type of problems arise in the image
reconstruction and have applications in medical image and
signal processing. It is known [2,3] that these problems are
equivalent to findingu ∈ K such that

u = PK [u− ρAT (I − CP )Au], (1)

wherePK andCP are projections ofRn andRm on the
closed convex setsK andC respectively. HereAT denotes
the transpose of the matrixA.

Related to the split feasibility problems, we consider
another problem, which is known as the variational in-
equality problem. To be more precise, letK be a closed
convex set inRn. We consider the problem of findingu ∈
K such that

〈AT (I − CP )Au, v − u〉 ≥ 0, ∀v ∈ K. (2)

Problems of the type (2.2) are known as variational in-
equalities, which were introduced and studied by Stam-
pacchia [17] in 1964. It can be shown that the minimum of
a function

F (u) =
1
2
‖CP Au−Au‖2

on the convex setK can be characterized by the variational
inequality of the type (2.2) with

F ′(u) = AT (I − CP )Au, (3)

whereF ′(u) is the differential of the differentiable convex
functionF (u) at u ∈ K. For the recent applications, gen-
eralizations, sensitivity analysis, dynamical systems and
numerical methods of the variational inequalities, see [1,
3-20] and the references therein.

We now recall some well known results and concepts,
which are needed.
Definition 2.1. The operatorT : K −→ Rn is said to be:

(i). strongly monotone,if there exists a constantα > 0
such that

〈Tu− Tv, u− v〉 ≥ α‖u− v‖2, ∀u, v ∈ K.

(ii). co-coercive ( inverse strongly monotone),if there ex-
ists a constantµ > 0 such that

〈Tu− Tv, u− v〉 ≥ µ‖Tu− Tv‖2, ∀u, v ∈ K.

(iii). weakly co-coercive,if there exists a continuous func-
tion g(u, v) > 0, ∀u, v ∈ K such that

〈Tu− Tv, u− v〉 ≥ g(u, v)‖Tu− Tv‖2, ∀u, v ∈ K.

(iv). partially relaxed strongly monotone,if there exists a
constantα1 > 0 such that

〈Tu− Tv, z − v〉 ≥ −α1‖u− z‖2, ∀u, v, z ∈ K.

(v). weakly partially relaxed strongly monotone,if there
exists a continuous functiong(u, v) > 0, ∀u, v ∈ K such
that

〈Tu− Tv, z − v〉 ≥ −g(u, v)‖u− z‖2, ∀u, v, z ∈ K.

(vi). monotone,if

〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ K.

(vii). pseudomonotone,if

〈Tu, v − u〉 ≥ 0 implies 〈Tv, v − u〉 ≥ 0, ∀u, v ∈ K.

(viii). Lipschitz continuous,if there exists a constantβ >
0 such that

‖Tu− Tv‖ ≤ β‖u− v‖, ∀u, v ∈ K.

In particular, we note that, ifz = u, then (weakly) par-
tially relaxed strongly monotone operator is monotone. If
g(u, v) is a constant or has a minimum, then obviously
weakly co-coercive and weakly partially relaxed strongly
monotone operators are co-coercive and partially relaxed
strongly monotone. However, if the convex setK is un-
bounded andg(u, v) tends to zero as‖u‖ and ‖v‖ ap-
proaches infinity, thenT is neither co-coercive nor par-
tially relaxed strongly monotone. This implies that weakly
co-coercive and weakly partially relaxed strongly mono-
tone operatorT is not co-coercive and partially relaxed
strongly monotone. Thus it is clear that weakly co-coercive
and weakly partially relaxed strongly monotone are weaker
conditions than co-coercivity and partially relaxed strongly
monotonicity.

We now show that weakly co-coercivity implies weakly
partially relaxed strongly monotonicity and this is the mo-
tivation of our next result.

Lemma 2.1. If T is weakly co-coercive with a continuous
functiong verifying g(u, v) > 0, ∀u, v ∈ K, thenT is
weakly partially relaxed strongly monotone operator with

1
4g(u,v) .

Proof. ∀u, v, z ∈ H, consider

〈Tu− Tv, z − v〉
= 〈Tu− Tv, u− v〉+ 〈Tu− Tv, z − u〉
≥ g(u, v)‖Tu− Tv‖2 − g(u, v)‖Tu− Tv‖2

− 1
4g(u, v)

‖z − u‖2

≥ −1
4g(u, v)

‖z − u‖2,

which shows thatT is partially relaxed strongly monotone
with 1

4g(u,v) . 2

For a constant functiong(u, v) = η, we see that a co-
coercive operator with a constantη is also a partially re-
laxed strongly monotone with a constant1

4η . This result is
due to Noor [12-14].
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Example 2.1. Consider the variational inequality problem
(2.2) with Tu = 1 − e−u, K = (−∞,∞). Then one
can easily show that the operatorT is weakly co-coercive.
However this operatorT is neither strongly monotone nor
co-coercive, see [19].

We also need the following result, which establishes
the relationship between the Lipschitz and co-coercivity
properties of the differential operatorF ′(u)( the differen-
tial of a convex functionF (u). )
Lemma 2.2 [1].For a differential operatorF ′( the differ-
ential of a convex functionF ), the following are equiva-
lent.

(a). ‖F ′(u)− F ′(v)‖ ≤ L‖u− v‖, ∀u, v ∈ Rn.

(b). 〈F ′(u)−F ′(v), u−v〉 ≥ 1
L‖F ′(u)−F ′(v)‖2, ∀u, v ∈

Rn,
whereL is the Lipschitz constant of the operatorF ′.
From lemma 2.1 and Lemma 2.2, it follows that
Lipschitz continuity =⇒ co-coercivity

=⇒ weakly partially relaxed strongly monotonicity.
Lemma 2.3. For a givenz ∈ Rn, u ∈ K verifies the
inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K,

if and only if
u = PKz,

wherePK is the projection ofRn onto the closed convex
setK.

It is well known that the projection operatorPK is non-
expansive and firmly nonexpansive ( co-coercive with a
constantµ = 1,) that is,

‖PKu− PKv‖ ≤ ‖u− v‖, ∀u, v ∈ Rn,

and

〈PKu− PKv, u− v〉 ≥ ‖PKu− PKv‖2, ∀u, v ∈ Rn.

One can easily show that the projection operatorP is firmly
nonexpansive if and only if its complementI−P is firmly
nonexpansive.

We also need the following, which is essentially due to
Byrne [3]. We include its proof for the sake of complete-
ness and to convey an idea.
Lemma 2.4. The differential operatorF ′(u) defined by
(2.3) is Lipschitz continuous with constantL, whereL is
the largest eigenvalue ofAT A. v
Proof. ∀u, v ∈ Rn, we have

‖F ′(u)− F ′(v)‖2
= ‖AT (I − CP )Au−AT (I − CP )Av‖2
≤ L‖(I − CP )Au− (I − CP )Av‖2
= L{‖Au−Av‖2 + ‖CP Au− CP Av‖2
−2〈CP Au− CP Av, Au−Av〉}

≤ L{‖Au−Av‖2 − ‖CP Au− CP Av‖2}
≤ L‖Au−Av‖2 ≤ L2‖u− v‖2,

from which the required result follows. 2

Now we show that the problem (2.1) and problem (2.2)
are equivalent by using Lemma 2.4. This is a well known
result in variational inequalities theory.

Lemma 2.5. The functionu ∈ K is a solution of the
variational inequality (2.2) if and only ifu ∈ K satisfies

u = PK [u− ρAT (I − CP )Au].

Hereρ > 0 is a constant andCP is the projection ofRm

onto the closed convex setC.
Lemma 2.5 implies that the split feasibility problem

(2.1) and variational inequality problem (2.2) are equiva-
lent. This alternative equivalent formulation has played an
important and crucial part in the development of several
projection-type iterative algorithms for solving variational
inequalities problems and related optimization problems.

Lemma 2.6. ∀u, v ∈ Rn,

2〈u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2. (4)

Definition 2.2. A function f on a convex setK is said
to be strongly convex function, if there exists a constant
µ > 0 such that

f((1− t)u + tv) ≤ (1− t)f(u) + tf(v)
−µt(1− t)‖u− v‖2, ∀u, v ∈ K, t ∈ [0, 1].

For differentiable strongly convex functions, we have
the following result.

Lemma 2.7.Let f be a differentiable function on the con-
vex setK. Then the following are equivalent:
(i). f is strongly convex on the convex setK with a mod-
ulusµ > 0.

(ii). f(v)− f(u) ≥ 〈f ′(u), v − u〉+ µ‖u− v‖2,
∀u, v ∈ K.

(iii). 〈f ′(u)− f ′(v), u− v〉 ≥ 2µ‖u− v‖2,
∀u, v ∈ K,

that is,f ′ is strongly monotone with a constantµ > 0.

3. Main Results
In this section, we use the auxiliary principle technique

in conjunction with variational inequalities to suggest and
analyze some iterative algorithms for solving split feasi-
bility problems (2.1).

For a givenu ∈ K, consider the problem of finding
w ∈ K such that

〈ρAT (I − CP )Au + w − u, v − w〉 ≥ 0, ∀v ∈ K, (1)

whereρ > 0 is a constant. Note that ifw = u, thenw is a
solution of the variational inequality (2.2). This fact allows
us to suggest and analyze the following iterative algorithm
for solving variational inequalities (2.2).
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Algorithm 3.1. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 ∈ K by the iterative scheme

〈ρAT (I − CP )Aun + un+1 − un,

v − un+1〉 ≥ 0, ∀v ∈ K. (2)

Using the projection operator technique Algorithm 3.1 can
be written in the following equivalent form
Algorithm 3.2. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 ∈ K by the iterative scheme

un+1 = PK [un − ρAT (I − CP )Aun], n = 0, 1, . . . ,

Algorithm 3.2 is exactly the same Algorithm as suggested
and analyzed in [2,3].

Note that, ifC = {b}, then Algorithm 3.2 collapses to:
Algorithm 3.3. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 ∈ K by the iterative schemes

un+1 = PK [un − ρAT (Aun − b)], n = 0, 1, 2, . . . ,

which is known as the projected Landweber Algorithm,
see [3].

We now study the convergence analysis of Algorithm
3.1.
Theorem 3.1. Let the operatorAT (I − CP )A be weakly
partially relaxed strongly monotone with a continuous func-
tion g(un, u). If u ∈ K is a solution of (2.2) andun+1

is the approximate solution obtained from Algorithm 3.1,
then

‖u− un+1‖2 ≤ ‖u− un‖2
−(1− 2ρg(un, u))‖un − un+1‖2. (3)

Proof. Let u ∈ K be a solution of (2.2). Then

〈AT (I − CP )Au, v − u〉 ≥ 0, ∀v ∈ K. (4)

Now takingv = u in (3.2) andv = un+1 in (3.4), we have

〈AT (I − CP )Au, un+1 − u〉 ≥ 0, (5)

and

〈ρAT (I − CP )Aun + un+1 − un, u− un+1〉 ≥ 0. (6)

Adding (3.5) and (3.6), we have

〈un+1 − un, u− un+1〉
≥ ρ{〈AT (I − CP )Aun −AT (I − CP )Au, un+1 − u〉}
≥ −ρg(un, u)‖un − un+1‖2, (7)

where we have used the fact thatAT (I −CP )A is weakly
partially strongly monotone withg(un, u).

Settingu = u−un+1 andv = un+1−un in (2.4), we
have

2〈un+1 − un, u− un+1〉 = ‖u− un‖2
−‖u− un+1‖2 − ‖un − un+1‖2. (8)

Combining (3.7) and (3.8), we obtain (3.3), the required
result. 2

Theorem 3.2. Let u ∈ K be a solution of (2.2) andun+1

be the approximate solution obtained from Algorithm 3.1.
If 0 < ρ < 1

2g(un,u) , then

lim
n−→∞

{un} = u.

Proof. Let u ∈ be a solution of (2.2). Since0 < ρ <
1

2g(un,u) , it follows from (3.3) that the sequence{‖u −
un‖} is decreasing and consequently{un} is bounded and
∞∑

n=0

(1− 2ρg(un, u))‖un − un+1‖2 ≤ ‖u− u0‖2,

which implies

lim
n−→∞

‖un − un+1‖ = 0. (9)

Let û be a cluster point of the sequence{un} and let the
subsequence{u

j
} of the sequence{un} converge tôu ∈

K. replacingun byunj
in (3.2) and taking the limitnj −→

∞ and using (3.9), we have

〈AT (I − CP )Aû, v − û〉 ≥ 0, ∀ v ∈ K,

which implies that̂u solves the variational inequality (2.2)
and

‖un − un+1‖2 ≤ ‖û− un‖2.
Thus it follows from the above inequality that the sequence
{un} has exactly one cluster pointû andlimn−→∞ un =
û. the required result. 2

We now again use the auxiliary principle technique to
suggest some proximal point algorithms for solving the
variational inequalities (2.2) and split feasibility problems
(2.1). These methods have been used and refined in recent
years, see [7,11,12].

For a givenu ∈ K, consider the problem of finding
w ∈ K such that

〈ρAT (I − PC)Aw + w − u− α(u− u),
v − w〉 ≥ 0∀v ∈ K, (10)

which is known the auxiliary variational inequality asso-
ciated with the variational inequality (2.2). Hereα > 0 is
a parameter. Note that problems (3.1) and (3.10) are quite
different problems. It is clear that, ifw = u, thenw is a
solution of the variational inequality (2.2). This fact allows
us to suggest the following iterative method for solving the
variational inequality (2.2).
Algorithm 3.4. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 ∈ K by the iterative scheme

〈ρAT (I − PC)Aun+1 + un+1 − un

−αn(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ K, (11)

whereαn > 0 a constant. Algorithm 3.4 known as the
inertial proximal method and can be written as
Algorithm 3.5. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 ∈ K by the iterative scheme

un+1 = PK [un − ρAT (I − CP )Aun+1

+αn(un − un−1)], n = 1, 2, . . . ,
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For αn = 0, we obtain the original proximal method for
solving variational inequalities. For the improved conver-
gence analysis and applications of the proximal point al-
gorithms, see [7,11-14] and the references therein.

We now consider the convergence analysis of Algo-
rithm 3.4 using the technique of Theorem 3.1 and Theorem
3.2.
Theorem 3.3. Let u ∈ K be a solution of the variational
inequality (2.2) and letun+1 be the approximate solution
obtained from Algorithm 3.4. IfAT (I − CP )A is pseu-
domonotone, then

‖un+1 − u‖2 ≤ ‖un − u‖2 + αn{‖un − u‖2
−‖u− un−1‖2 + 2‖un − un−1‖2}
−‖un+1 − un − αn(un − un−1)‖2. (12)

Proof. Let u ∈ K be a solution of (2.2). Then

〈AT (I − CP )Au, v − u〉 ≥ 0, ∀v ∈ K,

which implies that

〈AT (I − CP )Av, v − u〉 ≥ 0, ∀v ∈ K, (13)

sinceAT (I − CP )A is pseudomonotone.
Taking v = un+1 in (3.13) andv = u in (3.11), we

have

〈AT (I − CP )Aun+1, un+1 − u〉 ≥ 0. (14)

and

〈ρAT (I − CP )Aun+1 + un+1 − un − αn{un − un−1},
u− un+1〉 ≥ 0. (15)

Adding (3.14) and (3.15), we have

〈un+1 − un − αn{un − un−1}, u− un+1〉 ≥ 0,

which can be written as

〈un+1 − un, u− un+1〉 ≥ αn〈un − un−1,

u− un + un − un+1〉. (16)

Using Lemma 2.4 and rearranging the terms of (3.16), one
can easily obtain the required result. 2

Theorem 3.4. Let u ∈ K be a solution of (2.2) and let
un+1 be the approximate solution obtained from algorithm
3.4. If there exist aα ∈ [0, 1) such that0 ≤ αn ≤ α, for
all n ∈ N and
∞∑

n=1

αn‖un − un−1‖2 ≤ ∞,

then

lim
n→∞

un = u.

Proof. Its proof is similar to that of Theorem 3.2. See also
[12]. 2

We now suggest and analyze some more iterative meth-
ods using the auxiliary principle technique in conjunction
with the Bregman function.

For a givenu ∈ K, consider the problem of finding
w ∈ K such that

〈ρAT (I − CP )Au + E′(w)− E′(u), v − w〉 ≥ 0, ∀v ∈ K,(17)

whereρ > 0 is a constant andE′(u) is the differential of
a differentiable strongly convex functionE(u) at u ∈ K.
Due to the differentiable strongly convex functionE(u),
problem (3.17) has a unique solution. Note that forw = u,
w is a solution of the problem (2.2). This fact allows us to
suggest the following algorithm for solving the variational
inequality (2.2).
Algorithm 3.6. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 by the iterative scheme

〈ρAT (I − CP )Aun + E′(un+1)− E′(un),
v − un+1〉 ≥ ∀v ∈ K, (18)

For K = Rn, andAT (I − CP )Au =
`

f(u), the differ-
ential off atu, Algorithm 3.6 reduces to:
Algorithm 3.7. For a givenu0 ∈ Rn, find the approxi-
mate solutionun+1 by the iterative scheme

E′(un+1) = E′(un)− ρ
h

f(un),

n = 0, 1, . . .

which is known as the interior point algorithms. For the
applications of the (projected) interior point algorithms in
medical image, see [2,3].
Remark 3.1. The functionB(w, u) = E(w) − E(u) −
〈E′(u), w − u〉 associated with the differentiable convex
function E(u) is known as the Bregman function, which
plays a key part in the convergence analysis of Algorithms
suggested by using the auxiliary principle technique, see
[4,20].

We now consider the convergence analysis of Algo-
rithm 3.6 and this is the main motivation of next result.
Theorem 3.5. Let AT (I−CP )A be a weakly partially re-
laxed strongly monotone operator with a continuous func-
tion g(un, u). LetE(u) be a differentiable strongly convex
function with modulusβ > 0. If 0 < ρ < g(un,u)

β , then
the approximate solutionun+1 obtained from Algorithm
3.6 converges to a solution of the problem (2.2)(or 2.1).
Proof. Let u ∈ K be a solution of (2.2). Then

〈AT (I − CP )Au, v − u〉 ≥ 0, ∀v ∈ K. (19)

Takingv = un+1 in (3.19) andv = u in (3.18), we have

〈AT (I − CP )Au, un+1 − u〉 ≥ 0. (20)

and

〈ρAT (I − CP )Aun + E′(un+1)− E′(un),
u− un+1〉 ≥ 0. (21)

We now consider the function

B(u,w) = E(u)− E(w)− 〈E′(w), u− w〉
≥ β‖u− w‖2, (22)

where we have used the fact thatE(u) is a differentiable
strongly convex function with modulusβ > 0.
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Combining (3.20), (3.21) and (3.22), we have

B(u, un)−B(u, un+1)
= E(un+1)− E(un)− 〈E′(un), u− un〉
〈E′(un+1)− E′(un), u− un+1〉

≥ β‖un+1 − un‖2 + 〈E′(un+1)− E′(un), u− un+1〉
≥ β‖un+1 − un‖2

+ρ〈AT (I − CP )Aun −AT (I − CP )Au, un+1 − u〉
≥ {β − ρg(un, u)}‖un+1 − un‖2,

where we have used the fact thatAT (I −CP )A is weakly
partially relaxed strongly monotone with a continuous func-
tion g(un, u).

If un+1 = un, then clearlyun is a solution of the vari-
ational inequality problem (2.2). Otherwise, for0 < ρ <

β
g(un,u) , it follows thatB(u, un)−B(u, un+1) is nonneg-
ative and we must have

lim
n→∞

‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [20], it can
be shown that the entire sequence{un} converges to the
cluster pointu satisfying the variational inequality prob-
lem (2.2). 2

We again use the auxiliary principle technique to sug-
gest the proximal method for solving the variational in-
equality (2.2).

For a givenu ∈ K, consider the problem of finding
w ∈ K such that

〈ρAT (I − CP )Aw + E′(w)− E′(u), v − w〉 ≥ 0, ∀v ∈ K,(23)

whereρ > 0 is a constant andE′(u) is the differential of
a differentiable strongly convex functionE(u) at u ∈ K.
Due to the differentiable strongly convex functionE(u),
problem (3.1) has a unique solution. Note that forw = u,
w is a solution of the problem (2.2). Note that the problems
(3.17) and (3.23) are quite different. This fact allows us to
suggest the following algorithm for solving the variational
inequality (2.2).
Algorithm 3.8. For a givenu0 ∈ K, compute the approx-
imate solutionun+1 by the iterative scheme

〈ρAT (I − CP )Aun+1 + E′(un+1)− E′(un),
v − un+1〉 ≥ ∀v ∈ K, (24)

For K = Rn, andAT (I − CP )Au =
`

f(u), the differ-
ential off atu, Algorithm 3.8 reduces to:
Algorithm 3.9. For a givenu0 ∈ Rn, find the approxi-
mate solutionun+1 by the iterative scheme

E′(un+1) = E′(un)− ρ
h

f(un+1), n = 0, 1, . . .

which is known as the implicit interior point algorithms
and appears to be a new one.

One can study the convergence analysis of Algorithm
3.8 using the technique of Theorem 3.5. However for the

sake of completeness and to convey an idea of the tech-
niques involved, we give its proof.
Theorem 3.6. Let AT (I − CP )A be a weakly partially
relaxed strongly monotone operator withg(., .). Let E(u)
be a differentiable strongly convex function with modu-
lus β > 0. Then the approximate solutionun+1 obtained
from Algorithm 3.8 converges to a solutionu ∈ K of the
problem (2.2).
Proof. Let u ∈ K be a solution of (2.2). Then

〈AT (I − CP )Av, v − u〉 ≥ 0, ∀v ∈ K, (25)

sinceAT (I − CP )A is pseudomonotone.
Taking v = un+1 in (3.25) andv = u in (3.24), we

have

〈AT (I − CP )Aun+1, un+1 − u〉 ≥ 0. (26)

and

〈ρAT (I − CP )Aun+1 + E′(un+1)− E′(un),
u− un+1〉 ≥ 0. (27)

Combining (3.22), (3.26) and (3.27), we have

B(u, un)−B(u, un+1)
= E(un+1)− E(un)− 〈E′(un), u− un〉
〈E′(un+1)− E′(un), u− un+1〉

≥ β‖un+1 − un‖2 + 〈E′(un+1)− E′(un), u− un+1〉
≥ β‖un+1 − un‖2 + 〈ρAT (I − CP )Aun+1, un+1 − u〉
≥ β‖un+1 − un‖2,

using (3.26).
If un+1 = un, then clearlyun is a solution of the vari-

ational inequality problem (2.2). Otherwise, it follows that
B(u, un)−B(u, un+1) is nonnegative , and we must have

lim
n→∞

‖un+1 − un‖ = 0.

Now using the technique of Zhu and Marcotte [20], it can
be shown that the entire sequence{un} converges to the
cluster pointu satisfying the variational inequality prob-
lem (2.2). 2

Conclusion . In this paper, we have used the auxiliary
principle technique to suggest and analyze several algo-
rithms for solving the feasibility problems. Convergence
analysis of these algorithms is analyzed under some weak
and suitable conditions. Results proved in this paper can be
viewed as an important and novel applications of the auxil-
iary principle technique in the convex feasibility problems.
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