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Abstract: Let K andC be nonempty, closed and convex setsiifiand R™ respectively andd be anm x n real matrix. The split

feasibility problem is to findu € K with Au € C. Many problems arising in the image reconstruction can be formulated in this
form. In this paper, we use the auxiliary principle technique to suggest and analyze some new iterative algorithms for solving the split
feasibility problems. Our new algorithms include the previously known ones as special cases. We also study the convergence criteria
of these algorithms under some weaker conditions. In this respect, our results present a refinement and improvement of the previously
known results.
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1. Introduction of numerical methods can be obtained as special cases
from this technique. The proposed algorithms include the

In recent years much attention has been given to studyprojection-type algorithms of Byrne [2,3] and others as
the split feasibility problems, which arise in diverse fields Special cases. We also introduce the concept of the weakly
of pure and applied sciences including image reconstructelaxed monotonicity strongly monotonicity, which is a
tion, medical sciences (medical image) and signal processveaker condition than co-coercivity (inverse strongly mono-
ing. Many iterative projection-type algorithms have beentonicity). We study the convergence criteria under this con-
proposed and analyzed for solving split feasibility prob- dition. This clearly improve the convergence of the previ-
lems, see Byrne [2,3], Yang [18,19], and the referenceg)usw known algorithms. In fact, we have shown that the
therein. To implement these algorithms, one has to findvariational inequality approach is more flexible and pro-
the projection on the closed convex sets, which is not posvides a natural and unified framework to suggest and an-
sible except in simple cases. We would like to mention thatalyze iterative methods for solving split feasibility prob-
these problems can be studied by the variational inequalilems. The main purpose of this paper is to demonstrate
ties approach. In fact, we have shown that the split feasibilthe close connection between the split feasibility problems
ity problems are equivalent to the variational inequalities.and variational inequalities. This unified framework is of
This alternative approach is more flexible and allows toimportant and significant value, both as a means of sum-
improve the convergence analysis of these iterative-typdnarizing existing techniques and to provide ideas and tools
projection algorithms. In this paper, we use the auxiliary for explaining relationship and performing convergence anal-
principle technique. This technique deals with finding the ysis. The unified framework also allows a cross-fertilization
auxiliary variational inequality problem and proving that @among different areas where both the theory and computa-
the solution of the auxiliary problem is the solution of tional techniques have been applied. We would like to em-
the Origina| prob|em by using the fixed point approach_ phasize that the results obtained and discussed in this paper
This technique has been used to suggest and analyze sefay motivate and bring a large number of novel, innova-
eral iterative methods for solving variational inequalities tive and potential applications in these areas. We have only
and related optimization problems, see [8-16,20] and thegiven a very brief glimps of these fast growing fields. The
references therein. It is known that a substantial numbeinterested reader is advised to explore these fields further
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and discover novel and fascinating applications of thesdiv). partially relaxed strongly monotonef there exists a
problems in other areas of pure and applied sciences.  constanty; > 0 such that

> Preliminaries (Tu—Tv,z —v) > —ay|ju—2||?, Yu,v,z € K.

Let K andC be two nonempty, closed and convex sets (V). weakly partially relaxed strongly monotond, there
in R™ andR™ respectively. Letd be ann x m be a matrix. ~ €Xists a continuous functiof(u, v) > 0,Vu,v € K such
The inner product and norm are denoted(hy). and|.|  that
reSpeCt'Vely'. o (Tu —Tv,z —v) > —g(u,v)||u—2||?, VYu,v,z€ K.

We consider the problem of finding € K such that . )

Au € C which is known as the split feasibility problem. 1t (Vi)- monotone,if

is well known that such type of problems arise inthe image(Tw — Tv,u —v) >0, Yu,v € K.

reconstruction and have applications in medical image ang . .

signal processing. It is known [2,3] that these problems ar vii). pseudomonotonef

equivalent to finding: € K such that (Tu,v—u) >0 implies (Tv,v—wu)>0, Vu,veK.

u = Pglu— pAT (I — Cp)Au), (1)  (viii). Lipschitz continuousif there exists a constat >

— 0 such that
where P andCp are projections ofR™ and R™ on the

closed convex set& andC respectively. Herel” denotes 17w — Tv[| < Bllu — o], Vu,v € K.
the transpose of the matrix. In particular, we note that, if = u, then (weakly) par-
Related to the split feasibility problems, we consider tially relaxed strongly monotone operator is monotone. If
another problem, which is known as the variational in- 4(«,v) is a constant or has a minimum, then obviously
equality problem. To be more precise, I§tbe a closed weakly co-coercive and weakly partially relaxed strongly
convex set in". We consider the problem of finding€  monotone operators are co-coercive and partially relaxed
K such that strongly monotone. However, if the convex détis un-
T bounded and;(u,v) tends to zero adu|| and ||v]| ap-
(AT = Cp)du,v —u) 20, Wve K. ) proaches inf(i:?lgty, t>herT is neither co:ﬁcc!erciveH nHor gar-
Problems of the type (2.2) are known as variational in-tially relaxed strongly monotone. This implies that weakly
equalities, which were introduced and studied by Stam-co-coercive and weakly partially relaxed strongly mono-
pacchia [17] in 1964. It can be shown that the minimum of tone operatofl” is not co-coercive and partially relaxed

a function strongly monotone. Thus itis clear that weakly co-coercive
1 and weakly partially relaxed strongly monotone are weaker
2 . .. .
F(u) = 5[|CpAu — Au| conditions than co-coercivity and partially relaxed strongly

monotonicity.

We now show that weakly co-coercivity implies weakly
partially relaxed strongly monotonicity and this is the mo-
F'(u) = AT(I — Cp)Au, (3) tivation of our next result.

whereF" (u) is the differential of the differentiable convex Lemma 2.1. If T is weakly co-coercive with a continuous
function F(u) atu € K. For the recent applications, gen- functiong verifying g(u,v) > 0, Vu,v € K, thenT is
eralizations, sensitivity analysis, dynamical systems andveakly partially relaxed strongly monotone operator with
numerical methods of the variational inequalities, see [1,m.

3-20] and the references therein.

Proof. Vu,v,z € H, consider
We now recall some well known results and concepts,

on the convex sek” can be characterized by the variational
inequality of the type (2.2) with

which are needed. (Tu—Tv,z —v)

Definition 2.1. The operatofl’ : K — R"issaidtobe: = (Tu—Tv,u—v) + (Tu—Tv,z —u)

> g(u,v)||Tu —To||* = g(u,v)||Tu — To||*
(i). strongly monotoneif there exists a constant > 0 1 )
such that ————llz =l
4g(u,v)

(Tu —Tv,u —v) > alu—v|? Yu,veK. )

iy o . 2 [l

(ii). co-coercive ( inverse strongly monotoniéthere ex- 4g(u,v)

ists a constant > 0 such that which shows that’ is partially relaxed strongly monotone

ith 1
(Tu — Tv,u —v) > p||Tu—Tv|>, Yu,v e K. With 5t H

For a constant function(u, v) = 7, we see that a co-
coercive operator with a constantis also a partially re-
laxed strongly monotone with a constqﬁt This result is
(Tu — Tv,u —v) > g(u,v)|Tu—Tv||?, Vu,v € K. due to Noor [12-14].

(iif). weakly co-coerciveif there exists a continuous func-
tion g(u,v) > 0,Vu,v € K such that
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Example 2.1. Consider the variational inequality problem from which the required result follows. o

(2.2) withTu = 1 —e™, K = (~00,00). Then one Now we show that the problem (2.1) and problem (2.2)
can easily show that the operafbiis weakly co-coercive. g equivalent by using Lemma 2.4. This is a well known
However this operatdf’ is neither strongly monotone nor oquit in variational inequalities theory.

co-coercive, see [19]. . ) )
We al d the followi it which blish Lemma 2.5. The functionu € K is a solution of the
e also need the following result, which establisnes, ; iationg| inequality (2.2) if and only i € K satisfies
the relationship between the Lipschitz and co-coercivity

properties of the differential operaté¥ (u)( the differen-  w = Py [u — pAT (I — Cp)Aul.
tial of a convex functiorF'(u). )

Lemma 2.2 [1]. For a differential operatoF”( the differ-
ential of a convex functiorf’), the following are equiva-
lent.

Herep > 0 is a constant and'p is the projection ofR™
onto the closed convex sét

Lemma 2.5 implies that the split feasibility problem
(2.1) and variational inequality problem (2.2) are equiva-
foN B n lent. This alternative equivalent formulation has played an
@. [F(w) = F'(@)] < Lllu —oll, - Vu,v e R important and crucial part in the development of several

PN N AN 9 projection-type iterative algorithms for solving variational

). (F(w)=F'(v),u—v) = g[|F"(w)=F' @)% vu,ve inequalities problems and related optimization problems.

R’rl,

wherelL is the Lipschitz constant of the operatt. Lemma 2.6. Vu,v € R",

From lemma 2.1 and Lemma 2.2, it follows that 2(u,v) = |lu+v|* = |lul®* = || 4)

Lipschitz continuity =  co-coercivity
= weakly partially relaxed strongly monotonicity. Definition 2.2. A function f on a convex seK is said
Lemma 2.3. For a givenz € R",u € K verifies the to be strongly convex function, if there exists a constant
inequa"ty w>0 such that
(u—2z,v—u)>0, YeK, F(L=tu+tv) <1 —t)f(u) +1tf(v)
if and only if —pt(1 = t)[u— 0|, Vu,v € K, t€[0,1].

u = Pgz,

For differentiable strongly convex functions, we have
where Py is the projection ofR™ onto the closed convex the following result.

Setk. o _ Lemma 2.7.Let f be a differentiable function on the con-
Itis well known that the projection operatf isnon-  yex setk. Then the following are equivalent:
expansive and firmly nonexpansive ( co-coercive with a (i). fis strongly convex on the convex getwith a mod-

constanf, = 1,) that is, ulusp > 0.

|Pru— Prol|| < |ju—wvl|, VYu,ve€ R",

and (i), f(v) = flu) = (f (), v —u) + pllu— o],
(Pgu — Pgv,u —v) > ||Pxu — Pgv||®, Yu,v € R™. Yu,v € K.

One can easily show that the projection oper#tis firmly
nonexpansive if and only if its complemeht- P is firmly (iii). (f'(u) — f'(v),u —v) > 2pu||lu— U||27
nonexpansive. Vu,v € K,

We also need the following, which is essentially due to
Byrne [3]. We include its proof for the sake of complete- thatis, f’ is strongly monotone with a constgnt> 0.
ness and to convey an idea.

Lemma 2.4. The differential operatoF”’(u) defined by 3. Main Results

(2.3) is Lipschitz continuous with constaht whereL is In this section, we use the auxiliary principle technique
the largest eigenvalue of” A. v in conjunction with variational inequalities to suggest and
Proof. Yu,v € R™, we have analyze some iterative algorithms for solving split feasi-

bility problems (2.1).

2

[F" (u) = F'(v)] For a givenu € K, consider the problem of finding
= ||AT(I — Cp)Au — AT(I — Cp)Av|? w € K such that

2
SL”(I—CP)A'Z_(I—CP)AUH , (pAT(I — Cp)Au+w —u,v —w) >0, YweK, (1)
= L{[|Au — Av[" 4 [|Cp Au — Cp Av||

_ _ _ wherep > 0 is a constant. Note thatib = v, thenw is a
ACp Au CQPAU’AH Av)} ) solution of the variational inequality (2.2). This fact allows
< L{[|Au — Av||" — ||CpAu — CpAv|"} us to suggest and analyze the following iterative algorithm
< L||Au — Av|]? < L?||ju — v|)?, for solving variational inequalities (2.2).
(© 2013 NSP
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Algorithm 3.1. For a givenuy € K, compute the approx- Theorem 3.2. Letu € K be a solution of (2.2) and,,;

imate solutionu,,+; € K by the iterative scheme be the approximate solution obtained from Algorithm 3.1.
If 0 < p < 51—, then
<pAT(I - Cp)Aun + U1 — Un, P 2g(wn,u)
vV —Ups1) > 0,Vv € K. (2) lim {u,}=wu.

Using the projection operator technique Algorithm 3.1 CaNpoof. Letu € be a solution of (2.2). Since < p <

be written in the following equivalent form (1 ) it follows from (3.3) that the sequenddiu —
Algorithm 3.2. For a givenu, € K, compute the approx-  29() . ' .
im%te solution, ,; € %( by tohe iterativepscheme pp uy ||} is decreasing and consequenitly, } is bounded and

tns1 = Prclun — pAT(I = Cp)Auy], n=0,1,..., > (1= 2pg(un,w))|un — wngr|* < Jlu —uoll?,

Algorithm 3.2 is exactly the same Algorithm as suggestedn:h(? himpli
and analyzed in [2,3]. which implies

Note that, ifC' = {b}, then Algorithm 3.2 collapsesto:  lim |ju, — up+1| = 0. 9
Algorithm 3.3. For a givenuy € K, compute the approx-

imate solutionu, ., € K& by the iterative schemes Let @ be a cluster point of the sequenge, } and let the

subsequencéu, } of the sequencéu,, } converge tai €
Uny1 = Pilu, — pAT (Au, —D)], n=0,1,2,..., K. replacingu,, by u,; in (3.2) and taking the limit; —

and using (3.9), we have
which is known as the projected Landweber Algorithm, > 9(3.9)

see [3]. (AT(I — Cp)At,v—1) >0, V veEK,
We now study the convergence analysis of Algorithm which implies that: solves the variational inequality (2.2)
3.1. and

Theorem 3.1. Let the operator” (I — Cp) A be weakly [t — et ||? < || — wnl|®.
partially relaxed strongly monotone with a continuous func—Th it foll ; the above i lity that th
tion g(u,,u). If w € K is a solution of (2.2) andi, us it follows from the above inequality that the sequence

is the approximate solution obtained from Algorithm 3.1, 14»} has exactly one cluster poiatandlim, —. oo un =
4. the required result. |

then
We now again use the auxiliary principle technique to
suggest some proximal point algorithms for solving the
w = g ||* < flu— variational inequalities (2.2) and split feasibility problems
—(1 = 2pg(tn, 1) ||un — tnir || (3)  (2.1). These methods have been used and refined in recent
_ years, see [7,11,12].
Proof. Letu € K be a solution of (2.2). Then For a givenu € K, consider the problem of finding
(AT(I — Cp)Au,v —u) >0, YveK. (4) w € K suchthat
T
Now takingv = w in (3.2) andv = u,4; in (3.4), we have (AT — Po)Aw +w — v — ofu — u),
" v—w) >0V € K, (10)
(AT = Cp)Au, tngr = u) 2 0, ®) which is known the auxiliary variational inequality asso-
and ciated with the variational inequality (2.2). Hetie> 0 is

a parameter. Note that problems (3.1) and (3.10) are quite

T
(pAT(I = Cp)Aun + tnt1 = tn,u = tUnt1) 2 0. (6)  iffarent problems. It is clear that, it = u, thenw is a

Adding (3.5) and (3.6), we have solution of the variational inequality (2.2). This fact allows
us to suggest the following iterative method for solving the
(Unt1 = un, v = tnta) variational inequality (2.2).

> p{(AT(I — Cp)Au, — A"(I = Cp)Au,uni1 —u)}  Algorithm 3.4. For a giveru, € K, compute the approx-
> —pg(tn, u)||tn — Uni1]?, (7)  imate solutionu, ; € K by the iterative scheme

where we have used the fact thef (1 — Cp)Aisweakly — (PAT(I = Po)Aupi1 + tni1 — un

partially strongly monotone with(w,,, u). —n (U, — Up—1),0 — Upt1) >0, YveEK, (11)

H Settingu = u — up+1 ANAV = Unty —uy in (2.4), we wherew,, > 0 a constant. Algorithm 3.4 known as the
ave inertial proximal method and can be written as
2t g1 — Uy U — Ungr) = [[u— up? Algorithm 3.5. For a givenuy € K, compute the approx-
—|lw = tps1]]? =t — wnsa||* (8) imate solutionu,,+; € K by the iterative scheme

Combining (3.7) and (3.8), we obtain (3.3), the required Un+1 = Px[un — pAT(I = Cp)Auy iy

result. a +an(up —up—1)], n=1,2,...,

(© 2013 NSP
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For o, = 0, we obtain the original proximal method for For a givenu € K, consider the problem of finding

solving variational inequalities. For the improved conver- w € K such that

gence analysis and applications of the proximal pointal-, ,r,; / o >

gorithms, see [7,11-14] and the references therein. (pA™ (I OP_)AU +Ew) - E (u)’_v w) - 0, _W € ()
We now consider the convergence analysis of Algo-wherep > 0 is a constant and’(u) is the differential of

rithm 3.4 using the technique of Theorem 3.1 and Theorena differentiable strongly convex functiafi(u) atu € K.

3.2.
Theorem 3.3. Letw € K be a solution of the variational
inequality (2.2) and let.,, ., be the approximate solution
obtained from Algorithm 3.4. IfAT (I — Cp)A is pseu-
domonotone, then
i1 = ull? < un = ull? + an{|Jun — ull?
—lu — unleQ + 2(|un — un71||2}
—ng1 = un — o (un — un71)||2~ (12)

Proof. Letu € K be a solution of (2.2). Then

(AT(I — Cp)Au,v —u) >0, YoveK,
which implies that
(AT(I — Cp)Av,v —u) >0, YveK, (13)

sinceAT (I — Cp)A is pseudomonotone.
Takingv = wu,41 in (3.13) andv = « in (3.11), we
have

(AT(I — Cp)Aupy1, Upy1 —u) > 0.

and

(14)

<PAT(I - OP)Aun+1 + Up4+1 — Up — O‘n{un - Un—1}7

U— Upt1) > 0. (15)
Adding (3.14) and (3.15), we have
(Unt1 = Un — Qn{Un — Up_1}, U — Uny1) >0,
which can be written as

(Upt1 — Up, U — Upy1) > Qp Uy — Up—_1,

U — Up + Up — Upg1)- (16)

Due to the differentiable strongly convex functidu),
problem (3.17) has a unique solution. Note thatfoe u,

w is a solution of the problem (2.2). This fact allows us to
suggest the following algorithm for solving the variational
inequality (2.2).

Algorithm 3.6. For a givenuy € K, compute the approx-
imate solutioru,, 1 by the iterative scheme

<PAT(I - CP)AUTL + El(un+1) - E/(Un)a
V= Upt1) > Vo € K, (18)

For K = R, andAT(I — Cp)Au =Y f(u), the differ-
ential of f atu, Algorithm 3.6 reduces to:

Algorithm 3.7. For a givenug € R™, find the approxi-
mate solutiony,, 1 by the iterative scheme

El(unJrl) = El(un) - Pv fun),
n=20,1,...

which is known as the interior point algorithms. For the
applications of the (projected) interior point algorithms in
medical image, see [2,3].
Remark 3.1. The functionB(w,u) = E(w) — E(u) —
(E'(u),w — u) associated with the differentiable convex
function E(u) is known as the Bregman function, which
plays a key part in the convergence analysis of Algorithms
suggested by using the auxiliary principle technique, see
[4,20].

We now consider the convergence analysis of Algo-
rithm 3.6 and this is the main motivation of next result.

Theorem 3.5. Let AT (I — C'p) A be a weakly partially re-
laxed strongly monotone operator with a continuous func-
tion g(u,,u). Let F(u) be a differentiable strongly convex

function with modulus3 > 0. If 0 < p < W, then

Using Lemma 2.4 and rearranging the terms of (3.16), onghe approximate solution,,,; obtained from Algorithm

can easily obtain the required result. O

Theorem 3.4. Let v € K be a solution of (2.2) and let
un+1 be the approximate solution obtained from algorithm
3.4. If there exist ax € [0,1) such tha0 < «,, < «, for
alln € N and

o0
> anllun — up—1 || < oo,

n=1
then

lim u,, = u.
Proof. Its proof is similar to that of Theorem 3.2. See also
[12]. a

We now suggest and analyze some more iterative meth-

ods using the auxiliary principle technique in conjunction
with the Bregman function.

3.6 converges to a solution of the problem (2.2)(or 2.1).
Proof. Letu € K be a solution of (2.2). Then

(AT(I — Cp)Au,v —u) >0, YveK. (19)
Takingv = wu,41 in (3.19) andv = w in (3.18), we have

(AT(I — Cp)Au, up i1 —u) > 0. (20)
and
<PAT(I — Cp)Auy, + E/(Un+1) - E/(Un)a
U — Upt1) > 0. (21)
We now consider the function
B(u,w) = E(u) — E(w) — (E'(w),u — w)
> fllu—wlf?, (22)

where we have used the fact thfw) is a differentiable
strongly convex function with modulys > 0.

© 2013 NSP
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Combining (3.20), (3.21) and (3.22), we have sake of completeness and to convey an idea of the tech-
Blu, un) — Blu, tny1) nigues involved, we give its proof. .

_E B o0 Theorem 3.6. Let AT (I — Cp)A be a weakly partially

- (}L"“) B (lf”) — (B (un), u — un) relaxed strongly monotone operator with, .). Let E(u)
(E'(un+1) — E'(un), u — tny1) be a differentiable strongly convex function with modu-

> Blltnt1 — Unl]® + (B (uns1) — B (un), t — tpi1) lus 8 > 0. Then the approximate solutian,; obtained

> Bllunst — un? from Algorithm 3.8 converges to a solutienc K of the

AT 4 AT 4 problem (2.2).
+p(A"(I — Cp)Auy — (12_ Cp)Au, tn1 —u) Proof. Letu € K be a solution of (2.2). Then
> {8 = pg(un, u) Hlunt1r — unl”,

, (AT(I — Cp)Av,v —u) >0, Yv€EK, (25)
where we have used the fact thit (7 — Cp) A is weakly ) T )
partially relaxed strongly monotone with a continuous funcSiNc@A” (I — Cp) A is pseudomonotone.

tion g(un, u). Takingv = u,41 in (3.25) andv = w in (3.24), we
If %, 41 = u,, then clearlyu, is a solution of the vari- have

ational inequality problem (2.2). Otherwise, for< p < (AT(I = Cp)Aup i1, Uyt — u) > 0. (26)

—B__ it follows that B(u, u, ) — B(u, ts,11) iS NONNEg-

g(un,u) and

ative and we must have

lim || —up| =0 <pAT(I — Cp)Auni1 + E'(upt1) — E' (un),

o 11— Unfl = 8- U— Uns1) > 0. 27)

Now using the technique of Zhu and Marcotte [20], it can combining (3.22), (3.26) and (3.27), we have
be shown that the entire sequeniag,} converges to the

cluster pointu satisfying the variational inequality prob- B(u, un) — B(u, unt1)
lem (2.2). O = E(upt1) — Elun) — (B (un), v — uy)

(E'(unt1) = E'(un), vt — tny1)

2 / /

We again use the auxiliary principle technique to sug- = Bllun+1 = tnll” + (B (unr1) — B (un), 0 = tns1)
gest the proximal method for solving the variational in- > Blluns1 — un|® + (pA" (I — Cp) At 1, uns1 — u)
equality (2.2). > B|tng1 — ual?,

For a givenu € K, consider the problem of finding using (3.26).

w & K such that If un11 = un, then clearlyu, is a solution of the vari-

(pAT(I — Cp)Aw + E'(w) — E'(u),v — w) > 0,Vv € {23) ational inequality problem (2.2). Otherwise, it follows that

: . . . B -B is nonnegative , and we must have
wherep > 0 is a constant and’ (u) is the differential of (t, n) = B(u, tns1) 9

a differentiable strongly convex functidfi(u) atu € K. lim [[upy1 — unl| = 0.

Due to the differentiable strongly convex functidi(v), = | _ ,
problem (3.1) has a unique solution. Note thatdore u, Now using the technlq_ue of Zhu and Marcotte [20], it can
w is a solution of the problem (2.2). Note that the problemsP€ Shown that the entire sequer{ag, } converges to the
(3.17) and (3.23) are quite different. This fact allows us to clUSter pointu satisfying the variational inequality prob-
suggest the following algorithm for solving the variational lem (2.2). =
inequality (2.2).

Algorithm 3.8. For a givenug € K, compute the approx-
imate solutionu,, 1 by the iterative scheme

Conclusion . In this paper, we have used the auxiliary

principle technique to suggest and analyze several algo-

rithms for solving the feasibility problems. Convergence
(pAT(I — Cp)Atp i1 + E' (uni1) — E'(uy), analysis of these algorithms is analyzed under some weak
V= Upsr) >V € K, (24) a_nd suitable c_ondltlons. Results prove_d |n_th|s paper can _be

viewed as an important and novel applications of the auxil-

ForK = R", andA” (I — Cp)Au =Y f(u), the differ- jary principle technique in the convex feasibility problems.

ential of f atw, Algorithm 3.8 reduces to:

Algorithm 3.9. For a givenug € R™, find the approxi-
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