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Abstract: We show that the coefficients of a reformulation of a Taylor series expansion of the Hoste and Pryzyticki
polynomial are Vassiliev invariants. We also show that many other reformulations of the Taylor series expansion have
coefficients that are Vassiliev invariants. We charecterize the first two coefficients b1

0(t) and bL
1 (t) for one of these expan-

sions. Moreover, the second coefficient bL
1 (t), which is a type-one Vassiliev invariant, is given two explicit computational

formulas, which are easy to calculate. bL
1 (t) is used to give a lower bound for the crossing number of a knot of zero

winding number in the solid torus.
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1. Introduction

Discovering computable formulas of Vassiliev invari-
ants started by the appearance of the combinatorial
definition by Birman and Lin in [5]. Since the rich-
est source of invariants continues to be polynomial
invariants, much of work has been done to charac-
terize Vassiliev invariants of a given type by exploring
these polynomial invariants. The difference relation in
the combinatorial definition of the Vassiliev invariants
is what stands behind the interest of the derivatives
and hence the Taylor series expansion coefficients of
the Laurent polynomial invariants. See [5] and [12].

The two-variable polynomial for dichromatic links
by Hoste and Przytycki in [7] was considered in [4]
as an invariant of links in the solid torus. We refer
to this polynomial invariant by the HP-polynomial.
Moreover, the definition of Vassiliev invariants was
extended to knots and links in the solid torus. In
this paper we show that the coefficients of a refor-
mulation of the Taylor series expansion of the HP-
polynomial are Vassiliev invariants and we show that
many other choices of Taylor series expansion lead to
the same result. We characterize the first two coeffi-
cients of this expansion bL

0 (t) and bL
1 (t). The second

coefficient bL
1 (t), which is a type-one Vassiliev invari-

ant, is given explicitly by two computational formu-
las. Both of these two formulas are finite sum formulas
that are easy to calculate. Finally, as an application,
we analyze bL

1 (t) to give a lower bound for one of the
most important geometric knot invariants, the cross-
ing number, which has special importance in natural
sciences, especially in studying knotted DNA.

In section 2 we give preliminaries needed in the
later sections. In section 3 we show that the coeffi-
cients of a Taylor series expansion of the HP-polynomial
are Vassiliev invariants and we show that many other
Taylor series expansions of the HP-polynomial have
this property too. In section 4 we show that bL

1 (t) can
be computed separately and easily through two dif-
ferent formulas, and we list some remarks on these
formulas. In section 5 we extract a lower bound for
the crossing number of a knot of zero winding num-
ber, and we show how this bound could be used to
compute the crossing number of a knot.

2. Preliminaries

Links (knots) and singular links (knots) in the solid
torus are usually represented by what is called punc-
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tured diagrams, which is a usual diagram of the sin-
gular knot or link but in R2 − {(0, 0)}.

Like in the case of links in R3, we shall call a point
of intersection of a singular link L a singular point
of L. A singular link in ST might also be given an
orientation for each of its components.

Definition 1. Two singular knots (links) are said to
be isotopy equivalent if we can get from a diagram
of one of them to a diagram of the other by a finite
sequence of the known five generalized Reidemeister
moves. See [11].

Let Li be the set of singular link types with i sin-
gular points. Let L =

∞∪
i=0
Li.

Definition 2. A function υ : L → G, where G is an
abelian group, is said to be a Vassiliev invariant or
a finite-type invariant if it satisfies the following two
axioms:

(i) υ(L×) = υ(L+)− υ(L−) and
(ii) There exists n ∈ N such that υ(L) = 0 for any

L ∈ Li with i ≥ n + 1.

Moreover, the least such non negative integer n is
called the type or order of υ. L+ and L− are usually
called the positive and negative resolutions of L×, re-
spectively, and equation (i) is usually denoted by re-
solving this double point in L×.

The two axioms of the definition above were first
given by Birman and Lin [5] for knots, and then the
definition of finite-type invariants was extended to
links in a similar way by Stanford [12]. The defini-
tion of finite-type invariants was extended to knots
and links in general 3-manifolds by Kalfagianni [8],
and in the solid torus by Goryunov [6], Aicardi [1],
and Bataineh and Abu Zaytoon [2] in a similar way.

Hoste and Przytycki in [7] introduced the two-

variable Laurent polynomial invariant
∼
dL of 1-trivial

dichromatic links with oriented 2-sublink in R3. In [4]
we viewed this invariant as an invariant of oriented
links in the solid torus instead of 1-trivial dichromatic
links in R3. The notation we use for

∼
dL as an invariant

in the solid torus is YL.

Theorem 1. Let D be a diagram of a link L in the
solid torus, and let 〈D〉 be determined by the following
formulas:

(I) The smoothing formulas

(1)
〈 〉

= A
〈 〉

+ A−1
〈 〉

(2)
〈 〉

= A

〈 〉
+ A−1

〈 〉

(II) The reduction formulas

(1)
〈
D

⋃ 〉
= (−A2 −A−2) 〈D〉

(2)
〈
D

⋃ 〉
= (−A2 −A−2)t 〈D〉

(III) The finishing formulas

(1)
〈 〉

= 1

(2)
〈 〉

= t

Then YL(A, t) = (−A3)−w(D) 〈D〉 is a Laurent poly-
nomial invariant in Z[A,A−1, t], where w(D) is the
sum of the signs of all crossings of D.

Hoste and Przytycki in [7] give the following skein
relation for this invariant.

Lemma 1. The YL invariant satisfies the skein rela-
tion given by

A4YL+(A, t)−A−4YL−(A, t) = (A−2 −A2)YL0(A, t)

The proof of this Lemma goes along the lines of the
proof of Lemma 2.6 in [10].

Let L be a link in the solid torus, and ni(L) be
the number of copies of the component in L whose
winding number is i. Let n(L) be the number of com-
ponents of L. Note that

∑
i

ni(L) = n(L). For the proof

of the following theorem see [3].

Theorem 2. For a link L in the solid torus

YL(1, t) = (−2)n(L)−1
∏

i

[Ti(t)]ni(L),

where the set {Tk(t) : k ∈ Z} is the set of the extended
Chebyshev Polynomials of the First Kind given recur-
sively by:

T0(t) = 1, T1(t) = t,
Tk(t) = 2t Tk−1(t)− Tk−2(t) for k ≥ 0.
Moreover Tk(t) = T−k(t) for k ≤ 0.

The reader can easily deduce the following corollary.

Corollary 1. If K is just a knot in the solid torus,
then YK(1, t) = Ti(t), where i is the winding number
of the knot.

3. Power Series Coefficients of the
HP-Polynomial

Theorem 3. Let L be a link in the solid torus and
let YL(A, t) be the HP -polynomial. Let Y L(e−

1
4 x, t)

be obtained from YL(A, t) by replacing the variable A

by e−
1
4 x. Let Y L(x, t) be obtained by replacing e−

1
4 x

by its Taylor series expansion about x = 0, then

Y L(x, t) =
∞∑

i=0

bL
i (t)xi,

where bL
0 (t) = (−2)n(L)−1

∏
i

[Ti(t)]ni(L) and each bL
i (t),

i ≥ 0 is a Vassiliev invariant of order i.
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Proof. Let Lj
× be a singular link with j singular points

one of which is referred to by ×. We define

Y
L

j
×

(A, t) = Y
L

j−1
+

(A, t)− Y
L

j−1
−

(A, t). (1)

If we resolve the j crossings using (1) we end up with
a sum of 2j Y−polynomials of non-singular links. The
skein relation

A4Y
L

j−1
+

(A, t)−A−4Y
L

j−1
−

(A, t) = (A−2 −A2)Y
L

j−1
0

(A, t)

can be written as

Y
L

j−1
+

(A, t) = A
−8

Y
L

j−1
−

(A, t) + (A
−6 − A

−2
)Y

L
j−1
0

(A, t) (2)

Substituting from equation (2) into equation (1) we
obtain

Y
L

j
×

(A, t) = A
−8

Y
L

j−1
−

(A, t)+(A
−6−A

−2
)Y

L
j−1
0

(A, t)−Y
L

j−1
−

(A, t),

or equivalently

Y
L

j
×

(A, t) = (A
−8−1)Y

L
j−1
−

(A, t)+(A
−6−A

−2
)Y

L
j−1
0

(A, t) (3)

Let Lj
1,2,...,j be a singular link with j singular points

labeled 1, 2, . . . , j. Resolving the j crossings of Lj
1,2,...,j

using (3) we get a sum involving the Y−polynomials
of the following 2j non-singular knots

{Kσ : σ = (σ1, . . . , σj), where σi is either a minus sign or a zero} .

This sum is

Y
L

j
1,2,...,j

(A, t) =
∑

σ

(A
−8 − 1)

pσ (A
−6 − A

−2
)
qσ YLσ (A, t), (4)

where pσ is the number of minus signs in σ, and qσ is
the number of zeros in σ. Substituting A = e−

1
4 x we

obtain

Y
L

j
1,2,...,j

(e
− 1

4 x
, t) =

∑
σ

(e
2x − 1)

pσ (e
3
2 x − e

1
2 x

)
qσ YLσ (e

− 1
4 x

, t).

Note that the Taylor series expansion about x = 0
gives

e
2x − 1 = 2x + 2x

2
+

4

3
x
3

+ · · ·

e
3
2 x − e

1
2 x

= x + x
2

+
13

24
x
3

+ · · · ,

and hence
Y

L
j
1,2,...,j

(x, t) =

∑
σ

(2x + 2x
2

+
4

3
x
3

+ · · · )pσ (x + x
2

+
13

24
x
3

+ · · · )qσ

YLσ (e
− 1

4 x
, t)

=
∑

σ

(2x + 2x
2

+
4

3
x
3

+ · · · )pσ (x + x
2

+
13

24
x
3

+ · · · )qσ (c0 + c1x + · · · ) , (5)

where c0 = (−2)n(L)−1
∏
i

[Ti(t)]ni(L), because Y L(0, t) =

YL(1, t) = (−2)n(L)−1
∏
i

[Ti(t)]ni(L). Note that c0 6= 0.

The first non-zero term of the sum in (5) is

(2x)
pσ (x)

qσ (c0) = 2
pσ c0x

pσ+qσ = (2
pσ c0)x

j
since pσ + qσ = j.

So the coefficient of xi in the sum above is zero for
all i < j. Therefore

Y
L

j
1,2,...,j

(x, t) =

∞∑

i=0

b
L

j
1,2,...,j

i (t)x
i
,

where b
Lj

1,2,...,j

i (t) = 0 for all i < j.

Let i be fixed and let j > i, then b
Lj

1,2,...,j

i (t) = 0,
hence bL

i (t) satisfies the first condition in the defini-
tion of a Vassiliev invariant of order i. Moreover, bL

i (t)
is an invariant that satisfies b

L×
i (t) = b

L+
i (t)− b

L−
i (t)

since Y does. Hence bL
i (t) is a Vassiliev invariant of

order i.

Next we show that we do not have to use the sub-
stitution A = e−

1
4 x in order to prove the previous

theorem. In fact we have a wide range of choices.

Proposition 1. If f(0) = 1, f ′(0) 6= 0 and f(x) has a
convergent Taylor series about x = 0, then each coef-
ficient dL

i (t) of the Taylor series expansion of YL(A, t)
determined by the substitution A = [f(x)]−

1
2 is a Vas-

siliev invariant of order i.

Proof. Recall equation (4) in the proof above

Y
L

j
1,2,...,j

(A, t) =
∑

σ

(A
−8 − 1)

pσ (A
−6 − A

−2
)
qσ YLσ (A, t).

Substituting A = [f(x)]−
1
2 we obtain

Y
L

j
1,2,...,j

([f(x)]
− 1

2 , t)

=
∑

σ

(f
4
(x)− 1)

pσ (f
3
(x)− f(x))

qσ YLσ ([f(x)]
− 1

2 , t).

Let f(x) = a0+a1x+a2x
2+ · · · . Note that f(0) = 1,

f ′(0) 6= 0 ⇒ f(x) = 1 + a1x + a2x
2 + · · · , such that

a1 6= 0. Hence, the sum in (6) becomes
∑

σ

((1 + a1x + · · · )4 − 1)
pσ ((1 + a1x + · · · )3 − (1 + a1x + · · · ))qσ

YLσ ([f(x)]
− 1

2 , t)

=
∑

σ

[(1 + 4a1x + · · · )− 1]
pσ [(1 + 3a1x + · · · )

−(1 + a1x + · · · )]qσ YLσ ([f(x)]
− 1

2 , t)

=
∑

σ

[4a1x + · · · ]pσ [2a1x + · · · ]qσ

(c0 + c1x + · · · ) ,

where c0 = (−2)n(L)−1
∏
i

[Ti(t)]ni(L). Note that c0 6=
0. The first non-zero term of this sum is

(4a1x)
pσ (2a1x)

qσ (c0)

= (4
pσ 2

qσ a
pσ
1 a

qσ
1 c0)x

pσ x
qσ =

(2
j+pσ a

j
1c0)x

j
since pσ + qσ = j.
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Note that (2j+pσaj
1c0) 6= 0. So the coefficient of xi in

the sum above is zero for all i < j. Therefore

Y
L

j
1,2,...,j

(x, t) =
∞∑

i=0

d
L

j
1,2,...,j

i (t)x
i
,

where d
Lj

1,2,...,j

i (t) = 0 for all i < j.
The rest of the proof is similar to that in the proof

of the previous theorem, because if i is fixed and j > i,

then d
Lj

1,2,...,j

i (t) = 0, hence dL
i (t) satisfies the first

condition in the definition of a Vassiliev invariant of
order i.

4. Two formulas for the invariant bL
1 (t)

In the previous section we gave the explicit formula of
the type-zero invariant bL

0 (t). In this section we give
two computational explicit formulas for the type-one
Laurent polynomial invariant bL

1 (t). The first one is a
sum given in terms of the extended Chebyshev Poly-
nomials, and the second one is a sum given in terms
of the states of the link on Kauffman’s way.

Let L be a link in the solid torus. If p is a crossing
in L between two strands in the same component,
then smoothing this crossing produces two compo-
nents. We denote the winding numbers of these two
components by {m(p), l(p)}. We also define j(p) =
m(p)+ l(p). On the other hand, If q is a crossing in L
between two strands from two different components,
we denote the winding numbers of the two compo-
nents by {m(q), l(q)}. Smoothing this crossing con-
nects these two components into one component. We
define j(q) = m(q) + l(q) and this is the total wind-
ing number of the resulting component. We refer to
the sign of the crossing p by e(p), and the sign of the
crossing q by e(q).

For the proof of the following theorem see [3].

Theorem 4.
[

∂
∂AYL(A, t)

]
A=1

is given by

YL(1, t)(
∑
p

e(p)
[
4

Tm(p)(t)Tl(p)(t)

Tj(p)(t)
− 4

]
+

∑
q

e(q)
[

Tj(q)(t)

Tm(q)(t)Tl(q)(t)
− 4

]
).

The explicit formula of b1(t) is now given.

Theorem 5. The type-one invariant bL
1 (t) is given by

bL
1 (t) = bL

0 (t)(
∑

p

e(p)

[
1− Tm(p)(t)Tl(p)(t)

Tj(p)(t)

]

+
∑

q

e(q)

[
1− Tj(q)(t)

Tm(q)(t)Tl(q)(t)

]
).

Proof. Recall that we have YL(A, t) and A = e−
1
4 x

and the power series

Y L(x, t) =
∞∑

i=0

bL
i (t)xi.

One can easily see that bL
0 (t) = Y L(0, t) = YL(1, t).

Moreover
b

L
1 (t) =

[
∂

∂A
Y L(x, t)

]

x=0

=

[
∂

∂A
YL(A, t)

dA

dx

]

x=0

=

[
∂

∂A
YL(A, t)

]

A=1

[
dA

dx

]

x=0

=

[
∂

∂A
YL(A, t)

]

A=1

[
− 1

4

]

= − 1

4
YL(1, t)(

∑
p

e(p)

[
4

Tm(p)(t)Tl(p)(t)

Tj(p)(t)
− 4

]

+
∑

q

e(q)

[
Tj(q)(t)

Tm(q)(t)Tl(q)(t)
− 4

]
)

= b
L
1 (t)(

∑
p

e(p)

[
1− Tm(p)(t)Tl(p)(t)

Tj(p)(t)

]

+
∑

q

e(q)

[
1− Tj(q)(t)

Tm(q)(t)Tl(q)(t)

]
)

This completes the proof.

The following corollary follows from the last theorem
and the fact that when L is a knot, we have bL

0 (t) =
Tj(p)(t).
Corollary 2. For a knot K in the solid torus, we

have

bK
1 (t) =

∑
p

e(p)[Tm(p)+l(p)(t)− Tm(p)(t)Tl(p)(t)].

The other explicit computational formula in this
section is a formula that we will derive from the fol-
lowing state sum formula given in [4].
Theorem 6. Let D be a diagram of a link L in the
solid torus. Then

YL(A, t) = (−A3)−w(D)
∑

S

Aa(S)−b(S)(−A2−A−2)|S|−1t|T |

where the sum runs over all possible states S of the
link diagram, |S| is the total number of circles and
dotted circles in the state S, |T | is the number of the
dotted circles, a(S) is the number of A-splits in the
state S, and b(S) is the number of B-splits in the state
S.

Now we give the state sum formula for the type-one
invariant bL

1 (t).

Theorem 7.
bL
1 (t) =

(−1)w(D)

4

∑
S

[3w(D) + b(S)− a(S)] [−2]|S|−1t|T |.

Proof.Note that
∂

∂A
YL(A, t) = (−A

3
)
−w(D)

∑

S

[A
a(S)−b(S)

(|S| − 1)(−A
2 − A

−2
)
|S|−2

(−2A + 2A
−3

)

+ (a(S)− b(S))A
a(S)−b(S)−1

(−A
2 − A

−2
)
|S|−1

]t
|T |

+ [−w(D)(−A
3
)
−w(D)−1

(−3A
2
)]

[∑

S

A
a(S)−b(S)

(−A
2 − A

−2
)
|S|−1

t
|T |

]
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Hence
[

∂

∂A
YL(A, t)

]

A=1
= (−1)

−w(D)

[∑

S

[
(a(S)− b(S))(−2)

|S|−1
]

t
|T |

]

+
[
−w(D) (−1)

−w(D)−1
(−3)

]

[∑

S

(−2)
|S|−1

t
|T |

]

= (−1)
−w(D)

∑

S

[
(a(S)− b(S))(−2)

|S|−1
]

t
|T | − 3w(D)(−2)

|S|−1
t
|T |

= (−1)
w(D)

∑

S

[
(a(S)− b(S)− 3w(D))(−2)

|S|−1
]

t
|T |

Now recall from the last proof that

b
L
1 (t) =

[
− 1

4

] [
∂

∂A
YL(A, t)

]

A=1

=

[
− 1

4

]
(−1)

w(D)
∑

S

[
(a(S)− b(S)− 3w(D))(−2)

|S|−1
]

t
|T |

=
(−1)w(D)

4

∑

S

[3w(D) + b(S)− a(S)] [−2]
|S|−1

t
|T |

.

This completes the proof.

We give the following useful remarks.

Remark.If XL(A) is the well-known form of the Jones
polynomial discovered by Kauffman using his bracket
polynomial, then YL(A, 1) = XL(A). This can be eas-
ily seen by definition of YL(A, t).

Remark. If K is a knot in the three space, then

d

dA
[XK(A)]A=1 = 0,

because a type-one invariant of knots in the three
space is of type zero; that is a constant.

Remark. In a similar power series expansion of XK(A),
the second coefficient would be bK

1 (1), and the corre-
sponding state sum formula would be

(−1)w(D)

4

∑
S

[3w(D) + b(S)− a(S)] [−2]|S|−1.

However, this formula is of no use, because it van-
ishes by the previous remark. Therefore, The formula
in our last theorem has no corresponding one known
for knots in the three space. But it is useful in com-
putation for a type-one invariant for knots and links
in the solid torus.

Example 1.The calculation of bK
1 (t) for the knot in

(Figure 1) using both of the two formulas given in
this section yields the same result bK

1 (t) = 2− 2t2.

Figure 1 Knot in the Solid Torus

5. A lower bound on the crossing
number

For a given knot K the crossing number of K, denoted
by crossing(K), is known to be the minimal number
of crossings of all diagrams of the knot K. Like all
geometric invariants of knots and links, the crossing
number is hard to compute, while it is so important
especially in knotted DNA, where the crossing num-
ber is instrumental in understanding the information
coded in the DNA. Let KST0 be the set of knots with
zero winding number in the solid torus. In this section
we explore a lower bound for the crossing number of
K ∈ KST0. This lower bound is coded in bK

1 (t) in an
implicit way.

For the following extended relation of Chebyshev
polynomials see [3].

Tn(t) =
1

2

(
t−

√
t2 − 1

)n

+
1

2

(
t +

√
t2 − 1

)n

for all n ∈ Z

Lemma 2. If K ∈ KST0, and z = t−√t2 − 1, then

bK
1 (z) =

1

2

∑
p

e(p)− 1

4

∑
p

e(p)[z2m(p) + z−2m(p)].

Proof. Note that if K ∈ KST0, then m(p) + l(p) = 0,
therefore

Tm(p)+l(p)(t) = T0(t) = 1,

Tm(p)(t)Tl(p)(t) = Tm(p)(t)T−m(p)(t)

= Tm(p)(t)Tm(p)(t)

= T 2
m(p)(t).

Hence
bK
1 (t) =

∑
p

e(p)[1− T 2
m(p)(t)].

When z = t−√t2 − 1, we have

Tm(p)(z) =
1

2
zm(p) +

1

2
z−m(p) ⇒

T 2
m(p)(z) =

1

2
+

1

4
z2m(p) +

1

4
z−2m(p).

Hence

bK
1 (z) =

∑
p

e(p)[1− T 2
m(p)(z)]

=
∑

p

e(p)[1− 1

2
− 1

4
z2m(p) − 1

4
z−2m(p)]

=
1

2

∑
p

e(p)− 1

4

∑
p

e(p)[z2m(p) + z−2m(p)].
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Note that the previous lemma expresses bK
1 (z) as a

symmetric Laurent polynomial in z with a constant
term M ≡ 1

2

∑
p

e(p). Therefore, we have the following

corollary.

Corollary 3. bK
1 (z) can be written as

bK
1 (z) =

[
Bm1z2m1 + · · ·+ Bmsz2ms

]

+
[
Bm1z−2m1 + · · ·+ Bmsz−2ms

]
+ M,

where Bmi = − 1
4

∑
pmi

e(pmi
) 6= 0, is the sum of signs

of all crossings with winding numbers {mi,−mi} .

Theorem 8.
If K ∈ KST0, then

crossing(K) ≥ 4 |Bm1 |+ · · ·+ 4 |Bms
| .

Proof. Let D be any diagram for a knot K ∈ KST0.
Since Bmi = − 1

4

∑
pmi

e(pmi), we have
∑
pmi

e(pmi) = −4Bmi .

So we have at least |−4Bmi | = 4 |Bmi | crossings of
winding numbers {mi,−mi} . Since the sets of cross-
ings of different pairs of winding numbers in D are
pairwise disjoint, we have at least 4 |Bm1 | + · · · +
4 |Bms | crossings in D. Hence crossing(K) ≥ 4 |Bm1 |+
· · ·+ 4 |Bms | .

Example 2. For the knot K in Figure 1, we have

bK
1 (z) =

1

2
[2]− 1

4
[(1)[z2 + z−2] + (1)[z2 + z−2]]

= 1− 1

2
z2 − 1

2
z−2.

Hence crossing(K) ≥ 4
∣∣− 1

2

∣∣ = 2. We leave it as
an easy exercise for the reader to find a diagram D1

of K in FIGURE 1 that has exactly two crossings.
Finding such a diagram together with the fact that
crossing(K) ≥ 2 implies that crossing(K) = 2.
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