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Abstract: Cart Inverted Pendulum (CIP) system is a benchmark problem in nonlinear automatic control. It is commonly used to
verify the robustness of any proposed nonlinear controller. CIP is mostly represented by two second order differential equations to
avoid complexity due to the DC motor dynamics. This representation is not practical for the real CIP dynamics and might lead to
instability. Therefore in this paper, two third-order differential equations were derived to combine the pendulum system and DC motor
dynamics to have a more realistic mathematical model. Friction between the cart and rail was included in the system equations through a
nonlinear friction model. To stabilize the obtained nonlinear electromechanical CIP model, a third-order Fuzzy Sliding Mode Controller
(FSMC) was designed. The chattering of the control signal was eliminated using general bill shape membership functions for the Fuzzy
controller. Simulation results proved the robustness of the proposed FSMC over Linear Quadratic Regulator Controller (LQRC). For
instant, the overshoot in the cart position response was reduced by 300%.

Keywords: Sliding mode control, fuzzy Controller, cart-inverted pendulum system.

1. Introduction

Cart-Inverted Pendulum (CIP) system is considered as one
of the most significant benchmark problems in dynamics.
As a nonlinear unstable system, it affords many challeng-
ing tasks for control engineers. Furthermore, many prac-
tical restrictions present in controlling the system such as
frictions, cart rail limitation and control signal saturation.
All these limitations stimulate researchers to study the sys-
tem extensively[1]. A lot of controllers have been pro-
posed to stabilize the CIPS based on the linearized model
[2,3].The closed loop stability is not considered and us-
ing linear control strategies might be insufficient, espe-
cially with existing of nonlinear friction and external dis-
turbances. Thus, nonlinear control techniques are required
to improve the system response and guarantee the stability.

Sliding Mode Control (SMC) is considered as a power-
ful tool controlling of nonlinear systems. As a robust con-
trol technique, SMC is an effective method dealing with
system uncertainties and external disturbances. Another
advantage of this approach is stability guarantee under ex-

ternal disturbances and parameters variations. Despite its
effectiveness in many applications, SMC has a drawback
of control signal chattering (high frequencies)[4].

On the other hand, Fuzzy Logic Control (FLC) is of-
fering a good solution for systems with complicated math-
ematical model. Using the human experts, FLC provides
a model free control scheme which has been applied to
many engineering applications. The main disadvantage of
FLC is the difficulties in guarantee the stability because of
the linguistic expressions[5]. Recently, fuzzy sliding mode
control (FSMC) has been introduced as a robust control
method dealing with chattering problem. FSMC is work-
ing as a SMC with a boundary layer, where the FLC is
forming the boundary layer to overcome high frequencies
of the control signal, which is undesirable for many appli-
cations[6].

In literature, FSMC has been used in controlling of
CIPS. Woo kim et al. [7] proposed single input fuzzy slid-
ing mode controller SIFSMC, where the fuzzy rules were
defined based on the sliding surface. Although, the results
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showed the validity of this controller for second- order
nonlinear system, this class of controller is not appropriate
for CIP. Using this controller, either the cart or the pendu-
lum positions could be controlled, but not both. In order to
overcome this problem, Ji-Chang Lo et al.[8] proposed a
decoupled fuzzy sliding mode controller. In their work, the
whole system was decoupled into two subsystems; each
one has its control target. Decoupling function was de-
signed to ensure that the control signal will control both of
subsystems .Simulation results showed the effectiveness of
the proposed controller. Advanced decoupling controller
for nonlinear systems was introduced by Chih-Min Lin et
al.[9] and Yoo et al.[10] Both showed improvements in
system response in terms of speed convergence. Hung et
al. [11] proposed a decoupled sliding mode based on neu-
ral networks to speed the system response. However, this
control algorithm is convoluted and has techniqal com-
plexity in practical implementation. With the aim of en-
hancing the system response, Yorgancioglu et al. [12] pre-
sented a time-varying sliding mode controller. This method
improved the system output in terms of the integral of ab-
solute error IAE. In [13], Tao et al. showed an adaptive
fuzzy sliding surface controller to stabilize CIP. This con-
troller objective is to reach two sliding surface disjoint-
edly .The simulation results showed the validity for this
scheme.

In[8,12,13], CIP was described as a forth order system
(two nonlinear second order differential equations) and the
system actuator (DC Motor) dynamics was neglected. How-
ever, from practical point of view, including the DC mo-
tor model will increase the system order to be a six order
system (two third order differential equations),that makes
such kind of controllers non-applicable for the real sys-
tems and might lead to the instability. This shows the need
for designing a controller based on a model which includes
the motor dynamics.

In this paper, a third order decouple FSMC is proposed
for controlling the CIP .In this approach, the CIP is de-
scribed as a sixth-order system, where the motor dynamics
is added. In addition, nonlinear friction model is provided
to describe the friction in the cart rail. The system model
contains two subsystems (the cart and the pendulum) each
is represented in a third order differential equation. In the
FSMC, Two sliding surfaces are designed for both sub-
systems. Based on Lyapunov function, the control law is
designed for the main subsystem to guarantee the stabil-
ity and the system robustness. An Intermediate function is
used to link the secondary and the main subsystems. This
causes the control action to push both subsystems toward
their stability. Finally, fuzzy controller is developed using
a general bill membership functions to eliminate the con-
trol signal frequencies. Simulation results are disscused
and compared with LQR technique.

2. Mathematical model

2.1. CIPS model

CIPS has two degrees of freedom,X is the Cart displace-
ment andθ is the pendulum angle position, as shown in
Figure 1. If the cart mass is donated byM , m is the pen-
dulum mass,L is the length between the pivot and the pen-
dulum center of gravity C.G,g is the acceleration of grav-
ity, I is the pendulum mass moment of inertia with respect
to its C.G.,Ffr is the friction force between the cart and
the rail.q is the friction coefficient in the pendulum pivot.
Based on D’Alembert’s principle, The equations of motion
are deduced to be:

F = (M + m)Ẍ + Ffr −m(Lθ̈ cos θ − Lθ̇2 sin θ) (1)

(I + mL2)θ̈ = mgL sin θ + mLẌ cos θ − qθ̇ (2)

For the friction ForceFfr, most of the former work,
dealing with the CIPS, either has applied a viscous friction
model(linear) or has neglected its effects. However, the
friction phenomena encloses many terms such as Stribeck
effects, static, Coulomb and viscous frictions. Thus, expo-
nential friction model is chosen, to address all mentioned
friction parts, as follows

Ffr =





Ẋ Fs

Ẋd

if
∣∣∣Ẋ

∣∣∣ ≤ Ẋd

FC + (FS − FC)e−|Ẋ/VS|nsgn(Ẋ) + bẊ

if
∣∣∣Ẋ

∣∣∣ > Ẋd

(3)

whereFS is Static Friction force,FC is Coulumb Fric-
tion force,Ẋd is the dead zone velocities,VS is Stribeck
velocity, n is form factor,b is the viscous friction coeffi-
cient.

Figure 1 Cart-inverted pendulum system

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 1, 193-201 (2013) / www.naturalspublishing.com/Journals.asp 195

2.2. DC motor model

Figure 2. illustrates the Dc motor Circuit, whereVa is the
armature applied voltage (Control voltage),Vemf if the
back EMF voltage,Ra, La and i are the armature resis-
tance, inductance and current, respectively.ω is the DC
Motor angular velocity,TL is the Motor electromagnetic
torque,TJ is motor inertia torque,TB is the damping torque
andTL is the motor load torque. The motor equations are

Va − Vemf = i Ra + La
di

dt
(4)

Vemf = Ke ω (5)

Ke is the Back EMF constant.
and

i =
Te

Kt
(6)

Kt is the motor torque constant.Since the motor and cart
move with same speed, the following equation is obtained

ω =
Ẋ

r
(7)

r is the motor pulley diameter.The electromagnetic torque
equation will be

Te = TJ + TB + TL (8)

where

TJ = J ω̇ = J
Ẍ

r
(9)

TB = B ω = B
Ẋ

r
(10)

TL = F r (11)

J is the motor rotor mass moment of inertia,B Motor rotor
damping coefficient.

Figure 2 DC Motor circuit

2.3. Overall integrated model

Here, the overall system model will be derived and the ex-
pected model will be sixth order (two coupled third equa-
tions), where the motor applied voltageVa is the system
input. First, by substituting from (11),(10) and (9) in (8).
And from(8) in (6) we get the current equation

i =
Te

Kt
=

J Ẍ
r

+ B Ẋ
r

+ [(M + m)Ẍ + Ffr

Kt

−m(L θ̈ cos θ − L θ̇2 sin θ) ]r

Kt
(12)

By taking the time derivative of the last equation , (13) is
obtained

di

dt
=

[(M + m)r + J
r
] + B

r
Ẍ −mLr cos θ + mLrθ̈θ̇ sin θ

Kt

+2 mLr θ̈θ̇ sin θ + mLrθ̇3 cos θ + Ḟfr

Kt
(13)

By substituting from (5),(12) and (13) in (4), we get

Va = [ [(M + m)r +
J

r
]
La

Kt
] + [[(M + m)r +

J

r
]
Ra

Kt
]Ẍ

+[
BLa

rKt
]Ẍ + [[

BRa

r Kt
] + [

Ke

r
]]Ẋ − rmLRa

Kt
θ̈ cos θ

+
rmLRa

Kt
θ̇2 sin θ − rmLLa

Kt
cos θ +

3rmLLa

Kt
θ̇θ̈ sin θ

+
rmLLa

Kt
θ̇3 cos θ +

Ra

Kt
Ffr +

La

Kt
Ḟfr (14)

This equation is considered as the main overall equa-
tion, describing the system states with the applied voltage
on DC motor as an input.

From equation (2)

Ẍ = −g tan θ +
(I + mL2)

mL cos θ
θ̈ +

q

mL cos θ
θ̇ (15)

θ̈ =
mLg

(I + mL2)
sin θ +

mL

(I + mL2)
cos θẌ

− q

(I + mL2)
θ̇ (16)

By taking the first derivative for(2) we get

(I + mL2)
...
θ = mgL cos θθ̇ + mL

...
X cos θ

−mLẌ sin θθ̇ − qθ̈ (17)

...
X = − g θ̇ +Ẍ tan θ θ̇ +

q

mL cos θ
θ̈ +

(I + mL2)

mL cos θ

...
θ (18)

...
θ =

mgL

(I + mL2)
cos θθ̇ +

mL

(I + mL2)

...
X cos θ

− mL

(I + mL2)
Ẍ sin θθ̇ − q

(I + mL2)
θ̈ (19)
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Substituting from (15) and (18), with values of
...
X and

Ẍ, and substituting in equation (14) We get the following
equation

...
θ =

f3 θ̇ − f4tan2θθ̇ + f5
tan θ θ̇ θ̈

cos θ
+ f6

tan θ θ̇2

cos θ
+ f7

θ̈
cos θ

[f1 cos θ − f2
cos θ

]

−f8 tan θ + f9
θ̇

cos θ
+ f10 Ẋ − f11 θ̈ cos θ

[f1 cos θ − f2
cos θ

]

+f12 θ̇2 sin θ + f13 θ̇ θ̈ sin θ + f14 θ̇3 cos θ + f15 Ffr

[f1 cos θ − f2
cos θ

]

+f16fr

[f1 cos θ − f2
cos θ

]
− 1

[f1 cos θ − f2
cos θ

]
Va (20)

Where the values of constantsf1→16 are

f1 = r m L La
Kt

, f2 =
[(M+m)r+ J

r
] La [I+mL2 ]

Kt m L
,

f3 =
[(M+m)r+ J

r
] La g

Kt
, f4 =

[(M+m)r+ J
r

]Lag

Kt
,

f5 =
[(M+m)r+ J

r
] La [I+mL2 ]

Kt m L
, f6 =

[(M+m)r+ J
r

] La q

Kt m L
,

f7 =
[(M+m)r+ J

r
]Laq+[[(M+m)r+ J

r
]Ra+[ B La

r
]](I+mL2)

KtmL

f8 = [[(M + m) r + J
r
]Ra
Kt

+ [BLa
r Kt

]]g,

f9 =
[ [(M+m)r+ J

r
]Ra+[ B La

r
]]q

Kt m L

f10 = [[B Ra
r Kt

] + [Ke
r

]], f11 = rmLRa
Kt

, f12 = rmLRa
Kt

f13 = 3rmLLa
Kt

, f14 = rmLLa
Kt

, f15 = Ra
Kt

, f16 = La
Kt

equation(20)is the first overall system equation which
will be rewritten in the form:

...
θ = α1(θ̇, θ, Ẋ, X) + β1(θ̇, θ, Ẋ, X) Va (21)

where

α1 =
f3 θ̇ − f4tan2θθ̇ + f5

tan θ θ̇ θ̈
cos θ

+ f6
tan θ θ̇2

cos θ
+ f7

θ̈
cos θ

[f1 cos θ − f2
cos θ

]

−f8 tan θ + f9
θ̇

cos θ
+ f10 Ẋ − f11 θ̈ cos θ

[f1 cos θ − f2
cos θ

]

+f12 θ̇2 sin θ + f13 θ̇ θ̈ sin θ + f14 θ̇3 cos θ + f15 Ffr

[f1 cos θ − f2
cos θ

]

+f16fr

[f1 cos θ − f2
cos θ

]
(22)

β1 = − 1

[f1 cos θ − f2
cos θ

]
(23)

To get the second overall system equation, substituting
from (19) and (16) with values of

...
θ andθ̈ in equation (14)

...
X =

−f ′3cos2θθ̇ + f ′4Ẍ sin θ cos θθ̇ + f ′5 cos θ sin θ

[f ′2cos2θ − f ′1]

+f ′6cos2θẌ + f ′7 cos θθ̇ + f ′8Ẍ + f ′9Ẋ
[f ′2cos2θ − f ′1]

+f ′10θ̇
2 sin θ + f ′11θ̇sin

2θ + f ′12θ̇ sin θ cos θẌ

[f ′2cos2θ − f ′1]

+f ′13 θ̇3 cos θ + f ′14Ffr + f ′15Ḟfr

[f ′2cos2θ − f ′1]

− 1

[f ′2cos2θ − f ′1]
Va (24)

Where the values of constantsf ′1→15 are

f ′1 =
[(M+m)r+ J

r
]La

Kt
, f ′2 = r m2 L2 La

(I+mL2) Kt

f ′3 = r m2 L2 La g
(I+mL2) Kt

, f ′4 = r m2 L2 La g
(I+mL2) Kt

f ′5 = r m2 L2 La q g

(I+mL2)2 Kt
− r m2 L2 Ra g

(I+mL2) Kt

f ′6 = r m2 L2 La q

(I+mL2)2 Kt
− r m2 L2 Ra

(I+mL2) Kt

f ′7 = − r m L La q2

(I+mL2)2 Kt
+ r m L Raq

(I+mL2) Kt

f ′8 = [ [(M + m) r + J
r
] Ra

Kt
+ [ B La

r Kt
]]

f ′9 = [ [ B Ra
r Kt

] + [Ke
r

]]]

f ′10 = r m L Ra
Kt

− 3r m L Laq
(I+mL2) Kt

f ′11 = 3 r m2 L2 La g
(I+mL2)Kt

, f ′12 = 3 r m2 L2 La
(I+mL2)Kt

f ′13 = r m L La
Kt

, f ′14 = Ra
Kt

, f ′15 = La
Kt

equation(24)is the second overall system equation which
will be rewritten in the form:

...
X = α2(θ̇, θ, Ẋ, X) + β2(θ̇, θ, Ẋ, X)Va (25)

α2 =
−f ′3cos2θθ̇ + f ′4Ẍ sin θ cos θθ̇ + f ′5 cos θ sin θ

[f ′2cos2θ − f ′1]

+f ′6cos2θẌ + f ′7 cos θθ̇ + f ′8Ẍ + f ′9Ẋ
[f ′2cos2θ − f ′1]

+f ′10θ̇
2 sin θ + f ′11θ̇sin

2θ + f ′12θ̇ sin θ cos θẌ

[f ′2cos2θ − f ′1]

+f ′13 θ̇3 cos θ + f ′14 Ffr + f ′15 Ḟfr

[f ′2cos2θ − f ′1]
(26)

β2 = − 1

[f ′2cos2θ − f ′1]
Va (27)

3. Controller design

3.1. FSMC design

In the following section, the FSMC is presented based on
the derived integrated model. First, the third-order SMC is
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obtained using the sliding surface concept. Next, FLC is
design and applied jointly with SMC to overcome the con-
trol signal chattering. From the system equations (21) and
(25) , and ifD1(t) andD2(t) are bounded external dis-
turbances, the entire system model will have the following
form

...
θ = α1 + β1Va + D1 (28)

...
X = α2 + β2Va + D2 (29)

whereα1 and β1 are nonlinear functions of the system
statesθ, X, θ̇, Ẋ andθ̈. α2 andβ2 are functions ofθ, X,
θ̇, Ẋ andẌ.

For CIPS, the system states areθ, θ̇, θ̈, X, Ẋ andẌ.Therefore,
SMC will be used in the third-order form. The control law
is designed based on the sliding surface where the system
states is moved from any general position towards the slid-
ing surface and keep sliding till the equilibrium point.
The general equation for the sliding surfaceS is [7]

S(x, t) = (
d

dt
+ C)(n−1)x (30)

wherex is the system sate,n is the system order andC
is a constant value. In this case(CIPS) the system consists
of two third order subsystems. So that, two sliding surface
S2 for the pendulum subsystem andS1 for the Cart sub-
system, are considered where

S1 = C1
2θ + 2C1θ̇ + θ̈ (31)

S2 = C2
2X + 2C2Ẋ + Ẍ (32)

whereC1 andC2 are a positive constants. Sliding sur-
faces S1 andS2 are constructed based on the values ofC1

andC2. Thus, the system response is highly dependent on
Values of C1 and C2, appropriate values of these constant
will achieve the desired system response.

Based on the sliding surfaces, the control law will be
generated. Since only one control action is available, the
Pendulum angle will be considered as primary control tar-
get and the cart position is the secondary one. First, the
controller is designed to achieve the primary target where
S1 = 0. Then, an intermediate function is used to link
between the secondary and primary targets. This function
will achieve the cart subsystem stability if the pendulum
stability is reached.

Considering Lyapunov function

V =
1
2
S1

2 (33)

As it is known from Lyapunov theorem, iḟV is nega-
tive, that means the system will be moving to the sliding
surface and remains sliding till the stability is achieved

V̇ = Ṡ1S1 (34)

V̇ = S1(C1
2θ̇ + 2C1θ̈ +

...
θ )

from equation 3.1

V̇ = S1(C1
2θ̇ + 2C1θ̈ + α1 + β1Va + D1)

If the control signalVa has the following form,V̇ will
be negative:

Va = V̂a−K sgn(S1 β1), K >
D1

|β1| (35)

where

V̂a = −C1
2θ̇−2 C1 θ̈−α1

β1

This form of the control signal guarantee the stability
for the pendulum subsystem sinceV̇ is kept negative. In
order to ensure for the whole system stability, the interme-
diate link function is introduced as follows:

First, the first sliding surface will be reformed to be

S1 = C1
2(θ − Z) + 2C1θ̇ + θ̈ (36)

based on the new sliding surface, the control target changed

from
[
θ θ̇ θ̈

]T

= [0 0 0]T to be
[
θ θ̇ θ̈

]T

= [Z 0 0]T .

WhereZ is the intermediary function which is a function
ofS2. The objectiveS2 = 0 is embedded in the main con-
trol target through the variable which is defined to be

Z = sat(
S2

φz
)ZU (37)

ZU is the upper limit of the function,φz is the function
boundary layer. At any general condition, the controller
will move the system stateṡθ andθ̈ to zero. consequently,
the intermediate function Z converges to zero. In that case
and from equation (36) and (37), it could be found that
both ofS1 andS2 will be decaying to zero [14].

The control action Va , as it is shown in equation (35),
has a high-frequencies switching because of theSgn func-
tion. To overcome this problem, a bounder layer will be
formed using a simple fuzzy controller. Such a kind of con-
troller will be capable of reject all the high-frequencies and
solve the chattering problem. The controller equation will
be modified to be

Va = V̂a −Kfuzzy (38)

Kfuzzy is the fuzzy controller output.
Nine general bill type membership functions have been

chosen for the input(S1B1) and output(Kfuzzy). This
type will generate a smooth curve to reject any undesired
frequencies. As it is illustrated in Figure 3. and Figure
4., ZR is zero, NS is negative small, NB is negative big,
NVB is negative very big, PS is positive small, PM posi-
tive medium and, PB is Positive big, PVB is positive very
big.φ is the upper bound of the boundary layer which is an
indicators for the width of boundary layers.Thus, choos-
ing suitable values forφ will reject any undesirable fre-
quencies.K is the fuzzy output saturationφ and should be
selected according to the DC motor limits

c© 2013 NSP
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The fuzzy surface is formed using the following IF-
THEN rules
IF (S1B1) is NV B THEN (Kfuzzy) is PV B
IF (S1B1) is NB THEN (Kfuzzy) is PB
IF (S1B1) is NM THEN (Kfuzzy) is PM
IF (S1B1) is NS THEN (Kfuzzy) is PS
IF (S1B1) is ZR THEN (Kfuzzy) is ZR
IF (S1B1) is PS THEN (Kfuzzy) is NS
IF (S1B1) is PM THEN (Kfuzzy) is NM
IF (S1B1) is PB THEN (Kfuzzy) is NB
IF (S1B1) is PV B THEN (Kfuzzy) is NV B

The fuzzy controller output is shown in Figure 5.

Figure 3 Input membership functions

Figure 4 Output membership function

Figure 5 Fuzzy controller surface

3.2. LQRC design

LQR control technique is widely used in controlling linear
system. It has been applied to stabilize CIP after linearzing
the state-space system equations around the pendulum an-
gle stability position[2] [3]. In this case, the system states
are defined to bex1 = θ, x2 = θ̇, x3 = θ̈, x4 = X,
x5 = Ẋ andx6 = Ẍ. By approximating third order dif-
ferental equations (2.21)and (2.25) around the equilibrium
point wherex = [0 0 0 0 0 0 0]T , the overall system
linear equation is obtained. The general state-sapce form
is

ẋ = Ax + Bu (39)

wherex is state matrix (1x6),u control signal matrix
(1x1), A state parameters matrix (6x6),B control signal
parameters matrix (1x6). Since only one control action(DC
motor voltage) is available,u = Va.
The equivalent state-space linearized system equation is




θ̇

θ̈...
θ
Ẋ

Ẍ...
X




=




0 1 0 0 0 0
0 0 1 0 0 0
−f8

f1−f2

f3+f9
f1−f2

f7−f11
f1−f2

0 f10
f1−f2

0

o 0 0 0 1 0
0 0 0 0 0 1
f ′5

f ′2−f ′1
f ′7−f ′3
f ′2−f ′1

0 0
f ′9

f ′2−f ′1
f ′6+f ′8
f ′2−f ′1







θ

θ̇

θ̈
X

Ẋ

Ẍ




+




0
0
1

f2−f1
0
0
1

f ′1−f ′2




Va (40)

From LQR theory, the following sate feedback control
law is applied.

u = Va = −Kx (41)
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Where K is the optimal feedback gain matrix required
to get a minimum performance indexJ

J =
∫ ∞

0

(xT Qx + uT Ru) (42)

WhereQ andR are a real symmetric matrices which
are chosen by the designer. The gain matrix K is calculated
by solving Reduced-matrix Riccati equation (43), after ob-
taining matrixP .

AT P + PA− PBR−1BT P + Q = 0 (43)

whereP is an intermediate matrix used to calculate the
gain matrixK [15]

K = R−1BT P (44)

The controller parameterQ should be carefully cho-
sen based on the states priority. Form a control point of
view, the pendulum angleθ is much more important than
the cart positionX. Therefore, a bigger value should be
chosen for the angleθ element inQ matrix. Selection of
R matrix value depends on the control signal constrains.
Based on the values of Q and R, the feedback gain matrix
K is obtained.

4. Simulation results

In this section, the CIP system is simulated based on equa-
tions (21) and (25). A comparison study has been carried
out between the proposed FSMC and LQRC technique to
stabilize the system. The cart rail limits is assumed to be
X = ±0.35m and the DC motor maximum voltage is
Va = ±24V . A nonlinear friction force is considered be-
tween the cart and the rail according to equation (3). How-
ever, in controller design, this force is a source of uncer-
tainty and disturbance affecting the cart motion. All CIP
parameters used in this simulation are listed in Table 1.
Simulation has been done using Matlab Simulink.

Table 1 System parameters

parameter value parameter value
M 0.882kg Kt 0.00767N.m/A
m 0.23kg La 0.18x10−3H
L 0.3302m Ra 2.6Ohm
I 7.88x 10−3kg.m2 r 6.35x10−3m
g 9.81m/s2 Ke 0.00767V.s/rad
q 0.0001N.s/rad J 3.9x10−7kg.m2

FS 0.2N FC 0.18N

Ẋd 0.01m/s VS 0.1m/s
n 4 b 2.5N.s/m
B 8x10−7N.m.s/rad

Controller parameters must be carefully selected where
all system limits should be considered. All FSMC and LQRC
parameters are shown in Table 2 and Table 3, respectively.

Table 2 FSMC parameters

parameter C1 C2 φ φz K

Value 4.6 2.2 1×104 19 15

Table 3 LQRC parameters

parameter Value
Q diag [25 1 1 4 1 1]
R 0.02
K [ 234.16 68.04 5.79 -14.14 -25.50 2.50]

Using the initial conditionsθ = 0.1, θ̇ = 0, θ̈ =
0, X = 0, Ẋ = 0 and Ẍ = 0, the response of the
pendulum angular position using the proposed FSMC and
LQRC are shown in figure 6.In spite of the nonlinear fric-
tion force, The proposed controller could reach the sta-
bility position faster than LQRC which has some oscil-
lations around the stability position. figure 7. shows the
cart position response. A reduced value of overshoot us-
ing FSMC (around 0.1 m) is observed in comparing with
LQRC where the overshoot has reached 0.3 m. The LQRC
response has continued to show oscillations around the
zero position. The control signal response is shown in fig-
ure 8. The full stability is achieved by FSMC whereas
LQRC response shows oscillations near the zero voltage.Thanks
for the Fuzzy controller, all high-frequencies are elimi-
nated in the FSMC response.

Figure 6 Pendulum angle response
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Figure 7 Cart position response

Figure 8 Control signal response

Moreover, to verify the robustness of the proposed FSMC,
an external disturbance, with value of 0.05 rad (50% of the
initial unstable position) and one second duration, has been
applied after 20s. The pendulum and cart responses are
shown in figure 9. and figure 10,,respectively. The pendu-
lum angular response shows a faster response with FSMC
and able to reject the disturbance more efficiently than
LQRC. The maximum overshoot has been reduced by %100
using the FSMC. The cart response shows the robustness
of the FSMC over the LQRC where the maximum over-
shoot increased by %300. Furthermore, in the LQRC, the
cart has exceeded the rail limits.

The simulation results revealed that FSMC provides
faster response and better robustness comparing to LQRC
under similar practical constraints.

5. Conclusion

In this paper, two third-order differential equations have
been developed to combine the CIP with its DC motor.

Figure 9 Pendulum angular position response under disturbance

Figure 10 Cart response under disturbance

Nonlinear friction model is added to describe the friction
between the cart and the rail. A third-order FSMC is pro-
posed to stabilize the derived CIP model. This controller
guarantees the overall system stability. Chattering and all
undesirable frequencies in the control signal has been elim-
inated by forming a boundary layer using a fuzzy con-
troller. A third-order LQRC is also presented and com-
pared with the proposed FSMC. Despite the system con-
strains and external disturbance (50% of the initial con-
dition), simulation results of FSMC show its effectiveness
and robustness over the LQRC. Using the proposed FSMC
instead of LQRC has decreased the cart response over-
shoot by 300% and the pendulum response by %100.
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