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Boundary characteristic orthogonal polynomials in two variables (BCOPs) have been
built up over an elliptical domain occupied by a thin elastic plate. Half of the plate
boundary, y ≤ 0, is taken simply supported while the other half is kept free. The
orthogonal polynomial sequence (OPS) is generated from a set of linearly independent
functions satisfying the essential boundary conditions of the problem and tabulated in
advance, once and for all, for various values of the aspect ratio r = b/a of the plate
with the desired precision. Free flexural vibrations of the plate have been examined by
using these polynomials in the Rayleigh-Ritz method. Successive approximations have
been worked out to ensure convergence. Comparisons have been made with known
results in literature. Three-dimensional mode shapes and the associated contour lines
have been plotted in some selected cases.
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NOMENCLATURE

BCOPs boundary characteristic orthogonal polynomials;
OPS orthogonal polynomial sequence
CF half of the plate boundary y ≤ 0 is clamped and the rest free;
PDEs partial differential equations
a, b semi major and minor axes of the elliptical domain;

∗Boundary Characteristic Orthogonal Polynomials
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r aspect ratio b/a;
x, y cartesian coordinates;
X, Y non-dimensional coordinates;
R domain occupied by the plate in xy-coordinates;
W (x, y) displacement;
ρ density of the material of the plate;
E Young’s modulus of the material of the plate;
ω angular natural frequency;
ν Poisson ratio;
λ non-dimensional frequency parameter;
∇2 Laplacian operator;
N number of terms used in the approximation (approximation order);
cj the unknown coefficients used in the expansion;
S set of N -linearly independent functions Fi(x, y);
mi, ni non-negative integers;
φi(x, y) orthogonal functions over R;
φ̂i(x, y) orthonormal functions over R;
f, g functions of x and y;
〈f, g〉 inner product of f and g;
‖f‖ norm of f ;
[aij ] , [bij ] N ×N matrices.

1 Introduction

The topic of orthogonal polynomials has a very rich history going back to 19th century
when mathematicians and physicists tried to solve the most important differential equations
of mathematical physics. Since then orthogonal polynomials have developed to a standard
subject within mathematics which is driven by applications. The applications are numerous
both within mathematics (e.g. statistics, combinatorics, harmonic analysis, number theory)
and other sciences such as physics, biology, computer science, and chemistry. Following
the publication of Szego’s well known treatise [1] there has been tremendous growth of
literature covering various aspects of the subject. Orthogonal polynomial sequence (OPS)
have been widely used by Singh and Chakraverty [2-6] to solve the vibration problems of
plates of different shapes under a variety of uniform conditions on the boundary. Some
important books on orthogonal polynomials are Suetin and Pankrattiey [7], Beckmenn [8],
Chihara [9], and Gautschi et. al. [10].

The geometric configurations of certain design problems may force an engineer to use
plates of different geometrical shapes but with non-uniform conditions on the boundary oc-
casionally. That is why plates with non-uniform boundary conditions are key component in
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civil and mechanical engineering and industrial design. Analytical solutions for bending of
rectangular plates with mixed boundary conditions have been examined by Boborykin [11].
In general, there are no analytical solutions to the vibration problems of plates with discon-
tinuous boundary conditions even for plates of simple geometrical shapes like rectangles,
Wei et al. [12].

As far as the vibration problem of an elliptical plate with non-uniform boundary
conditions is concerned (Fig. 1), very little is available in literature and it is mostly
on circular plates with uniform thickness. Some important references are Hirano and
Okazaki [13], Sundararajan [14], Hemmig [15], Bartlett [16], Leissa et al. [17], and Narita
and Leissa [18,19]. Recently S.M. Hassan [20] has solved the same problem by using the
usual, traditional, polynomials in x and y that satisfies the essential boundary conditions
of the plate as basis functions in the Rayleigh-Ritz procedure and gave much of explicit
numerical results for the first time.

The present work deals with generating BCOPs in two variables so that at least the es-
sential boundary conditions of the problem are satisfied. These will be used in the Rayleigh-
Ritz method to solve the vibration problem of the specified plate. The author has noticed
that this procedure is easier, more suitable for use on digital computers and greatly sim-
plifies the resulting eigenvalue problem. The most significant advantage of BCOPs lies in
computing the OPS and tabulating them in advance once and for all and no need to calcu-
late them again and again. That is why this approach has become popular and caught the
attention of many people working in that field.

2 Building up the boundary characteristic orthogonal polynomials

Following the same approach used by Bhat [21] and Liew et al. [22] for rectangular
plates, one starts with a suitable set of linearly independent functions

S = {Fi(x, y) = ufi(x, y), i = 1, 2, · · · , N}, (2.1)

which vanishes on the lower half (y ≤ 0) of the plate boundary. To obtain an orthogonal
set we define the inner product of two functions f and g by

〈f, g〉 =
∫∫

R

f(x, y) g(x, y) dx dy, (2.2)

and the norm of a function f by

‖f‖ =
√
〈f, f〉 =




∫∫

R

f2(x, y) dx dy




1
2

, (2.3)
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Figure 1.1: The elliptical domain R occupied by the plate.

where R is the domain occupied by the plate in the xy−plane. Then, the orthogonal func-
tions φIm(x, y) are generated by using the famous Gram-Schmidt orthogonalization pro-
cess, the algorithm for which may be summarized as follows:

φ1 = F1,

φi = Fi −
i−1∑
j=1

αij φj ,

where
αij = 〈Fi, φj〉/〈φj , φj〉, j = 1, 2, · · · , i− 1





, i = 2, 3, · · · , N. (2.4)

The functions φi can be normalized by using

φ̂i = φi/‖φi‖ = φi/〈φi, φi〉 1
2 . (2.5)

Computations of αij are greatly simplified if u and fi are taken as simple polynomials in
x and y. The functions φi and φ̂i can be expressed in terms of f1, f2, · · · if desired [6].
Thus coefficients βij and β̂ij can be found such that:

φi = u

i∑

j=1

βij fj , φ̂i = u

i∑

j=1

β̂ij fj , i = 1, 2, · · · , N (2.6)
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3 Rayleigh-Ritz method

The Rayleigh-Ritz method consists of minimizing the Rayleigh quotient

ω2 =
D

∫∫
R

[(∇2W
)2 + 2(1− ν){W 2

xy −Wxx Wyy}
]
dx dy

ρh
∫∫
R

W 2 dx dy
, (3.1)

where D = Eh3/12(1 − ν2) is the flexural rigidity, E is Young’s modulus, ρ is mass
density, ν is the Poisson ratio of the material of the plate, h is the thickness of the plate
which has been taken to be unity all over the plate in this problem, ω is the natural radian
frequency, and ∇2 is the Laplacian operator. Substituting the N−term approximation of
the deflection function

W (x, y) =
N∑

j=1

cj φj(x, y). (3.2)

into equation (3.1) and minimizing ω2 as a function of the coefficients c1, c2, · · · , cN

yields
N∑

j=1

(
aij − λ2 bij

)
cj = 0, , i = 1, 2, · · · , N, (3.3)

where

aij =
∫∫

R

[
φxx

i φxx
j + φyy

i φyy
j + ν

(
φxx

i φyy
j + φyy

i φxx
j

)
+ 2(1− ν)φxy

i φxy
j

]
dx dy,

(3.4)

bij =
∫∫

R

φi φj dx dy, (3.5)

λ2 = a4ω2ρh/D. (3.6)

In order to express the N ×N matrices [aij ] and [bij ] in closed form, the following result
is found to be very useful.

∫ 1

0

∫ z

0

xiyjzk dx dy =
2rj+1Γ [(i + 1)/2] Γ [(j + k + 3)/2]

(j + 1)Γ [(i + j + k)/2 + 2]
, (3.7)

where Γ is the Gamma function, i and j are non-negative even integers, (j + k + 3) should
be positive and z =

√
1− x2. If i or j is odd the integral vanishes. Solving the generalized

eigenvalue problem equation (3.3) for λ and cj one gets the frequencies and mode shapes.

4 Numerical work and discussion

To generate BCOPs one can start with the linearly independent set {u fi}N
i=1 where

u = (y + r z) z2 and fi = xmi yni , i = 1, 2, · · · , N (4.1)
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here mi and ni are non-negative integers. The factor z2 = 1 − x2 in equation (4.1) has
been introduced to overcome difficulties arising in some integrals. Hence the functions u fi

also satisfy the same boundary conditions of the problem. One of the most obvious choices
of fi will be

{fi, i = 1, 2, · · · } = {1, x, y, x2, x y, y2, x3, x2y, xy2, y3, · · · }. (4.2)

Finally BCOPs can be expressed in terms of fi by computing βij in the expressions

φi = u

i∑

j=1

βij fj , φ̂i =
i∑

j=1

β̂ij fj . (4.3)

The coefficients β̂ij of the first fifteen polynomials are reported in Tables 1 up to 4. These
correspond to r = 0.5, 1.0, 1.5 and 2.0, respectively. The tabulated results have been com-
puted once for all and the reader can use them directly without repeating the calculations
again and again. These calculations were done in double precision arithmetic but the results
have been reported to six significant figures only. As a check on the accuracy of the results
it has been verified that

〈φ̂i, φ̂j〉 =

{
10−15 for i 6= j ,

1.0 for i = j .
(4.4)

These results are of great importance in solving the vibration problems of plates, in gen-
eral, through using the BCOPs as basis functions in the approximation solution used in
Rayleigh-Ritz method. Following these procedures and using the non-dimensional vari-
ables

X = x/a, and Y = y/a, (4.5)

the first six frequencies of the plate vibration have been computed and reported in Table
5 for all values of the aspect ratio r. The program can generate such polynomials and
calculate frequencies for any given value of r > 0. The approximation order N has been
increased from 1 up to 15 to ensure convergence of results. All the computations have
been worked out for ν = 0.3. Comparison of these results with those in [20] shows a
complete agreement with them. No more results are available up to now for making other
comparisons. The trend of convergence of the first six frequencies computed by using
BCOPs for r = 0.5 can be depicted from Table 6. All the results reported have been
converged to at least four significant figures.

5 Mode shapes

Figures 5.2(a) to (f) depict the first six mode shapes and the associated contour lines
for a plate of uniform thickness. Half of the plate boundary (y ≤ 0) is taken clamped while
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the upper half is kept free. The figures have been plotted for some selected values of the
plate parameters namely r = 0.5 and ν = 0.3. Figures corresponding to ν = 0.33 are
roughly the same. Other more figures corresponding to different aspect ratios are available
in [20]. Tools of Computer Graphics under Turbo C++ have been used to produce my own
software for that purpose.

Figure 5.1: First six mode shapes and the associated contour lines for r = 0.5 and ν = 0.3.
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6 Conclusion

The numerical results presented here are of great importance in solving PDEs via using
BCOPs as basis functions in the approximation solution. Interested readers can use this
directly without repeating the calculations again and again for similar problems. Those
polynomials are not only simplifying the problem but also minimizing the effects of ill-
conditioning which frequently occurs in such problems.
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R λ1 λ2 λ3 λ4 λ5 λ6

0.5 4.4564 13.3483 20.2486 26.9533 34.1236 47.5870
[19] 4.4564 13.3483 20.2486 26.9533 34.1236 47.5870
1.0 3.3232 7.9217 10.9992 16.7589 18.9810 24.2116
[19] 3.3232 7.9217 10.9992 16.7589 18.9810 24.2116
1.5 2.7306 6.1901 9.1492 10.0641 16.4892 20.4614
[19] 2.7306 6.1901 9.1492 10.0641 16.4892 20.4614
2.0 2.4295 5.5915 6.7208 9.5892 13.9436 15.4105
[19] 2.4295 5.5915 6.7208 9.5892 13.9436 15.4105

Table 5.5: First six frequencies of an elliptical plate with half of the boundary (y ≤ 0)
simply supported and the rest free (N = 15, ν = 0.3)

N λ1 λ2 λ3 λ4 λ5 λ6

6 4.5628 13.6563 22.0900 28.5357 36.9029 78.8077
7 4.5628 13.5519 22.0900 28.5357 36.7069 50.6933
8 4.5217 13.5519 22.0800 27.7957 36.7069 50.6933
9 4.5217 13.5239 22.0800 27.7957 36.3558 49.9267
10 4.5215 13.5239 20.3715 27.7718 36.3558 49.9267
11 4.5121 13.5239 20.3697 26.9805 36.3558 49.9267
12 4.5121 13.3483 20.3697 26.9805 36.0561 47.7325
13 4.4565 13.3483 20.2591 26.9537 36.0561 47.7325
14 4.4565 13.3483 20.2591 26.9537 34.1236 47.5870
15 4.4564 13.3483 20.2486 26.9533 34.1236 47.5870

Table 5.6: Convergence of first six frequencies (r = 0.5, ν = 0.3)
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