
J. Ana. Num. Theor.7, No. 1, 1-8 (2019) 1

Journal of Analysis & Number Theory
An International Journal

http://dx.doi.org/10.18576/jant/070101

Rise, Fall and Level Statistics on r-Jacobi-Stirling Set
Partitions
Toufik Mansour1,∗ and Mark Shattuck2

1 Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
2 Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

Received: 6 Nov. 2018, Revised: 22 Dec. 2018, Accepted: 27 Dec. 2018
Published online: 1 Jan. 2019

Abstract: In this paper, we consider sequential representations of the recently introducedr-Jacobi-Stirling set partitions (denoted by
P(n,k)) and study various statistics on these representations. Wecompute an explicit formula for the generating function which counts
members ofP(n,k) wherek andr are fixed according to these statistics in the case of levels,descents and ascents. In each case, we use
a more-or-less uniform strategy which also yields the distribution of the statistic on those members ofP(n,k) ending in a certain letter.
Finally, we give explicit formulas for the total number of levels, descents and ascents within all of the members ofP(n,k), providing
both algebraic and combinatorial proofs.
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1 Introduction

Ther-Jacobi-Stirling numbers of the second kind, denoted
by JSr(n,k;z), were introduced and studied by Mihoubi
and Rahim [8] and are defined for 0≤ r ≤ k ≤ n by the
recurrence

JSr(n,k;z) = JSr(n−1,k−1;z)+ k(k+ z)JSr(n−1,k;z),n> r,
(1)

with JSr(r, r;z) = 1 for all r ≥ 0. It was shown in [8] that
theJSr(n,k;z) are also given explicitly as

JSr(n+ r,k+ r;z) =
1
k!

k

∑
j=0

(−1)k− j

(

k
j

)

(2 j +2r +z)(( j + r)( j + r +z))n

∏k
i=0( j +k+2r +z− i)

,

or equivalently as connection constants in the polynomial
identities

(x+ r(r + z))n =
n

∑
k=0

JSr(n+ r,k+ r;z)xk,z+2r , n≥ 0,

where xk,z = ∏k−1
i=0 (x − i(i + z)). When r = 0, the

JSr(n,k;z) reduce to what are known as the
Jacobi-Stirling numbers JS(n,k;z), which were
introduced by Gelineau [2] and later studied [1,3,7,10].

Using (1), one can derive the generating function formula

∑
n≥k

JSr(n,k;z)xn =
xk

∏k
j=r(1− j( j + z)x)

, k≥ r ≥ 0;

(2)
see [8, Theorem 1]. The numbersJS(n,k;z) and later
JSr(n,k;z) were given combinatorial interpretations as
enumerators of a certain class of partitions of a set of size
2n, denoted byP(n,k), where some of the blocks are
labeled and allowed to be empty. Members ofP(n,k)
were termedr-Jacobi-Stirling set partitions in [8].

Here, we consider certain combinatorial aspects of the
JSr(n,k;z) related to various refined enumerations of the
underlying structureP(n,k). Recall that the level,
descent and ascent statistics defined on a class ofk-ary
sequences record the number of indices corresponding to
positions where the letter directly following the indexed
letter is the same, smaller or larger, respectively. These
statistics have been studied on sequential representations
for a variety of discrete structures, including finite set
partitions,k-ary words and compositions (see, e.g., [4,6]
and references contained therein). We consider in the
current paper extensions of these statistics to sequential
representations of ther-Jacobi-Stirling partitions of a
given size and derive various facts about their
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distributions. As a consequence, one obtainsq-analogues
of the sequenceJSr(n,k;z) which reduce to it whenq= 1.

The organization of this paper is as follows. In the
next section, we describe a sequential representation for
members ofP(n,k) which is used to define the level,
descent and ascent statistics. In the third section, we find
in each case a formula for the ordinary generating
function of the distribution onP(n,k). An explicit
formula for the total number of occurrences of each
statistic onP(n,k) is computed which can be expressed
in terms of the numbersJSr(n,k;z). Combinatorial proofs
of these formulas may also be given. Some concluding
remarks are made in the fourth section.

2 Preliminaries

We first recall the combinatorial interpretation for the
r-Jacobi-Stirling numbers from [8]. Throughout, the sets
{1,2, . . . ,n} and{±1,±2, . . . ,±n} will be denoted by[n]
and [±n], respectively. Letn,k ≥ 1 and r,s ≥ 0 with
n ≥ k ≥ r be integers. Then anr-Jacobi-Stirling set
partition of [±n] into s zero blocksA1, . . . ,As and k
nonzero blocksB1, . . . ,Bk is an ordinary set partition of
[±n] into s+ k blocks satisfying the following conditions:

1.The blocks A1, . . . ,As are ordered (i.e., labeled),
whereasB1, . . . ,Bk are not.

2.Zero blocks may be empty, but nonzero blocks are
nonempty.

3.If i ∈ [n], then{i,−i}* ∪s
j=1A j .

4.We have{i,−i} ⊆ B j for some 1≤ j ≤ k if and only
if i has minimum absolute value of all the elements in
B j .

5.If 1≤ j ≤ r, then{ j,− j} ⊆ B j .

Note that ther-Jacobi-Stirling partitions coincide with the
Jacobi-Stirling partitions (see [2]) whenr = 0 orr = 1, and
with a subset of the usual partitions of[±n] whens= 0.

Given n, k and r as above and a non-negative even
integerm, let P(n,k) = P(r)(n,k,m/2) denote the set of
r-Jacobi-Stirling partitions of[±n] having m/2 zero
blocks and k nonzero blocks. (We represent thes
parameter in this way so that the recurrences below will
be slightly simpler.) Note that

|P(n,k)|= JSr(n,k;m−1),

which can be shown by demonstrating that both quantities
satisfy the same recurrence (1). For if {n,−n} does not
comprise its own (nonzero) block within a member of
P(n,k), then there arek(k−1)|P(n−1,k)| possibilities
if both elements belong to nonzero blocks and
2(km/2)|P(n − 1,k)| possibilities if one of {n,−n}
belongs to a zero block.

We define statistics onP(n,k) as follows. Suppose
that the nonzero blocksB1, . . . ,Bk of π ∈ P(n,k) are

written so that minB1 < · · · < minBk. We associate to
each π a k-ary sequencewπ = w1w2 · · ·wn whose i-th
entry wi is obtained by either reading the index of the
nonzero block containingi or −i if one of{i,−i} belongs
to a zero block or by taking max{a,b} wherei ∈ Ba and
−i ∈ Bb. That is,wi records the index of the rightmost
nonzero block containing an element of absolute valuei.
For example, if n = 7, k = 3, r = 2, m = 8 and
π ∈ P(2)(7,3,4) has zero blocks

A1 = {3,−7}, A2 =∅, A3 = {−4}, A4 =∅

and nonzero blocks

B1 = {1,4,7,−1,−6}, B2 = {2,6,−2,−3}, B3 = {5,−5},

then wπ = 1221321. Note thatπ is not uniquely
determined bywπ and thatwπ is in fact what is known as
a restricted growth function, meaning it is a function from
[n] onto[k] satisfying

max{wj : 1≤ j ≤ i +1} ≤ max{wj : 1≤ j ≤ i}+1

for all 1≤ i ≤ n−1 (see, e.g., [9,11] for details). At times,
we will speak of a partitionπ as if it were a sequence (for
instance,π ending in a given letter), in which case we are
referring to a property of its associated sequencewπ .

Given π ∈ P(n,k) with wπ = w1w2 · · ·wn, we will
say thatπ has alevel (at index i) if wi = wi+1 where
1≤ i ≤ n−1. A descent(ascent, resp.) refers to an index
i for which wi > wi+1 (wi < wi+1, resp.). For example, if
π ∈ P(7,3) is as above, thenπ has one level (at index 2),
three descents (at 3, 5 and 6) and two ascents (at 1 and 4).
Note that a level ofπ occurs if a nonzero blockB of π is
such thatB contains at least one element of both absolute
valuei andi +1 for somei, with no blocks to the right of
B containing an element of the set{±i,±(i +1)}. Similar
interpretations may be given for descents and ascents.
See, e.g., the text [5] for the definitions of the analogous
statistics on ordinary set partitions which are extended
here toP(n,k).

3 Statistics onr-Jacobi-Stirling partitions

In this section, we study the distributions for the statistics
recording the number of levels, descents or ascents on
P(n,k).

3.1 Counting by levels

Throughout,m denotes a non-negative even integer which
may also be regarded as an indeterminate. Given

n ≥ k ≥ r ≥ 0, let P(n,k) = P(r)
q (n,k,m/2) count

members ofP(n,k) according to the number of levels

(marked byq). Let P(n,k|i) = P(r)
q (n,k,m/2|i) denote the

restriction ofP(n,k) to those members ofP(n,k) ending
in i, where 1≤ i ≤ k. PutP(n,k) = P(n,k|i) = 0 if k < r
or n < k. The P(n,k|i) are determined recursively as
follows.
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Lemma 1.We have

P(n,k|i) = (2i −2+m)P(n−1,k)+(q−1)(2i−2+m)P(n−1,k|i), 1≤ i < k≤ n and k≥ r,

(3)

P(n,k|k) = P(n−1,k−1)+ (2k−2+m)P(n−1,k)+(q−1)(2k−2+m)P(n−1,k|k), n≥ k> r,

(4)
and

P(n, r|r) = δn,r +(2r −2+m)P(n−1, r)+ (q−1)(2r −2+m)P(n−1, r|r), n≥ r ≥ 1,

(5)
with P(0,0) = δr,0 and P(n,0) = 0 if n ≥ 1 for all r.

Proof.Let P(n,k|i) denote the subset ofP(n,k) whose
members have last letteri. First suppose 1≤ i < k andn≥
k. If n = k, thenP(n,k) is empty in this case and (3) is
obvious. So assumen> k and let j denote the penultimate
letter of λ ∈ P(n,k|i). Note that there are 2(i − 1) +m
choices for the positions of the letters±n in λ since one
of them must go in thei-th nonzero block, while the other
goes in one of the firsti − 1 nonzero blocks or in one of
the m/2 zero blocks. Thus, ifj 6= i, there are(2i − 2+
m)(P(n−1,k)−P(n−1,k|i)) possibilities for the partition
λ . On the other hand, ifj = i, then a level is realized and
we getq(2i −2+m)P(n−1,k|i) possibilities. Combining
the two previous cases gives (3). If i = k with n ≥ k > r,
then there are the same number of possibilities as before
with i replaced byk if it is not the case that the final letter
k is the only letterk within λ ∈ P(n,k|k). On the other
hand, if k occurs only once within suchλ , then deleting
it results in a member ofP(n−1,k−1). Combining this
with the previous case gives (4). Finally, if i = k = r and
λ ∈ P(n, r|r), then the cases are the same as in the proof
of (4) except now if the letterk occurs only once, then there
areδn,r possibilities forλ , which implies (5).

Define the generating function P(x;k) by
P(x;k) = ∑n≥k P(n,k)xn, wherek ≥ r ≥ 0. We have the
following explicit formula forP(x;k).

Theorem 1.Let k≥ r ≥ 0. Then

P(x;k) =
xk

∏k
j=r (1− (q−1)(2 j −2+m)x)∏k

j=r

(

1−∑ j
i=1

(2i−2+m)x
1−(q−1)(2i−2+m)x

) , r ≥ 1,

(6)

and

P(x;k) =
xk

∏k
j=1(1− (q−1)(2 j −2+m)x)∏k

j=1

(

1−∑ j
i=1

(2i−2+m)x
1−(q−1)(2i−2+m)x

) , r = 0.

(7)

Proof.Consider the refinementP(x;k|i) of P(x;k) defined
by P(x;k|i) = ∑n≥k P(n,k|i)xn for 1≤ i ≤ k. First suppose
k > r ≥ 0. Then multiplying both sides of (3) and (4) by
xn, and summing overn≥ k, we have

P(x;k|i) = (2i−2+m)xP(x;k)+(q−1)(2i−2+m)xP(x;k|i),

P(x;k|k) = xP(x;k−1)+(2k−2+m)xP(x;k)+(q−1)(2k−2+m)xP(x;k|k),

which is equivalent to

P(x;k|i) =
(2i−2+m)x

1− (q−1)(2i−2+m)x
P(x;k), 1≤ i < k andk≥ r, (8)

P(x;k|k) =
x

1− (q−1)(2k−2+m)x
(P(x;k−1)+(2k−2+m)P(x;k)),k> r.

By the factP(x;k) = ∑k
i=1P(x;k|i), we then have

P(x;k) = P(x;k)
k

∑
i=1

(2i−2+m)x
1− (q−1)(2i−2+m)x

+
x

1− (q−1)(2k−2+m)x
P(x;k−1),

which leads to

P(x;k) =
x

(1− (q−1)(2k−2+m)x)
(

1−∑k
i=1

(2i−2+m)x
1−(q−1)(2i−2+m)x

)P(x;k−1).

Iterating the last equality gives

P(x;k) =
xk−r

∏k
j=r+1(1− (q−1)(2 j −2+m)x)∏k

j=r+1

(

1−∑ j
i=1

(2i−2+m)x
1−(q−1)(2i−2+m)x

) P(x; r),k> r. (9)

We now determine the case whenk = r. Note that by (5),
we have

P(x; r|r) =
xr +(2r −2+m)xP(x; r)
1− (q−1)(2r −2+m)x

, r > 0.

The last equality combined with (8) whenk= r yields, by
addition, the formula

P(x; r) =
xr

(1− (q−1)(2r −2+m)x)
(

1−∑r
i=1

(2i−2+m)x
1−(q−1)(2i−2+m)x

) , r > 0, (10)

upon solving forP(x; r). Formula (6) now follows from (9)
and (10), while (7) follows from ther = 0 case of (9), upon
notingP(x;0) = 1.

Takingq= 1 in Theorem1 yields

∑
n≥k

P(r)
1 (n,k,m/2)xn = ∑

n≥k

JSr (n,k;m−1)xn =
xk

∏k
j=r (1− j( j −1+m)x)

,k≥ r ≥ 0,

which agrees with (2). Taking the partial derivative with
respect toq in (6), and settingq= 1, gives forr ≥ 1,

∂
∂q

P(x;k) |q=1 =
xk

∏k
j=r(1− j( j −1+m)x)

( k

∑
j=r

(2 j −2+m)x

+
k

∑
j=r

j

∑
i=1

(2i−2+m)2x2

1− j( j −1+m)x

)

=
xk

∏k
j=r(1− j( j −1+m)x)

(

k(k−1+m)x

− (r −1)(r −2+m)x

+
k

∑
j=r

j(2( j −1)(3m+2 j −1)+3m2)x2

3(1− j( j −1+m)x)

)

.

Extracting the coefficient ofxn in the last formula, and
considering separately the case whenr = 0, yields the
following result.
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Corollary 1.If n > k ≥ r ≥ 0, then the total number of
levels in all of the r-Jacobi-Stirling partitions of[±n]
having m/2 zero blocks and k nonzero blocks is given by

(k(k−1+m)− (1−δr,0)(r −1)(r −2+m))JSr(n−1,k;m−1)

+
k

∑
j=r

j(2( j −1)(3m+2 j −1)+3m2)

3

n−k−2

∑
ℓ=0

JSr (n− ℓ−2,k;m−1) jℓ( j −1+m)ℓ.

Proof.It is also possible to provide a combinatorial proof
of this result as follows. Letλ ∈ P(n,k) and suppose that
the sequential representation ofλ is given by
w = 12· · ·(r − 1)rw(r) · · ·kw(k), where eachw(i) is i-ary
for r ≤ i ≤ k. Assume for nowr > 0. Note that a level
occurs each time the first letter of somew( j) is j. If this
letter corresponds to thep-th position withinw, then the
elements±p may be arranged in 2( j − 1) + m ways.
Deleting±p results in a member ofP(n− 1,k) (on the
set[±n]−{p,−p}) and considering all possiblej gives

k

∑
j=r

(2 j −2+m) = k(k−1+m)− (r −1)(r −2+m)

ways to arrange the elements±p. Thus, there are(k(k−
1+m)− (r − 1)(r − 2+m))JSr(n− 1,k;m− 1) levels of
the stated form, which accounts for the first term of the
formula whenr > 0. A similar argument applies ifr = 0.

We now count levels where both letters belong tow( j)

for somej. Suppose thatw( j) can be written asw( j) =α iiβ
for somei ∈ [ j], whereα andβ are possibly empty. Letℓ
denote the length ofα, where 0≤ ℓ≤ n−k−2. Then there
are

j

∑
i=1

(2i −2+m)2 =
j(2( j −1)(3m+2 j −1)+3m2)

3

possibilities for arranging the elements of[±n]
corresponding toi, i in w( j) asi varies and[ j( j −1+m)]ℓ

ways in which to arrange the elements corresponding to
the letters ofα. Deleting α, and the two letters that
follow, results in a partition enumerated by
JSr(n− ℓ− 2,k;m− 1). Considering all possiblej andℓ
thus yields the second part of the expression above for the
total number of levels, which is seen to apply also when
r = 0.

Let P(r)
p,q(n,k,m/2) denote the joint distribution onP(n,k)

for the statistics recording the number of elements in zero
blocks and levels. Reasoning as in the proof of Theorem1
shows further that

∑
n≥k

P
(r)
p,q(n,k,m/2)xn =

xk

∏k
j=r (1− (q−1)(2 j −2+ pm)x)∏k

j=r

(

1−∑ j
i=1

(2i−2+pm)x
1−(q−1)(2i−2+pm)x

) ,

if r > 0, with a comparable formula ifr = 0.
Differentiating with respect top, setting p = 1 and
extracting the coefficient ofxn yields the following result.

Corollary 2.If n > k ≥ r ≥ 0, then the sum of the
cardinalities of the zero blocks within all members of
P(n,k) is given by

m
k

∑
j=r

n−k−1

∑
ℓ=0

JSr(n− ℓ−1,k;m−1) jℓ+1( j −1+m)ℓ.

Proof.One can also give a combinatorial proof as follows.
Let P∗(n,k) denote the set of “marked” members of
P(n,k) wherein the first zero block contains at least one
negative element with one such element marked. By
symmetry, it suffices to show

|P∗(n,k)|=
k

∑
j=r

j
n−k−1

∑
ℓ=0

JSr(n−ℓ−1,k;m−1) jℓ( j−1+m)ℓ.

Let ρ ∈ P∗(n,k) have associated sequence
w = 12· · ·(r − 1)rw(r) · · ·kw(k). To find |P∗(n,k)|, we
count members ofP∗(n,k) whose marked element−t is
such that the(ℓ+1)-st position ofw( j) for somer ≤ j ≤ k
and 0≤ ℓ ≤ n− k− 1 corresponds to thet-th letter ofw.
Then there arej choices concerning the position of the
elementt (as it can go in any one ofj nonzero blocks),
jℓ( j − 1+ m)ℓ possibilities for the positions of±s for
t − ℓ ≤ s ≤ t − 1, and JSr(n− ℓ− 1,k;m− 1) ways in
which to arrange the remaining elements of[±n].
Considering all possiblej andℓ implies |P∗(n,k)| is as
stated, which completes the proof.

3.2 Counting by descents.

Let Q(n,k) = Q(r)
q (n,k,m/2) be the distribution

polynomial on P(n,k) for the statistic recording the

number of descents. LetQ(n,k|i) = Q(r)
q (n,k,m/2|i)

denote the distribution for descents restricted toP(n,k|i)
for 1≤ i ≤ k. PutQ(n,k) = Q(n,k|i) = 0 if k< r or n< k.
TheQ(n,k|i) are determined recursively as follows.

Lemma 2.We have

Q(n,k|i) = (2i −2+m)∑i
j=1Q(n−1,k| j)+q(2i −2+m)∑k

j=i+1Q(n−1,k| j), 1≤ i < k and k≥ r,

(11)

Q(n,k|k) = Q(n−1,k−1)+ (2k−2+m)Q(n−1,k), n≥ k> r,
(12)

and

Q(n, r|r) = δn,r +(2r −2+m)Q(n−1, r), n≥ r ≥ 1,
(13)

with Q(0,0) = δr,0 and Q(n,0) = 0 if n ≥ 1 for all r.

Proof.Let λ ∈ P(n,k|i), where 1≤ i ≤ k. If i < k, then
Q(n,k|i) = 0 whenn = k, so assumen > k. Considering
the penultimate letterj gives

(2i −2+m)
i

∑
j=1

Q(n−1,k| j)

c© 2019 NSP
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possibilities if j ≤ i and

q(2i −2+m)
k

∑
j=i+1

Q(n−1,k| j)

possibilities if j > i which implies (11), for in the latter
case a descent occurs between the last two letters. If
i = k > r, then the last letter can never create a descent
and there areQ(n− 1,k− 1) or (2k− 2+m)Q(n− 1,k)
possibilities depending on whether or not the final letter is
the only one of its kind, which gives (12). If i = k = r,
then there areδn,r possible partitions if the finalr is the
only r and (2r − 2+ m)Q(n− 1, r) partitions otherwise,
which completes the proof.

Define Q(x;k) = ∑n≥k Q(n,k)xn. We have the following
explicit formula.

Theorem 2.Let k≥ r ≥ 0. Then

Q(x;k) = xk

∏k
j=r

(

1−(2 j−2+m)x−∑ j−1
i=1

(2i−2+m)xq

∏i
ℓ=1(1−(1−q)(2ℓ−2+m)x)

) , r ≥ 1,

(14)
and

Q(x;k) = xk

∏k
j=1

(

1−(2 j−2+m)x−∑ j−1
i=1

(2i−2+m)xq

∏i
ℓ=1(1−(1−q)(2ℓ−2+m)x)

) , r = 0.

(15)

Proof.Let Q(x;k|i) = ∑n≥k Q(n,k|i)xn, where 1≤ i ≤ k. If
k> r, then recurrences (11) and (12) may be rewritten as

Q(x;k|i) = (2i−2+m)x
i

∑
j=1

Q(x;k| j)+(2i−2+m)xq
k

∑
j=i+1

Q(x;k| j)

= (1−q)(2i−2+m)x
i

∑
j=1

Q(x;k| j)+(2i−2+m)xqQ(x;k), 1≤ i < k,

Q(x;k|k) = xQ(x;k−1)+(2k−2+m)xQ(x;k). (16)

Thus, for 1≤ i < k, we have

Q(x;k|i) =
(1−q)(2i−2+m)x

1− (1−q)(2i−2+m)x

i−1

∑
j=1

Q(x;k| j)+
(2i−2+m)xq

1− (1−q)(2i−2+m)x
Q(x;k).

(17)

Then we have

Q(x;k|i) =
(2i−2+m)xq

∏i
j=1(1− (1−q)(2 j −2+m)x)

Q(x;k),1≤ i < k.

(18)
To show (18), note first that it holds fori = 1, by (17). To
complete an inductive proof of (18) using (17), it suffices
to show fori > 1,

(2i−2+m)xq

∏i−1
j=1(1− (1−q)(2 j −2+m)x)

= (2i−2+m)x
i−1

∑
j=1

(1−q)(2 j −2+m)xq

∏ j
ℓ=1(1− (1−q)(2ℓ−2+m)x)

+(2i−2+m)xq,

which may be rewritten as

i−1

∑
j=1

(1− (1−q)(2 j −2+m)x)−1

=
i−1

∑
j=1

−(1−q)(2 j−2+m)x
i−1

∏
ℓ= j+1

(1−(1−q)(2ℓ−2+m)x).

The last equality is a special case of the identity
∏a

j=1(1+ c j)−1= ∑a
j=1c j ∏a

ℓ= j+1(1+ cℓ), which can be
shown by considering the first time ac j factor is chosen
when expanding the product∏a

j=1(1+ c j).
Summing (18) over 1≤ i < k, and using the fact

Q(x;k) = ∑k
i=1Q(x;k|i), we obtain

Q(x;k)−Q(x;k|k) =Q(x;k)
k−1

∑
i=1

(2i−2+m)xq

∏i
j=1(1− (1−q)(2 j −2+m)x)

.

By (16), we have

Q(x;k) = Q(x;k)
k−1

∑
i=1

(2i−2+m)xq

∏i
j=1(1− (1−q)(2 j −2+m)x)

+xQ(x;k−1)+(2k−2+m)xQ(x;k),

which leads to

Q(x;k) =
x

1− (2k−2+m)x−∑k−1
i=1

(2i−2+m)xq

∏i
j=1(1−(1−q)(2 j−2+m)x)

Q(x;k−1), k> r.

(19)

If k= r, then (13) implies

Q(x; r|r) = xr +(2r −2+m)xQ(x; r), r > 0.

Proceeding as before gives

Q(x; r)=
xr

1− (2r −2+m)x−∑r−1
i=1

(2i−2+m)xq

∏i
j=1(1−(1−q)(2 j−2+m)x)

,

from which (14) follows from (19). On the other hand,
formula (15) follows from (19) and notingQ(x;0) = 1.

Theorem2 impliesQ(x;k) = xk

∏k
j=r (1− j( j−1+m)x)

whenq=

1, as expected. Taking the derivative ofQ(x;k) with respect
to q, and settingq= 1, yields

∂
∂ qQ(x;k) |q=1

Q(x;k) |q=1
=

k

∑
j=r

j−1

∑
i=1

(2i−2+m)x
1− j( j −1+m)x

−
k

∑
j=r

j−1

∑
i=1

i

∑
ℓ=1

(2i−2+m)(2ℓ−2+m)x2

1− j( j −1+m)x

= x
k

∑
j=r

( j −1)( j −2+m)

1− j( j −1+m)x
−x2

k

∑
j=r

(6m+3 j −5)
( j

3

)

+m2
( j

2

)

1− j( j −1+m)x

= x
k

∑
j=r

( j −1)( j −2+m)+x2
k

∑
j=r

(3 j −1)
( j

3

)

+m j( j −1)2+m2
( j

2

)

1− j( j −1+m)x

for r > 0, with the same holding forr = 0 except that both
sums have lower indexj = 1. Extracting the coefficient of
xn gives the following result.
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Corollary 3.If n > k ≥ r ≥ 0, then the total number of
descents in all members ofP(n,k) is given by
[

2

(

k
3

)

+m

(

k
2

)

− (1−δr,0)

(

2

(

r −1
3

)

+m

(

r −1
2

))]

×

JSr (n−1,k;m−1)

+
k

∑
j=r

[

(3 j −1)

(

j
3

)

+m j( j −1)2+m2
(

j
2

)]

×
n−k−2

∑
ℓ=0

JSr (n− ℓ−2,k;m−1) jℓ( j −1+m)ℓ.

Proof.We provide a direct proof in ther = 0 case as follows
(where appropriate modifications can be made for the case
r >0). Letλ denote an arbitrary member ofP(n,k)where
r = 0 having associated sequencew= 1w(1) · · ·kw(k) with
eachw(i) i-ary. We first count descents inλ where the first
letter in the descent is the leftmost of its kind. Givenj ∈
[k], there are

j−1

∑
i=1

(2i −2+m) = ( j −1)( j −2+m)

options concerning the arrangement of the pair of elements
corresponding to the second letter of the descent ifj is to
be the first letter. Considering all possiblej gives

k

∑
j=2

( j −1)( j −2+m) = 2

(

k
3

)

+m

(

k
2

)

such descents arising from each member ofP(n− 1,k),
which accounts for the first part of the formula above. Now
suppose both lettersa andb of the descent belong tow( j),
wherea is the (ℓ+ 1)-st letter ofw( j) for some 0≤ ℓ ≤
n− k−2. Then there are

j

∑
a=1

a−1

∑
b=1

(2a−2+m)(2b−2+m)

= (3 j −1)

(

j
3

)

+m j( j −1)2+m2
(

j
2

)

possibilities for the arrangement of the elements
associated with the letters of the descent. There are
JS0(n− ℓ− 2,k;m− 1)[ j( j − 1+m)]ℓ ways in which to
arrange the remaining elements of[±n] and considering
all possible j andℓ gives the second part of the formula
and completes proof.

3.3 Counting by ascents

LetR(n,k)=R(r)
q (n,k,m/2) be the distribution onPn,k for

the statistic recording the number of ascents andR(n,k|i)
denote the restriction ofR(n,k) to those partitions ending
in i. Similar to before, we have the following recurrence
relations satisfied by theR(n,k|i).

Lemma 3.We have

R(n,k|i) = q(2i −2+m)∑i−1
j=1R(n−1,k| j)+ (2i −2+m)∑k

j=i R(n−1,k| j), 1≤ i < k and k≥ r,

(20)

R(n,k|k) = qR(n−1,k−1)+q(2k−2+m)R(n−1,k)+(1−q)(2k−2+m)R(n−1,k|k), n≥ k> r,

(21)
and

R(n, r|r) = qr−1δn,r +q(2r −2+m)R(n−1, r)+ (1−q)(2r −2+m)R(n−1, r|r), n≥ r ≥ 1,

(22)

with R(0,0) =
δr,0
q and R(n,0) = 0 if n ≥ 1 for all r.

Let
R(x;k) = ∑

n≥k

R(n,k)xn

and
R(n,k|i) = ∑

n≥k

R(n,k|i)xn.

Then (20) and (21) may be rewritten in terms of generating
functions as

R(x;k|i) = (2i −2+m)xR(x;k)+ (q−1)(2i −2+m)x∑i−1
j=1R(x;k| j),1≤ i < k andk≥ r,

(23)
and

R(x;k|k) =
xqR(x;k−1)+ (2k−2+m)xqR(x;k)

1+(q−1)(2k−2+m)x
, k> r.

(24)
We have the following recurrence relation satisfied by

R(x;k).

Lemma 4.If k > r ≥ 0, then

R(x;k) =
xq

1+(q−1)(2k−2+m)x

1− (2k−2+m)xq
1+(q−1)(2k−2+m)x−∑k−1

ℓ=1(q−1)ℓ−1xℓuk,ℓ
R(x;k−1),

(25)
where uk,ℓ = ∑1≤ j1< j2<···< jℓ≤k−1 ∏ℓ

s=1(2 js−2+m).

Proof.Let R(x;k|i) = αiR(x;k). Then (23) gives

αi = aix+(q−1)aix
i−1

∑
j=1

α j , 1≤ i < k andk≥ r,

with ai = 2i −2+m. By induction oni, we have

αi = ∑
ℓ≥1

∑
1≤ j1< j2<···< jℓ=i

(q−1)ℓ−1xℓ
ℓ

∏
s=1

a js, 1≤ i < k,

which leads to

k−1

∑
i=1

αi = ∑
ℓ≥1

(q−1)ℓ−1xℓ ∑
1≤ j1< j2<···< jℓ≤k−1

ℓ

∏
s=1

(2 js−2+m).

Hence,

R(x;k)−R(x;k|k) = R(x;k)
k−1

∑
ℓ=1

(q−1)ℓ−1xℓ

c© 2019 NSP
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× ∑
1≤ j1< j2<···< jℓ≤k−1

ℓ

∏
s=1

(2 js−2+m).

Formula (25) now follows from (24), upon solving for
R(x;k).

Theorem 3.Let k≥ 1 and r≥ 0, with k≥ r. Then

R(x;k)=
xkqk−1

∏k
j=r

[

1− 1
q−1

(

∏ j−1
i=0 (1+(q−1)(2i +m)x)−1

)] .

(26)

Proof.We seek an expression foruk,ℓ for k ≥ 1 and
1≤ ℓ ≤ k−1. From the definition of theuk,ℓ, we have the
recurrence

uk,ℓ = (2k−4+m)uk−1,ℓ−1+uk−1,ℓ, k> ℓ≥ 1,

with uk,0 = 1 anduk,k = 0 for all k ≥ 1. DefineUk(t) =

∑k
ℓ=0uk,ℓtℓ. Then

Uk(t) = (2k−4+m)tUk−1(t)+Uk−1(t), k≥ 2,

with U1(t) = 1, which leads to

Uk(t) =
k−2

∏
j=0

(1+(2 j +m)t).

By Lemma4, we have

R(x;k) =
xq

1+(q−1)(2k−2+m)x

1− (2k−2+m)xq
1+(q−1)(2k−2+m)x −

1
q−1 (Uk((q−1)x)−1)

R(x;k−1),

which is equivalent to

R(x;k) =
xq

1− (2k−2+m)x− 1+(q−1)(2k−2+m)x
q−1 (Uk((q−1)x)−1)

R(x;k−1).

SinceUk+1((q−1)x) = (1+(q−1)(2k−2+m)x)Uk((q−
1)x), we get

R(x;k) = xq
1− 1

q−1(Uk+1((q−1)x)−1)
R(x;k−1),k> r ≥ 0.

(27)
If k = r, then proceeding in a similar manner as before
yields

R(x; r) =
xrqr−1

1− 1
q−1(Ur+1((q−1)x)−1)

, r ≥ 1. (28)

Formula (26) now follows from iterating (27), and using
(28) if r ≥ 1, or by notingR(x;0) = 1

q if r = 0.

Lettingq= 1 in (26) gives

R(x;k) =
xk

∏k
j=r

[

1− limq→1

(

∏ j−1
i=0 (1+(q−1)(2i+m)x)−1

q−1

)]

=
xk

∏k
j=r

[

1−∑ j−1
i=0 (2i+m)x

]

=
xk

∏k
j=r(1− j( j −1+m)x)

,

as expected, by L’Hôpital’s rule.

Taking the derivative with respect toq, and settingq=
1, gives

∂
∂q

R(x;k) |q=1=

xk

∏k
j=r(1− j( j −1+m)x)

(

k−1+
k

∑
j=r

F( j)
1− j( j −1+m)x

)

,

whereF(0) = 0 andF( j) for j ≥ 1 is defined as

F( j) = lim
q→1

∂
∂q

[

∏ j−1
i=0 (1+(q−1)(2i +m)x)−1

q−1

]

.

By two applications of L’Hôpital’s rule, we have

F( j) = lim
q→1







(q−1)∑ j−1
i=0 (2i +m)x∏ j−1

ℓ=0,ℓ6=i (1+(q−1)(2ℓ+m)x)−∏ j−1
i=0 (1+(q−1)(2i +m)x)+1

(q−1)2







=
1
2

∂
∂ q





j−1

∑
i=0

(2i +m)x
j−1

∏
ℓ=0,ℓ6=i

(1+(q−1)(2ℓ+m)x)





q=1

=
1
2





j−1

∑
i=0

(2i +m)x
j−1

∑
ℓ=0,ℓ6=i

(2ℓ+m)x





=
x2

2

j−1

∑
i=0

(2i +m)[( j +m)( j −1)−2i]= (3 j −1)

(

j
3

)

x2+m j( j −1)2x2 +m2
(

j
2

)

x2.

Thus, extracting the coefficient ofxn in the formula for
∂
∂qR(x;k) at q= 1 implies the following result.

Corollary 4.If n > k ≥ r ≥ 0, then the total number of
ascents in all members ofP(n,k) is given by

(k−1)JSr(n,k;m−1)

+
k

∑
j=r

[

(3 j −1)

(

j
3

)

+m j( j −1)2+m2
(

j
2

)]

×
n−k−2

∑
ℓ=0

JSr(n− ℓ−2,k;m−1) jℓ( j −1+m)ℓ.

It is possible to provide a combinatorial proof of this
result similar to before.

4 Perspective

In this paper, we have computed the generating functions
for the distribution of the statistics onP(n,k) that record
the number of levels, descents and ascents. Our formulas
led to expressions for the average values of these statistics
on P(n,k), which were afforded combinatorial
explanations. From the formulas for theq-derivative of
the respective generating functions atq= 1, one may find
asymptotic estimates for the total number of occurrences
of these statistics onP(n,k) for a fixedk asn increases
without bound, which we leave to the reader.

Furthermore, variations on the statistics defined above
are possible. For example, one can say that a level occurs
at index i, where 1≤ i ≤ n− 1, if both i and i + 1 are
positioned exactly the same way with respect to the
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blocks of π ∈ P(n,k). That is, a level occurs if the
elementsi and i + 1 both belong to the same block ofπ
(either zero or nonzero), with−i and −(i + 1) also
belonging to the same block. Letaq(n,k) denote the
distribution on P(n,k) where r = 0 for this new
definition of the level statistic. Applying the methods
from the previous section, one can show

∑
n≥k

aq(n,k)x
n =

xk

∏k
j=1

(

1− j( j−1+m)x
1+(1−q)x

) , k≥ 1,

which reduces to (2) when q = 1. Similarly, one can
define a comparable statistic recording descents or ascents
onP(n,k) if one were to order all of the possible options
concerning the position of the pair{i,−i} for some i,
where one may assume that a member of this pair belongs
to the j-th nonzero block with the other lying in some
block to its left (provided{i,−i} does not start a new
nonzero block). Thus, for example, it would be possible
now for a descent or ascent to occur even in the case
when i and i + 1 belong to the same nonzero block and
none of the blocks to the right of this block contain either
−i or −(i + 1). One can derive comparable expressions
for the generating functions of the respective distributions
on P(n,k). However, we found the statistics featured in
the current paper to be easier to define, to possess more
interesting properties and to provide a more natural
extension of the typical rise, fall and level statistics on
k-ary sequences than the variations described above.
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