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Abstract: In this paper, we consider sequential representationseafettently introduced-Jacobi-Stirling set partitions (denoted by
Z(n,k)) and study various statistics on these representationsoipute an explicit formula for the generating functionethtounts
members of??(n,k) wherek andr are fixed according to these statistics in the case of lestetgsents and ascents. In each case, we use
a more-or-less uniform strategy which also yields the itiistion of the statistic on those members#f(n,k) ending in a certain letter.
Finally, we give explicit formulas for the total number ofiéds, descents and ascents within all of the member#® @i, k), providing

both algebraic and combinatorial proofs.
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1 Introduction Using (1), one can derive the generating function formula
Ther-Jacobi-Stirling numbers of the second kind, denoted en XK _

by J$(n k;2), were introduced and studied by Mihoubi 3 JS(NK2ZX'= g —ormo . k=20
and Rahim 8] and are defined for & r < k < n by the nz I=r o)

recurrence see B, Theorem 1]. The numberdSn,k;z) and later

_ _ _ JS(n,k;z) were given combinatorial interpretations as
I§(nkz2) =JS(n—1,k-1:2) +k(k+2JS(n-1,k2).n >(1r) enumerators of a certain class of partitions of a set of size
. . 2n, denoted by’ (n,k), where some of the blocks are
with JS§ r,r;z) = 1for aI'I r=0. It'vx'/as shown in§] that labeled and aIIovv(ed 20 be empty. Members #f(n, k)
theJS (n,k;z) are also given explicitly as were termed-Jacobi-Stirling set partitions ir8].

1
!

: : . n Here, we consider certain combinatorial aspects of the
JS(n+rk+rz)= = i(fl)kfj <k> @it +a({+n(i+ri2) b
£

j Mol tkr2riz—i) JS(n,k;z) related to various refined enumerations of the
underlying structure (n,k). Recall that the level,

or equivalently as connection constants in the polynomiadescent and ascent statistics defined on a classaoy

identities sequences record the number of indices corresponding to
positions where the letter directly following the indexed

n letter is the same, smaller or larger, respectively. These

(X+r1(r+2)"= % IS(N+rk+1129%z2, Nn>0,  statistics have been studied on sequential represergation
k=0 for a variety of discrete structures, including finite set

partitions,k-ary words and compositions (see, e.4,6]
where X, = |'|:‘;ol(x —i(i +2). Whenr = 0, the and references contained therein). We consider in the
JS(n,k;z) reduce to what are known as the current paper extensions of these statistics to sequential
Jacobi-Stirling numbers JSn,k;z), which were representations of the-Jacobi-Stirling partitions of a
introduced by Gelinealw?] and later studied1,3,7,10]. given size and derive various facts about their
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distributions. As a consequence, one obtajraalogues written so that milB; < --- < minBx. We associate to

of the sequencés (n, k; z) which reduce to it wheg = 1. eachm a k-ary sequencev; = WiW,---W, whosei-th
The organization of this paper is as follows. In the entry w; is obtained by either reading the index of the

next section, we describe a sequential representation fanonzero block containingor —i if one of {i, —i} belongs

members of#(n,k) which is used to define the level, to a zero block or by taking mds,b} wherei € B; and

descent and ascent statistics. In the third section, we find-i € By. That is,w; records the index of the rightmost

in each case a formula for the ordinary generatingnonzero block containing an element of absolute value

function of the distribution onZ?(n,k). An explicit  For example, ifn =7, k=3, r=2, m=8 and

formula for the total number of occurrences of eachme (2 (7,3 4) has zero blocks

statistic on#?(n,k) is computed which can be expressed

in terms of the number3S (n,k; z). Combinatorial proofs A =1{3-T} A=0, A={-4, A=0

of these formulas may also be given. Some concludingand nonzero blocks

remarks are made in the fourth section. Bi— {14716}, By—{26-2-3}, Bs— {55},

then wy; = 1221321. Note thatmr is not uniquely
2 Preliminaries determined byv; and thatwy; is in fact what is known as
arestricted growth functioomeaning it is a function from
We first recall the combinatorial interpretation for the [n] onto[k] satisfying
r-Jacobi-Stirling numbers fronm8[. Throughout, the sets . C . P
{1,2,...,n} and{#1,+2,...,4+n} will be denoted byjn| maxw; 1 1< j i+l <maxwj:l<j<i}+1
and [£n], respectively. Letn,k > 1 andr,s > 0 with forall1<i<n-—1(see,e.g.91]] for details). At times,
n > k > r be integers. Then am-JacobiStirling set  we will speak of a partitiont as if it were a sequence (for
partition of [+n] into s zero blocksAy,...,As and k instancejT ending in a given letter), in which case we are
nonzero blockss,...,By is an ordinary set partition of referring to a property of its associated sequenge
[£n] into s+ k blocks satisfying the following conditions: Given € Z(n,k) with Wy = Wiy - - - Wy, we will
: say thatm has alevel (at indexi) if w, = w1 where
1.The blocksA4,...,As are ordered (i.e., labeled), 1<i<n— 1. Adescentascentresp.) refers to an index
whereas$3,...,By are not. ; . .
i for whichw; > w1 (Wj < w1, resp.). For example, if
2.Zero blocks may be empty, but nonzero blocks areme £2(7,3) is as above, therr has one level (at index 2),
nonempty. three descents (at 3, 5 and 6) and two ascents (at 1 and 4).
. o s A Note that a level oft occurs if a nonzero blocB of mTis
3.Ifi € n], thenfi, ~i} & Ui=1A: such thaB contains at least one element of both absolute
4.We have{i, —i} C B; for some 1< j <k if and only valuei andi + 1 for somel, with no blocks to the right of
if i has minimum absolute value of all the elements in B containing an element of the sgti, +(i + 1) }. Similar
Bj. interpretations may be given for descents and ascents.
i . See, e.g., the texf] for the definitions of the analogous
S.If1<j<r then{j —j} CB. statistics on ordinary set partitions which are extended
Note that the-Jacobi-Stirling partitions coincide with the here toZ(n,k).
Jacobi-Stirling partitions (se@]) whenr =0orr =1, and
with a subset of the usual partitions[afn] whens = 0. o . .
Givenn, k andr as above and a non-negative even 3 Statistics onr-Jacobi-Stirling partitions
integerm, let 22(n,k) = 2()(n,k,m/2) denote the set of
r-Jacobi-Stirling partitions of[+n] having m/2 zero
blocks and k nonzero blocks. (We represent the
parameter in this way so that the recurrences below will
be slightly simpler.) Note that

|2 (,K)] = IS (nkm—1), 3.1 Counting by levels

In this section, we study the distributions for the statisti
recording the number of levels, descents or ascents on
2(n,K).

which can be shown by demonstrating that both quantities;rnr;r; ug:;%utrgederne%taef d‘: (T og-snegr? tl\i/r? deevti?r;?rgz%ee.r WGhII\;: ehn
satisfy the same recurrenc®).(For if {n,—n} does not "
comprise its own (nonzero) block within a member of N = kK = 1 > 0, let P(n,k) = Pq’(n,k,m/2) count
2(n,k), then there ar&(k— 1)|2(n — 1,k)| possibilities members of#?(n,k) according to the number of levels
if both elements belong to nonzero blocks and(marked byq). Let P(n,Kk|i) = Pér)(n,k, m/2|i) denote the
2(km/2)|2(n — 1,k)| possibilities if one of {n,—n} restriction ofP(n,k) to those members o#’(n,k) ending
belongs to a zero block. ini, where 1<i <k. PutP(n,k) = P(n,kli) =0ifk<r

We define statistics o’ (n,k) as follows. Suppose or n < k. The P(n,k|i) are determined recursively as
that the nonzero blockB,,...,Bx of me £(nk) are  follows.
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Lemma 1We have which is equivalent to
P(n,kli) = (2i =24+ m)P(n—1,k) + (q—1)(2i — 2+ m)P(n—1,Kli), 1§i<k§nandk(§r), P(x;K|i) = 17((;?]3(22TT;)1m)XP(X:k>’ 1<i<kandk>r, 8)
P(x,k|k)7—17<q71)(2k72+m>x(P(x,k 1)+ (2k—2+m)P(xK)),k>r.
P(n.klk) =P(n—1,k—1)+ (2k—2+m)P(n—1,k) + (q—1)(2k—2+m)P(n—1.klk), n>k>r,
4) By the factP(x;k) = YK ; P(x;k|i), we then have
and
. (2i —2+m)x X )
P(xK k) P(x;k—1),
P(n.r|r) = &+ (2r —2+mP(n—1,1)+ (q—1)(2r =2+ mP(n—-1,r[r), n>r>1, 0k = P le (g—1)(21 =24+ m)x +17(q71)(2k72+m)x 0 )
; i ®) hich leads t
with P(0,0) = & and Rn,0) = 0ifn > 1forallr. whichleads to
P(x;k) = X P(xk—1).

ProofLet &2(n,k|i) denote the subset of’(n,k) whose
members have last letterFirst suppose ¥ i < kandn >
k. If n=k, thenZ(n,k) is empty in this case an@)is
obvious. So assume> k and letj denote the penultimate
letter of A € #(n,k|i). Note that there are(P— 1)+ m PIxK) A : :
choices for the positions of the lettets1 in A since one M@ v@-2emntr s (131 o )
of them must go in théth nonzero block, while the other
goes in one of the first— 1 nonzero blocks or in one of

(1 (- D@2+ mp) (1 5y )

Iterating the last equality gives

P(xr).k>r. (9)

We now determine the case whka- r. Note that by ),

the m/2 zero blocks. Thus, if # i, there are(2i —
m)(P(n—1,k) —P(n—1,k|i)) possibilities for the partition

A. On the other hand, if =i, then a level is realized and

we getq(2i — 2+ m)P(n— 1,k|i) possibilities. Combining
the two previous cases gived)(If i =k withn>k >,

then there are the same number of possibilities as befor
with i replaced by if it is not the case that the final letter

k is the only letterk within A € #2(n,k|k). On the other
hand, ifk occurs only once within such, then deleting
it results in a member of”(n— 1,k — 1). Combining this
with the previous case gived)( Finally, ifi = k=r and

A € Z(n,r|r), then the cases are the same as in the proo&nd (L0), while (7) follows from ther =

we have

"+ (2r —24+m)xP(x;r)

o X
P(x;r|r) = 1= (q-D)@ -2+ mx r>0.

The last equality combined witl8 whenk = r yields, by
&ddition, the formula

X

P(xr) = (2i—2+m)x
(1 (a-1)(2r 2+ mpx) (1- 3y s S

,r>0, (10)

upon solving foP(x; r). Formula 6) now follows from Q)
0 case of9), upon

of (4) except now if the lettek occurs only once, then there notingP(x;0) = 1.

aredn, possibilities forA, which implies B).

Define the generating function P(x;k) by
P(x;k) = 3>k P(n,k)x", wherek > r > 0. We have the
following explicit formula forP(x; k).

Theorem 1Letk>r > 0. Then

XK

P<X;k): K R (2i—2+m)x ,I’Zl,
Hﬁdl*(qflﬂ21*2+nﬂ)ﬂ.r(l 2.11737@?7%7)
(6)
and
] X
P(xk) = p —— — p 5 pEC ,r=0.
Mij-1(1—(a—1)(2j = 2+m)x) [Tj_, (1 Yi-1 417(q71)(2i—2+m)x)
(7

ProofConsider the refineme(x;k|i) of P(x;k) defined
by P(x;K[i) = 31>k P(n,K[i)x" for 1 <i < k. First suppose
k > r > 0. Then multiplying both sides o8] and @) by

X", and summing oven > k, we have

P(x;K|i) = (2i — 2+ m)xP(x;k) +
P(x;klk) = xP(x;k— 1) +

(@-1)(2—
(2k — 24+ m)xP(x; k)

2+ m)xP(x;Kli),
+(g—1)(2k— 2+ m)xP(x;k[k),

Takingg = 1 in Theorenl yields

XK

——— k>r >0,
|‘|, H(1=j(—1+mx)’

ZkPl (n,k,m/2)x" —Zk.]S (n,k;m—1)x"

which agrees with2). Taking the partial derivative with
respect tay in (6), and settingy = 1, gives forr > 1,

o _ X k
%P(x,k) l[g=1 = |_||j< (1= —1+m)x) <Z —2+m)x
K 1 (2i—24+m2e2
1= rlzm)
Xk
@G- m (K=o
—(r=1)(r—2+m)x
C j(20j - 1)(3m+2) 1) + 3
2 )

Extracting the coefficient ok" in the last formula, and
considering separately the case whes 0, yields the
following result.
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Corollary 1.If n > k >r > 0, then the total number of Corollary2.If n > k > r > 0, then the sum of the

levels in all of the r-Jacobi-Stirling partitions oftn]

cardinalities of the zero blocks within all members of

having ny2 zero blocks and k nonzero blocks is given by 22 (n, k) is given by

(k(k—1+m) — (1= &0)(r — 1)(r —2+m))IS (n— 1 k;m—1)

2 - 1)(3m+2j - 1) + 3mP) "X 2 ) . e ¢
+,Zr 3 ,; JS(n—¢—2km—1)j(j—1+m)".

k n—k-1
m; /; JSh—0—1km—1)j"Yj—14+m).

ProofOne can also give a combinatorial proof as follows.

Prooflt is also possible to provide a combinatorial proof | gt 2*(n,k) denote the set of “marked” members of

of this result as follows. Let € #(n,k) and suppose that

the sequential representation ok is given by
w=12---(r — rw"...kwt¥, where eachw(!) is i-ary

for r <i < k. Assume for now > 0. Note that a level
occurs each time the first letter of som&) is j. If this

letter corresponds to the-th position withinw, then the
elements+p may be arranged in (2 — 1) + m ways.

Deleting +p results in a member of”(n— 1,k) (on the
set[+n] — {p, —p}) and considering all possiblegives

(2) —2+m) =Kk(k—1+m) — (r — 1)(r —2+m)

M =

]=r

ways to arrange the element9. Thus, there ar¢k(k —
1+m)—(r—=1)(r—2+m))IS(n—1,k;m— 1) levels of

Z(n,k) wherein the first zero block contains at least one
negative element with one such element marked. By
symmetry, it suffices to show

n—k—1

k
' 0RI=3 1 3 IS(——1,km=1)j’(j—1+m)".
|=r (=0

Let p € £*(nk) have associated sequence
w=12---(r — Hhrw...kwk. To find |22*(n,k)|, we
count members of”*(n,k) whose marked elementt is
such that thé/ + 1)-st position ofw(!) for somer < j <k
and 0< ¢ < n—k— 1 corresponds to thieth letter ofw.
Then there arg choices concerning the position of the
elementt (as it can go in any one gf nonzero blocks),
j“(j — 14+ m)* possibilities for the positions of-s for

the stated form, which accounts for the first term of thet —¢ < s<t—1, andJS(n—/¢—1,km— 1) ways in

formula wherr > 0. A similar argument applies if= 0.

We now count levels where both letters belongvtd
for somej. Suppose that!!) can be written agtl) = aii 8
for somei € [j], wherea andf are possibly empty. Let
denote the length af, where 0< ¢ < n—k—2. Then there
are

i(Zi _2+m)2: i2(j—1)(Bm+2j— 1)—|—3m2)
i= 3

possibilities for arranging the elements oftn]
corresponding ta,i in wi) asi varies andj(j — 1+ m)]*

ways in which to arrange the elements corresponding to
the letters ofa. Deleting a, and the two letters that
enumerated by

follow, results in a partition
JS(n—¢—2,k;m—1). Considering all possibl¢ and?

thus yields the second part of the expression above for the
total number of levels, which is seen to apply also when

r=0.

Let Pé,f&(n, k,m/2) denote the joint distribution o (n, k)

which to arrange the remaining elements pfn].
Considering all possiblg¢ and ¢ implies | #?*(n,k)| is as
stated, which completes the proof.

3.2 Counting by descents.

Let Qnk) = QY (nkm/2) be the distribution
polynomial on &2(n,k) for the statistic recording the
number of descents. LeQ(n kli) = QY (n,km/2|i)
denote the distribution for descents restrictedon, k|i)
for 1 <i<k. PutQ(nk) =Q(nk|i)=0ifk<rorn<k
TheQ(n,kl|i) are determined recursively as follows.

Lemma 2We have

Q(n.kli) = (2i—2+m)z'171Q(n—1.k\j)+q(2i—2+m)277‘+1o(n—1.k\j), 1<i<kandk>r,

for the statistics recording the number of elements in zero

blocks and levels. Reasoning as in the proof of Theatem  Q(Nn,r[r) = &nr + (2r —2+m)Q(n—1,r),

shows further that

XK

P[()tl);'(n, k. m/'z)xn = - (@21 pmx 2
n>k Mk - (-1 -2+ pmp ik, (1*25:1 W.fzﬂ;m)x)

if r > 0, with a comparable formula ifr = 0.
Differentiating with respect top, setting p = 1 and
extracting the coefficient of" yields the following result.

(11)
Q(n,klkk) =Q(n—1,k—1)+ (2k—2+mQ(n—1,k), n>k>r,
(12)
and
n>r>1
(13)

with Q(0,0) = &0 and Qn,0) =0ifn > 1forallr.

ProofLet A € Z2(n,K|i), where 1<i < k. If i <k, then
Q(n,k|i) = 0 whenn = k, so assuma > k. Considering
the penultimate lettef gives

(2i—2+m) i Q(n—1,k|j)
=1
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possibilities ifj <iand

k
—2+m) 5 Q(n—1,k|j)

possibilities if j > i which implies (1), for in the latter

case a descent occurs between the last two letters. £ Z
i =k >r, then the last letter can never create a descent =1

and there ar&@(n— 1, k— 1) or (2k—2+m)Q(n—1,k)

which may be rewritten as
i-1

S (1-(1-q)(2j —2+m)x) -1
=1

i—1 i—1
(1—0g)(2j —2+m)x |_| —(1—qg)(2¢—2+m)x).
=j+

possibilities dependlng on whether or not the final letter |sThe last equality is a spemal case of the identity

the only one of its kind, which givesl®). If i =k =,

then there aréy,, possible partitions if the final is the
only r and (2r
which completes the proof.

Define Q(x;k) =
explicit formula.

Sk Q(n,K)x". We have the following

Theorem 2Letk>r > 0. Then

k

Q(xk) = X : =1,
kK (1_(2i_ il (@=2+mixq -
Mj=r <1 (@i—2+mx=3j_; nkzl(l—(l—q)(2£—2+m)x)>
(14)
and
. XK
Q(x k) = . ; o 1=0
. -1 (2i—2+m)xq
nT:1(1*<2J*2+m>X*2i':1 m)
(15)

ProofLet Q(x;Kli) = T >k Q(n,k|i)x", where 1<i < k. If
k > r, then recurrenced ) and (L2) may be rewritten as

K
2+m)xq Z

j=+1

QUKli) = (2~ 2+ mx 2Q<x:km F@- QuxKi)
2

=(1-q)2-2+ m)xi Q(x;klj) + (2 —24+m)xqQ(x;k), 1 <i <k,
=1

Q(x; k|k) = xQ(x; k—1) + (2k — 2+ m)xQ(x; k). (16)

Thus, for 1< i < k, we have

o (1-qg)2i—24+mx 2 (2i —2+m)xq )
QM) = 1 gz mx 2, 0K T g 2w AN
an
Then we have
. (2 —2+m)xq .
Q(x;Kji) = — - Q(xk),1<i<k
M= (- (1-a)(2] —2+m)x)
(18)

To show (L8), note first that it holds for= 1, by 17). To
complete an inductive proof olLlg) using (L7), it suffices
to show fori > 1,

(2i —2+m)xq
M= @ a)@i—2+mp)
:(2i—2-i-m)Xi7l _ (A-a)(2j —2+m)xq
S Mg (- (- a2~ 2+ m)x)
+(2i —2+m)xq,

— 2+ m)Q(n—1,r) partitions otherwise,

Mi—1(1+cj) —1= 35 1¢jMj—j,1(1+c), which can be
shown by conS|der|ng the first timecq factor is chosen
when expanding the produgf_,(1+c;).

Summing (8) over 1< i < k, and using the fact
Q(x;k) = T ; Q(xKli), we obtain
QK (2 —2+m)xq

ZL I_Ij 11

bk —A—q@i-2rmN)

Q(xklk) =

By (16), we have

A<l ZL”] 11

(2k—2+m)xQ(x; k),

—2+m)xq
—(1-9)(2j-

2-+m)x)

+XQ(xk—1)+
which leads to
X

_ _ _ gkl (2i—2+m)xq
1—(2k—2+mx—5] M- @i-2my)

Q(x;k) = Q(x;k—1), k>r.

(19)
If k=r, then @L3) implies

QU r|r) =X + (2r — 2+ m)xQ(x;r), r>0.

Proceeding as before gives

Xr

Qxr)=

(2i—2+m)xq !

-1
L= @ =24 M= 5 e aie-zm

from which (14) follows from (19). On the other hand,
formula @5) follows from (19) and notingQ(x;0) = 1.

. . . . XK
Theorem2 impliesQ(x; k) = TG T

1, as expected. Taking the derivativeQyf; k) with respect
to g, and settingy = 1, yields

whenq =

55Q(K) g1 kI —2+m)x K L (2i—24m) (20— 24+ m)x2
QxK) lg=1 :rzll i(j—1+m)x JZ“: Zl 1—j(j—1+m)x
S -D(-24m) & (B3] -5)() +mP()
*XJZT 130 1+ mx XZJZ:, 130 _1+mx
Kk k (3] m2(}
=x3 (=D -2+m Z( L 1)§)T(Tj(i+rln>)+ Q

forr > 0, with the same holding far= 0 except that both
sums have lower indek= 1. Extracting the coefficient of
x" gives the following result.
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Corollary 3.1f n > k >r > 0, then the total number of Lemma 3We have
descents in all members 6f(n,K) is given by
R(n,Ki) = q(2i —2+m) 5 RN— 1K) + (2 —2+m) $* ;RN—-1,Kj), 1<i<kandk>r,

(ol s o153

JS(n—1,k;m—1) R(n.kK) = qRN—1,k— 1) +q(2k— 2+ MR~ LK) + (1-q)(2k— 2+ MR- LKk, n>k>r,
a j 2 2 j d ()
i — i(j— an
+J; {(31 1)(3)+m1(1 )+ (2)}
n_k_2 , R(n,r|r) =g & +a(2r —2+mRn—1,r)+(1—qg)(2r —2+mR(n—1,r[r), n>r>1,
x /z IS(n—¢—2km-1)j‘(j—1+m)’. (22)
/=0

with R(0,0) = % and Rn,0) =0ifn > 1forallr.
ProofWe provide a direct proof in the= 0 case as follows
(where appropriate modifications can be made for the cask®t n
r > 0). LetA denote an arbitrary member 6#(n,k) where ROGK) = Z(R(n’ k)x
r = 0 having associated sequervee- 1wV - .. kwtk) with n=
eachw!) i-ary. We first count descents inwhere the first ~ and , .
letter in the descent is the leftmost of its kind. Givea R(n,Kli) = Z(R(”ak“)x .
[K], there are nz
Then @0) and 1) may be rewritten in terms of generating

-1 functions as

zi(Zi —24+m=(j—1)(j—24+m)

R(x;Kli) = (2i — 2+ m)xR(x; k) + (q—1)(2i —2+m)xzij:11R(x;k\j),l <i<kandk>r,

options concerning the arrangement of the pair of elements (23)
corresponding to the second letter of the descejtsfto
be the first letter. Considering all possiljlgives Kk — _ .
ROGKK) = XqRX; k—1) 4 (2k — 2+ m)xgR(x; k)’ Kot
K K K 1+ (q—1)(2k—2+m)x
;(j—1><j—2+m>=2( )+m(3) | e
= 3 2 We have the following recurrence relation satisfied by
R(x; k).
such descents arising from each membeg#in — 1,k),
which accounts for the first part of the formula above. Now Lemma 41tk >r > 0, then
suppose both lettessandb of the descent belong to'), xq
wherea is the (¢ + 1)-st letter ofwl)) for some 0< ¢ < R(xk) = e R(xk— 1),
n—k— 2. Then there are L Tep@ezemx - 2e=1(0- DX U (25)
j a-1 where ;= S1cicine ot c151(2js— 2+ m).
S (2a-2+m)(@>—2+m 0= Ya<ji<ip<<ipzk-1[1s=1(2]s )
a=1b=1 ProofLet R(x;K|i) = aiR(x; k). Then @3) gives
- . J . 2 J i—1
_(31_1)<3>+m1(1_1) +mz(2) ai=ax+(q-laxy aj, 1<i<kandk>r,
=1

possibilities for the arrangement of the elements
associated with the letters of the descent. There arevith ay = 2i — 2+ m. By induction oni, we have
JS(N—¢—2,km—1)[j(j — 1+ m)]* ways in which to ,
arrange the remaining elements [gfn] and considering 1l .
all possiblej and ¢ gives the second part of the formula % = /;K Z . 7_(q— ) ﬂalsv 1<i<k,
and completes proof. S .

which leads to

. k—1 l
3.3 Counting by ascents Z a; :; (q—1)"" s I'L<215—2+m>-
i= (>1 1<j1<jo<<jp<k—1s=

LetR(n,k) = R&” (n,k,m/2) be the distribution o, \ for

the statistic recording the number of ascents Rt k|i) Hence,
denote the restriction d®(n,k) to those partitions ending 1
in i. Similar to before, we have the following recurrence ) Dy Bl (11l
relations satisfied by thig(n, kli). ROGK) = ROKIk) = R(x;k) g CREVERES

1
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X Z H(2J5_2+m)

1<ji<jo< < jp<k—1s=

Formula @5) now follows from @4), upon solving for
R(x; k).

Theorem 3Let k> 1 and r> 0, with k>r. Then

quk—l

1K) =
R(x k) |_|Ij(=f[ qll( -
26

ProofWe seek an expression fag, for k > 1 and
1 < /¢ < k— 1. From the definition of they ;, we have the
recurrence

U = (2K—4+m)Ug 1, 1+ Uk 17, k>0>1,

with uco = 1 anduyy = O for all k > 1. DefineUy(t) =
5K ok’ Then

Uk(t) = (2k— 4+ m)tUy_1(t) + U _1(1), k> 2,
with U1 (t) = 1, which leads to
k—2
Uk(t) = ]'L(1+ (2] +mjt).
J:
By Lemma4, we have
xq
R(x k) = 1+(q—1)(2k—2+m)x R :k717
ST 3 TN AT
which is equivalent to
R(xK) = xq ROk 1).

1-— (2k7 2+m)x7 1+(q71)(2k—2+m)x(

q-1

U((a—1)x) —1)

SinceUy1((d—1)x) = (1+ (q— 1)(2k— 2+ mx)Ui((q—

1)x), we get

- — Xq
R(x k) = 1- 547 (Uka((a-1)x)-1)

R(x;k—1),k>r >0.

L+ (q-1@+mx) - 1)}

as expected, by L'Hopital’s rule.

Taking the derivative with respect tp and setting) =
1, gives
17}

d_qR(X; K) lo=1=

X « F{)

— k—1+ YT E
ﬂlf:r(l—l(l—ler)X) ( JZrl_J(J_l_'—m)X
whereF (0) = 0 andF(j) for j > 1 is defined as

F(J)_Ilm

|'| (1+(q 1)(2i+m)x) —1
a—10q '

q-1

By two applications of L'Hopital’s rule, we have

@-1)2

i [ @ D3/ g @+ mxIG oy (1 @ D2+ mp) -
j)= lim
q‘?

I'Iii;ol(H (q—1)(2i +m)x) + 1}

a
= ?|: (2i +m)x

T v mw L i S erem
+(q—1)(20+m)x =z i+ m)x (+m)x
Io_|¢| 2 |z l:gl#i

(=00 g1 i0

NI

-1
(2|+m[1+m)(1 1) - 2i]= (3j —

N\m

(;)xzm,-(,-fl)zxzng)xz.

Thus, extracting the coefficient &t in the formula for
%R(x; k) atg= 1 implies the following result.

Corollary 4.1f n > k > r > 0, then the total number of
ascents in all members a?(n, k) is given by

(k—1)3S(nkm—1)

oo o)

X /z JSn—0—2km—21)j(j —1+m)".

It is possible to provide a combinatorial proof of this

(27) PO
If k =r, then proceeding in a similar manner as beforeresult similar to before.
yields
ror—1
R(x;r) = akt r>1. (28)

T 5 U@ Dx - 1)

Formula @6) now follows from iterating 27), and using

(28)if r > 1, or by notingR(x; 0) = % if r=0.
Lettingg=1 in (26) gives
K
R(K) = a .
|—||j<:r |:1_ limg_1 (ﬂi:o<1+(q63)l<2'+m)x)*l):|
&
e, [1— s @i+ m)x]
&

LA 1rm

4 Perspective

In this paper, we have computed the generating functions
for the distribution of the statistics o#?(n, k) that record

the number of levels, descents and ascents. Our formulas
led to expressions for the average values of these statistic
on £(nk), which were afforded combinatorial
explanations. From the formulas for tlyederivative of

the respective generating functiongjat 1, one may find
asymptotic estimates for the total number of occurrences
of these statistics o (n,k) for a fixedk asn increases
without bound, which we leave to the reader.

Furthermore, variations on the statistics defined above
are possible. For example, one can say that a level occurs
at indexi, where 1< i <n-—1, if bothi andi+ 1 are
positioned exactly the same way with respect to the
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blocks of me Z£(n,k). That is, a level occurs if the [10] P. Mongelli, Total positivity properties of Jacobiidihg

elements andi + 1 both belong to the same block af numbersAdv. in Appl. Math48(2) (2012), 354-364.
(either zero or nonzero), with-i and —(i + 1) also [11] C G. Wagner, Generalized Stirling and Lah numbers,
belonging to the same block. Lety(n,k) denote the Discrete Math160(1996), 199-218.

distribution on Z#(n,k) where r = 0 for this new
definition of the level statistic. Applying the methods
from the previous section, one can show
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a permanent member of the

k
X
ag(n,k)x" = - I , k>1,
& i (- )

which reduces to2) when g = 1. Similarly, one can
define a comparable statistic recording descents or ascents
on Z(n,k) if one were to order all of the possible options faculty at the University of
concerning the position of the pafii,—i} for somei, i Haifa in 2003, was promoted
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