
Appl. Math. Inf. Sci.6, No. 1, 145-148 (2012) 145

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

About a King-type operator
P. I. Braica, O. T. Pop and A. D. Indrea

Grigore Moisil School, 1 Mileniului Street, 440037 Satu Mare, Romania

Received: Received April 17, 2011; Revised Sep. 17, 2011; Accepted Sep. 22, 2011
Published online: 1 January 2012

Abstract: In this paper we discuss some properties of a King-type operator. We give an approximation theorem and a Voronovskaja
type theorem for this operator.
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1. Introduction

In [6], J.P. King defined linear positive operators which
generalize the classical Bernstein operators. These oper-
ators reproduce the test functionse0 and e2. In the pa-
pers [1], [2], [4], [5] and [7], operators of King’s type are
studied. In this paper, we define new King-type operators
which reproduce the test functionse1 ande2. After study-
ing its approximation properties, we give a Voronovkaja-
type theorem.

2. Preliminaries

Let N be the set of positive integers andN0 = N ∪ {0}.
In this section, we recall some notions and results which
we will use in this article. Following [8], we consider
I ⊂ R, I an interval and we shall use the function sets:
E(I), F (I) which are subsets of the set of real functions
defined onI, B(I) = {f |f : I → R, f bounded on
I}, C(I) = {f |f : I → R, f continuous onI} and
CB(I) = B(I) ∩ C(I). For x ∈ I, consider the func-
tion ψx : I → R, ψx(t) = t − x, for any t ∈ I. Let
a, b, a′, b′ be real numbers,I ⊂ R interval,a < b, a′ < b′,
[a, b] ⊂ I, [a′, b′] ⊂ I, and[a, b] ∩ [a′, b′] 6= φ. For any
m ∈ N , consider the functionsϕm,k : I → R with
the property thatϕm,k(x) ≥ 0 for any x ∈ [a′, b′], for
anyk ∈ {0, 1, 2, ..., m} and the linear positive functionals
Am,k : E([a, b]) → R, for anyk ∈ {0, 1, 2, ...,m}. For
m ∈ N , define the operator:L∗m : E([a, b]) → F (I) by

(L∗mf)(x) =
m∑

k=0

ϕm,k(x)Am,k(f), (1)

for anyf ∈ E([a, b]), for anyx ∈ I and fori ∈ N0,
defineT ∗m,i by

(T ∗m,iL
∗
m)(x) = mi(L∗mψi

x)(x)

= mi
m∑

k=0

ϕm,k(x)Am,k(ψi
x), (2)

for any x ∈ [a, b] ∩ [a′, b′]. In the following, let s be a
fixed natural number, s even and we suppose that the oper-
ators(L∗m)m≥1 verify the condition: there exists the small-
estαs, αs+1 ∈ [0;∞) so that

lim
m→∞

(T ∗m,jL
∗
m)(x)

mαj
= Bj(x) ∈ R, (3)

for anyx ∈ [a, b] ∩ [a′, b′], j ∈ {s, s + 2} and

αs+2 < αs + 2. (4)

If I ⊂ R is a given interval andf ∈ CB(I), then, the first
order modulus of smoothness off is the functionω(f ; .) :
[0;∞) → R defined for anyδ ≥ 0 by

ω(f ; δ) = sup{|f(x′)− f(x′′)|
: x′, x′′ ∈ I; |x′ − x′′| ≤ δ}.

Remark.Form ∈ N, theL∗m operators are linear and posi-
tive.

Theorem 1.[8] Let f : [a, b] → R be a function. Ifx ∈
[a, b] ∩ [a′, b′] and f is a s times derivable function in x,
the functionf (s) is continuous in x, then

lim
m→∞

ms−αs

[
(L∗mf)(x)−

s∑

i=0

f (i)(x)
mii!

(T ∗m,iL
∗
m)(x)

]
= 0.(5)
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If f is a s times derivable function on[a, b], the function
f (s) is continuous on[a, b] and there existsm(s) ∈ N and
kj ∈ R so that for any natural numberm,m ≥ m(s) and
for anyx ∈ [a, b] ∩ [a′, b′] we have

(T ∗m,jL
∗
m)(x)

mαj
≤ kj , (6)

wherej ∈ {s, s + 2}, then the convergence given in (2.5)
is uniform on[a, b] ∩ [a′, b′] and

ms−αs

∣∣∣∣∣(L
∗
mf)(x)−

s∑

i=0

f (i)(x)
mii!

(T ∗m,iL
∗
m)(x)

∣∣∣∣∣ ≤ (7)

≤ 1
s! (ks + ks+2)ω

(
f (s); 1√

m2+αs−αs+2

)
, for any x ∈

[a, b] ∩ [a′, b′], for any natural numberm,m ≥ m(s).

3. The study the convergence and a
Voronovskaja-type theorem

In the following, we consider a fixed numberm0 ∈ N ,
m0 > 2. For the functionf : [0; 1] → R, we define the
sequence of operators(B∗

mf)m≥m0 by

(B∗
mf)(x) =

(m− 1)x
mx− 1

(
1− 1

m

)−m

m∑

k=0

mk(1− x)m−k

(
x− 1

m

)k

f

(
k

m

)
, (8)

for anym ≥ m0 and anyx ∈
[

1
m0−1 , 1

]
. For fixedm0,

from m ≥ m0 it results thatm > m0−1. Then, fromx ≥
1

m0−1 we havemx − 1 ≥ m−m0+1
m0−1 > 0, somx − 1 6= 0

for anyx ∈
[

1
m0−1 , 1

]
.

In the following, we use the construction and the
results from the first section. For the operator above,
we have ϕm,k(x) = (m−1)x

mx−1

(
1− 1

m

)−m
mk(1 −

x)m−k

(
x− 1

m

)k

andAm,k = f
(

k
m

)
, for anym ≥ m0,

anyk ∈ {0, 1, 2, ..., m} and anyx ∈
[

1
m0−1 , 1

]
.

If m ∈ N , m ≥ m0, then the operatorB∗
m is linear

and positive.
The verify is immediate.

Lemma 1.The identities

(B∗
me0)(x) =

(m− 1)x
mx− 1

, (9)

(B∗
me1)(x) = x, (10)

(B∗
me2)(x) = x2, (11)

(T ∗m,0B
∗
m)(x) =

(m− 1)x
mx− 1

, (12)

(T ∗m,1B
∗
m)(x) =

mx(x− 1)
mx− 1

, (13)

(T ∗m,2B
∗
m)(x) =

m2x2(1− x)
mx− 1

(14)

hold for anym ∈ N, m ≥ m0 and anyx ∈
[

1
m0−1 , 1

]
.

Proof.We have that
(B∗me0)(x) = (m−1)x

mx−1

(
1− 1

m

)−m

m∑

k=0

mk(1− x)m−k

(
x− 1

m

)k

=
(m− 1)x
mx− 1

(
1− 1

m

)−m (
1− x + x− 1

m

)m

=
(m− 1)x
mx− 1

(
1− 1

m

)−m (
1− 1

m

)m

=
(m− 1)x
mx− 1

,

(B∗me1)(x) = (m−1)x
mx−1

(
1− 1

m

)−m

m∑

k=0

mk(1− x)m−k

(
x− 1

m

)k
k

m

=
(m− 1)x
mx− 1

(
1− 1

m

)−m (
x− 1

m

)

m∑

k=1

m− 1k − 1(1− x)(m−1)−(k−1)

(
x− 1

m

)k−1

=
(m− 1)x
mx− 1

(
1− 1

m

)−m

mx− 1
m

(
1− x + x− 1

m

)m−1

= x,

(B∗
me2)(x) =

(m− 1)x
mx− 1

(
1− 1

m

)−m

m∑

k=0

k2

m2
mk(1− x)m−k

(
x− 1

m

)k

=
(m− 1)x
mx− 1

(
1− 1

m

)−m

·
(

m− 1
m

(
x− 1

m

)2 m∑

k=2

m− 2k − 2(1− x)m−k

(
x− 1

m

)k−2

+
1
m

(
x− 1

m

)
·

m∑

k=1

Cm−1
k−1 (1− x)m−k

(
x− 1

m

)k−1
)

= x2,

which means that (3.2)-(3.4) hold.
By using the relations (3.2)-(3.4) we have that

(T∗m,0B
∗
m)(x) = (B∗

me0)(x) = (m−1)x
mx−1 ,

(T ∗m,1B
∗
m)(x) = m(B∗

mψx)(x) = m((B∗
me1)(x) −

x(B∗
me0)(x))

= mx(x−1)
mx−1 ,

(T ∗m,2B
∗
m)(x) = m2(B∗

mψ2
x)(x)

= m2((B∗
me2)(x)−2x(B∗

me1)(x)+x2(B∗
me0)(x)), from

where (3.5)-(3.7) follows.
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Lemma 2.We have that

B0(x) = lim
m→∞

(T ∗m,0B
∗
m)(x) = 1 (15)

B2(x) = lim
m→∞

(T ∗m,2B
∗
m)(x)

m
= x(1− x) (16)

for anyx ∈
[

1
m0−1 , 1

]
and

(T ∗m,0B
∗
m)(x) ≤ m0 − 1 = k0 (17)

(T ∗m,2B
∗
m)(x)

m
≤ m0

4
= k2 (18)

for anyx ∈
[

1
m0−1 , 1

]
.

Proof.The relations (3.8)-(3.9) results immediately from

Lemma 1. The function x
mx−1 is decreasing on

[
1

m0−1 , 1
]
,

so the maximum is obtained forx = 1
m0−1 . On the

other hand, the inequalityx(1 − x) ≤ 1
4 holds, for any

x ∈
[

1
m0−1 , 1

]
. Then

(T∗m,2B∗m)(x)

m = m x
mx−1 x(1− x) ≤

m
4(m−m0+1) , and because m

m−m0+1 ≤ m0, for anym ∈
N, m ≥ m0, inequality (3.11) is obtained. Similarly, we
have that(Tm,0B

∗
m)(x) = (m − 1) x

mx−1 ≤ m−1
m−m0+1 ≤

m0 − 1, so (3.10) results.

Theorem 2.Let f : [0, 1] → R be a continuous function
on [0, 1]. Then

|(B∗
mf)(x)− f(x)| ≤ |f(x)| 1−x

mx−1 + x
mx−1(

m− 1 + 1
δ

√
(m− 1)x(1− x)

)
ω(f ; δ),

|(B∗
mf)(x)− f(x)| ≤ (m0−2)M

m−m0+1 + 2(m−1)
m−m0+1ω(

f ; 1
2
√

m−1

)
(18) for any

δ > 0,m ∈ N, m ≥ m0 andx ∈
[

1
m0−1 , 1

]
, where M=

sup
{
|f(x)| : x ∈

[
1

m0−1 , 1
]}

.

Proof.We have(B∗
mψ2

x)(x) = (T∗m,2B∗m)(x)

m2 and by taking

(3.7) into account we obtain(B∗
mψ2

x)(x) = x2(1−x)
mx−1 . Now,

by using Shisha-Mond Theorem (see [3]), we obtain in-
equality (3.12). We take that1−x

mx−1 ≤ m0−2
m−m0+1 , x

mx−1 ≤
1

m−m0+1 andx(1 − x) ≤ 1
4 for anyx ∈

[
1

m0−1 , 1
]
, any

m ∈ N,m ≥ m0 and we considerδ = 1
2
√

m−1
. Then,

from (3.12), (3.13) follows.

Lemma 3.Let f : [0, 1] → R be a continuous function on
[0, 1].

There existsm(0) so that
∣∣∣∣(B∗

mf)(x)− (m− 1)x
mx− 1

f(x)
∣∣∣∣ (19)

≤ 5m0 − 1
4

ω

(
f ;

1√
m

)
,

|(B∗
mf)(x)− f(x)| ≤ |f(x)| 1− x

mx− 1
(20)

+
5m0 − 1

4
ω

(
f ;

1√
m

)

for anyx ∈
[

1
m0−1 , 1

]
and anym ∈ N , m ≥ m(0), m(0)

introduced in Theorem 1.

Proof.The relations (3.14) results from Theorem 1 fors =
0, Lemma 1 and Lemma 2. By using the inequality

|a− c| − |b− c| ≤ |a− b|, wherea, b, c ∈ R, we have
that

|(B∗
mf)(x)− f(x)| −

∣∣∣∣
(m− 1)x
mx− 1

f(x)− f(x)
∣∣∣∣

≤
∣∣∣∣(B∗

mf)(x)− (m− 1)x
mx− 1

f(x)
∣∣∣∣ ,

and taking (3.14) into account, the inequality (3.15) is ob-
tained.

Theorem 3.Let f : [0, 1] → R be a continuous function
on [0, 1]. Then

lim
m→∞

(B∗
mf)(x) = f(x) (21)

uniformly on
[

1
m0−1 , 1

]
. There existsm(0) so that

|(B∗
mf)(x)− f(x)| ≤ (m0 − 2)M

m−m0 + 1
(22)

+
5m0 − 1

4
ω

(
f ;

1√
m

)

for anyx ∈
[

1
m0−1 , 1

]
and anym ∈ N , m ≥ m(0).

Proof.By using the inequality 1−x
mx−1 ≤ m0−2

m−m0+1 demon-
strated in Theorem 2 and taking (3.15) into account, the in-
equality (3.17) is obtained. The relation (3.16) results from
(3.17).

Theorem 4.Let f : [0, 1] → R be a continuous

function on [0, 1]. If x ∈
[

1
m0−1 , 1

]
, f is two times

differentiable in x and f (2) is continuous inx, then

lim
m→∞

m

(
(B∗

mf)(x)− (m− 1)x
mx− 1

f(x)
)

= (x− 1)f (1)(x) +
x(1− x)

2
f (2)(x),

lim
m→∞

m ((B∗
mf)(x)− f(x))

=
1− x

x
f(x) + (x− 1)f (1)(x) +

x(1− x)
2

f (2)(x).

Proof.Relation (3.18) results from Theorem 1 fors = 2,
Lemma 1 and Lemma 2. From (3.18), it results (3.19).

Remark.Theorem 4 is a Voronovskaja’s type theorem.
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