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1 Introduction, motivation and preliminaries

Many papers and monographs concern the abstract equation

BMu−Lu = f , (1)

where B, M, L are closed linear operators on the complex Banach space E with D(L) ⊆ D(M), 0 ∈ ρ(L), the resolvent of
L, f ∈ E and u is the unknown. The first approach to handle existence and uniqueness of the solution u to (1) was given
by Favini-Yagi [1], see in particular the monograph [2]. By using the real interpolation space (E,D(B))θ ,∞, 0 < θ < 1,
see [3], [4], suitable assumptions on the operators B, M, L guarantee that (1) has a unique solution. Notice that different
approaches are presented in literature, but in general only weak solutions are found, see Carroll-Showalter [5]. The quoted
result was improved by Favini, Lorenzi, Tanabe in [6]. Very recently, an extension to interpolation spaces (E,D(B))θ ,p ,
1 < p < ∞, was obtained by Al Horani et al., see [7], see also [8], [9]-[11].

Here we indicate the basic assumptions:

(H1) Operator B has a resolvent (z−B)−1 for any z ∈ C, Rez < a, a > 0 satisfying

‖(z−B)−1‖L (E) ≤
c

|Rez|+ 1
, Rez < a . (2)

(H2) Operators L, M satisfy the resolvent estimate

‖M(zM −L)−1‖L (E) ≤
c

(|z|+ 1)β
(3)

for any z ∈ Σα :=
{

z ∈ C : Rez ≥−c(1+ |Imz|)α , c > 0, 0 < β ≤ α ≤ 1
}

.

(H3) Let A be the possibly multivalued linear operator A = LM−1, D(A) = M(D(L)). Then A and B commute in the
resolvent sense:

B−1A−1 = A−1B−1 .

Al Horani et al. [8] obtain the following:
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Theorem 1.Let α + β > 1, 2−α − β < θ < 1. Then, under hypotheses (H1)-(H3), equation (1) admits a unique strict

solution u such that Lu, BMu ∈ (E,D(B))ω,p , ω = θ − 2+α +β , 1 < p ≤ ∞, provided that f ∈ (E,D(B))θ ,p.

Notice that if B generates a bounded c0−group in E or −B generates a bounded c0−semigroup in E , then assumption
(H1) holds.

In order to introduce another important example of operator B, we recall that a linear operator B on the complex
Banach space E is said to be positive of type ω , ω ∈ (0,π), if

{

z ∈ C\{0}, |Argz|> ω
}

∪{0} ⊆ ρ(B)

and for all ε ∈ (0,π −ω), there exists µ(ε)> 0 such that

‖z(z−B)−1‖L (E) ≤ µ(ε) (4)

for all z ∈ C\{0}, |Argz| ≥ ω + ε . If B is a positive operator on E of type ω and δ ∈ R+, one sets

B−δ :=−
1

2π i

∫

Γ (Φ ,R)
z−δ (z−B)−1 dz ,

with Φ ∈ (ω ,π), R > 0 such that {z ∈ C : |z| ≤ R} ⊆ ρ(B), Γ (Φ,R) being a piecewise C1 path describing

{

z ∈ C; |z| ≥ R, |Argz|= Φ
}

∪
{

z ∈ C; |z|= R, |Argz| ≤ Φ
}

oriented from ∞e−iΦ to ∞eiΦ . We shall write z ∈ Γ (Φ,R) to indicate that z belongs to the range of Γ (Φ,R).
If X is a complex Banach space, we introduce operator BX by

BX :
{

v ∈C1([0,T ];X); v(0) = 0
}

−→C([0,T ];X)

BX v := Dtv . (5)

Then ρ(BX) = C and BX is a positive operator in C([0,T ];X) of type π/2.

If δ > 0, for any f ∈C([0,T ];X) and any t ∈ [0,T ], operator B−δ
X is given by

B−δ
X f (t) =

1

Γ (δ )

∫ t

0
(t − s)δ−1 f (s)ds.

One sees easily that for all δ ∈ R+, B−δ
X is injective, so that we can define for all δ ∈ R+

Bδ
X = (B−δ

X )−1 .

The following well-known result holds.

Proposition 1. If δ ∈ (0,2), Bδ
X is positive of type

δπ

2
.

Notice that for every c ∈C, operator c+Bδ
X , δ ∈ (0,2), is positive of type

δπ

2
, too.

Proposition 2. Let 0 ≤ α0 < α1, ξ ∈ (0,1), (1− ξ )α0 + ξ α1 /∈N; then

(

D(B
α0
X ),D(Bα1

X )
)

ξ ,∞
=
{

f ∈C(1−ξ )α0+ξ α1([0,T ];X) , f (k)(0) = 0, for all k ∈ N0 ,

k < (1− ξ )α0+ ξ α1 , N0 = N∪{0}
}

with equivalent norms . Of course, if α0 = 0, then D(B0
X) = D(I) =C([0,T ];X). In particular,

(

C([0,T ];X),D(Bα1
X )
)

ξ ,∞
=
{

f ∈Cξ α1([0,T ];X) , f (k)(0) = 0, for all k ∈N0 , k < ξ α1

}

.
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Let now α̃ ∈ (0,1]. Since Bα̃
X is positive of type α̃π

2
≤ π

2
, we deduce that it satisfies assumption (H1) . Therefore, if M,

L are two operators satisfying (H2) in X and B−1
X ML−1 = ML−1B−1

X , we can apply Theorem 1 to the equation

Bα̃
X Mu−Lu = f ∈

(

C([0,T ];X),D(Bα̃
X )
)

θ ,∞
, (6)

α +β > 1, 2−α −β < θ < 1. We shall establish precisely this result and focus on some examples. Then we apply the
previous general result to

D
α̃
X Mu−Lu = f , (7)

where Dα̃
X denotes the Caputo derivative of order α̃ > 0, i.e.,

D
α̃
X u(t) :=

1

Γ (n− α̃)

∫ t

0
(t − s)n−α̃−1u(n)(s)ds , t ∈ [0,T ] ,

where n := ⌈α̃⌉ is the smallest integer greater than or equal to α̃ , see [12]. We shall also study some related inverse
problems. We refer to Guidetti [13] and Bazhlekova [14] for results concerning nondegenerate problems. In particular, we

recall that, see Guidetti [13], Definition 2.2, if α̃ ∈R
+, u ∈C⌈α̃⌉([0,T ];X), then Caputo derivative Dα̃

X of order α̃ exists if

u− ∑
k<α̃

tk

k !
u(k)(0) belongs to D

(

Bα̃
X

)

and

D
α̃
X u := Bα̃

X

(

u− ∑
k<α̃

tk

k !
u(k)(0)

)

.

At last, we consider an abstract equation, generalizing second-order equation in time.
The paper is organized as follows: In Section 2 we apply Theorem 1 to equation (6); some examples illustrating our

abstract results are also given. In Section 3 we apply the previous general result to equation (7) and give some examples. In
Section 4 we study some related inverse problems. Section 5 is devoted to an abstract equation, generalizing second-order
equation in time; an example illustrates our results is also given.

2 Equation: Bα̃
X My−Ly = f

Taking into account the previous results in Section 1, we can consider and solve the initial value problem

∂ α̃

∂ t α̃
My(t) = Bα̃

X My(t) = Ly(t)+ f (t), 0 ≤ t ≤ T , (8)

(My)(0) = My0, y0 ∈ D(L) . (9)

We write
∂ α̃

∂ t α̃
My(t) =

∂ α̃

∂ t α̃
[My(t)−My0]+

∂ α̃

∂ t α̃
My0 ,

so that, if
∂ α̃

∂ t α̃
My0 = 0, then

∂ α̃

∂ t α̃
[My(t)−My0] =

∂ α̃

∂ t α̃
My(t). Hence (8) reads

∂ α̃

∂ t α̃

[

M(y(t)− y0)
]

= L
[

y(t)− y0

]

+ f (t)+Ly0 , 0 ≤ t ≤ T .

Applying Theorem 1, we conclude that if f (·)+Ly0 ∈
(

C([0,T ];X),D(Bα̃
X )
)

θ ,∞
, i.e., f ∈Cθα̃([0,T ];X), f (0)+Ly0 = 0,

then problem (8)-(9) admits a unique strict solution y(·) such that Ly(·),
∂ α̃

∂ t α̃
(My)(·) ∈Cωα̃([0,T ];X), ω = θ −2+α+β .

This result can be written as follows:

Theorem 2. Let operators L, M satisfying (H2), α +β > 1, 0< β ≤α ≤ 1. Take 0< α̃ ≤ 1, y0 ∈ D(L),
∂ α̃

∂ t α̃
My0 = 0. Then

problem (8)-(9) admits a unique strict solution y(·) such that Ly(·),
∂ α̃

∂ t α̃
(My)(·) ∈ Cωα̃ ([0,T ];X), ω = θ − 2+α + β ,

2−α −β < θ < 1, provided that f ∈Cθα̃ ([0,T ];X) and f (0)+Ly0 = 0.
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Example 1.Consider

∂ α̃

∂ t α̃
m(x)v = ∆v− cv+ f (x, t), (x, t) ∈R

n × [0,T ] ,

m(x)v(x,0) = m(x)v0(x), x ∈ R
n ,

where m(x) ≥ 0 in R
n with m ∈ L∞(Rn), c > 0 is a constant. Taking X = H−1(Rn), M the multiplication operator by

the function m(x), L = ∆ − c : H1(Rn) → H−1(Rn), it is seen in Favini-Yagi [2], p. 81, that assumption (H2) holds for
α = β = 1. If we take X = L2(Rn), then it is shown that (H2) holds for α = 1, β = 1/2, see [2], p. 81, see also [1].

Operator Bα̃
X , 0 < α̃ ≤ 1, satisfies (H1) and clearly (H3) holds, so Theorem 2 can be applied in both cases.

Example 2.Consider for 0 < α̃ ≤ 1,

∂ α̃

∂ t α̃

(

(

1−
∂ 2

∂x2

)

v

)

=−
∂ 4v

∂x4
+ f (x, t), x ∈ [0,1], t ∈ [0,T ] ,

v(0, t) = v(1, t) =
∂ 2v

∂x2
(0, t) =

∂ 2v

∂x2
(1, t) = 0 , 0 < t < T ,

(

1−
∂ 2

∂x2

)

v(x,0) = u0(x) .

Take X = L2(0,1). If P =−
d2

dx2
with D(P) =H2(0,1)∩H1

0 (0,1), P is a positive self- adjoint operator in X and M = P+1,

L =−P2. One can easily show that all hypotheses (H1)-(H3) hold with α = β = 1. Moreover, existence, uniqueness and

regularity of solution are guaranteed provided that u0(x) =
(

1−
∂ 2

∂x2

)

v0(x), v0 ∈ H2(0,1)∩H1
0 (0,1), see Favini-Yagi [2],

p. 73.

If we take X =L2(0,1), M = 1−
d2

dx2
with D(M) =H2(0,1)∩H1

0 (0,1) and L=−
d4

dx4
with D(L) =H4(0,1)∩H2

0 (0,1),

then one can see that hypothesis (H2) holds for α = 1, β = 1/2. Therefore, Theorem 2 applies again.

Example 3.Consider the fractional Poisson-heat equation

∂ α̃

∂ t α̃
(m(x)v) = ∆v+ f (x, t), x ∈ Ω , t ∈ [0,T ] ,

v = 0 , x ∈ ∂Ω , t ∈ [0,T ] ,

m(x)v(x,0) = m(x)v0(x) f orsome v0 ∈ H2(Ω)∩H1
0 (Ω) ,

Ω being a bounded region in Rn with a smooth boundary ∂Ω . Here m(x) ≥ 0 in Ω is a given function in L∞(Ω). It
is shown in Favini-Yagi [2], p. 76, formula (3.41), that multiplication operator M by m(·) and operator L = ∆ , with
D(L) = H2(Ω)∩H1

0 (Ω) satisfy hypothesis (H2) in L2(Ω) for α = 1, β = 1/2. Remember that 0 < α̃ ≤ 1. Suppose that

0 < β ≤ α ≤ 1, α +β > 1,
∂ α̃

∂ t α̃
(Mv0) = 0. Then the above problem admits a unique strict solution v such that

∂ α̃

∂ t α̃
(Mv),

∆v(·) ∈Cωα̃
(

[0,T ];L2(Ω)
)

, ω = θ − 1/2, 1/2 < θ < 1, provided that f (x,0)+∆v0(x) = 0, f ∈Cθα̃
(

[0,T ];L2(Ω)
)

.

3 Caputo fractional derivative

In this section we consider the initial value problem

D
α̃
X (Mu(t))−Lu(t) = f (t), t ∈ [0,T ] , (10)

(Mu)(0) = Mu0 , u0 ∈ D(L) , (11)

where 0 < α̃ ≤ 1 and Dα̃
X denotes the Caputo derivative of order α̃ . Since 0 < α̃ ≤ 1, we know that Dα̃

X u(t) = Bα̃
X

(

u(t)−

u(0)
)

= Bα̃
X

(

u(t)− u0

)

, and thus problem (10)-(11) is reduced, equivalently, to

Bα̃
X(Mu(t)−Mu0) = Lu(t)+ f (t), t ∈ [0,T ] , (12)

M(u(t)− u0)|t=0 = 0 . (13)
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Since u0 ∈ D(L), we can represent (12)-(13) in the form

Bα̃
X

(

M(u(t)− u0)
)

= L
(

u(t)− u0

)

+Lu0 + f (t), t ∈ [0,T ] ,

M(u(t)− u0)|t=0 = 0 .

Call u(t)− u0 = v(t), t ∈ [0,T ]. Then we get the problem

Bα̃
X (Mv) = Lv+Lu0 + f (t), t ∈ [0,T ] ,

(Mv)(0) = 0 .

Therefore, we can immediately apply Theorem 2 and obtain

Theorem 3. Let operators L, M satisfying (H2), α + β > 1, 0 < β ≤ α ≤ 1, 0 < α̃ ≤ 1, u0 ∈ D(L). Then problem

(10)-(11) admits a unique strict solution u(·) such that L
(

u(·)− u0

)

, Bα̃
X

(

M(u(·)− u0)
)

= D
α̃
X Mu ∈ Cωα̃([0,T ];X), ω =

θ − 2+α +β , 2−α −β < θ < 1, provided that f ∈Cθα̃([0,T ];X), f (0)+Lu0 = 0.

Of course, Example 1, Example 2 and Example 3 can be adapted to handle Caputo fractional derivative instead of Dα̃
X ,

i.e.,
∂ α̃

∂ t α̃
.

Example 4.Consider the problem in Lp(Ω), 1 < p < ∞,

D
α̃
Lp(Ω)m(x)v = ∆v− cv+ f (x, t), (x, t) ∈ Ω × [0,T ] ,

v = 0, (x, t) ∈ ∂Ω × [0,T ] ,

m(x)v(x,0) = m(x)v0(x), x ∈ Ω ,

in a bounded region Ω ⊆Rn, where m(x)≥ 0 and m ∈ L∞(Ω), c is a positive constant, M is the multiplication operator by

the function m(x) in Lp(Ω), L = ∆ − c : W 2,p(Ω)∩W
1,p

0 (Ω) → Lp(Ω), 1 < p < ∞. Then one sees, cfr. Favini-Yagi [2],
pp. 79-80, that assumption (H2) holds for α = 1, β = 1/p.

If 2 < p < ∞, and the stronger condition m ∈C1(Ω ), with

|∇m(x)| ≤ c(m(x))ρ , x ∈ Ω , 0 < ρ ≤ 1

holds, then we obtain a better exponent β =
2

p(2−ρ)
(>

1

p
).

Example 5.Consider the problem

D
α̃
X

(

1+
∂ 2

∂x2

)

v =
∂ 2v

∂x2
+ f (x, t), x ∈ [0, lπ ], t ∈ [0,T ] ,

v(0, t) = v(lπ , t) = 0 , t ∈ [0,T ] ,
(

1+
∂ 2

∂x2

)

v(x,0) =
(

1+
∂ 2

∂x2

)

v0(x) , x ∈ [0, lπ ],

where l is a positive integer.

Various choices of the space X are possible, but we take

X = { f ∈C([0, lπ ];C) : f (0) = f (lπ) = 0} .

Operators M and L are introduced correspondingly, for example

D(L) =
{

v ∈C2([0, lπ ];C) : v(0) = v(lπ) = v′′(0) = v′′(lπ) = 0
}

,

Lv =
∂ 2v

∂x2
, v ∈ D(L) .

Then one can see that hypothesis (H2) holds for α = β = 1, cfr. Favini-Yagi [2], p. 85.
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4 Inverse problems

Following previous methods, we could consider an inverse problem as follows. To find a pair (y, f ) ∈ C([0,T ];D(L))×
C([0,T ];C) satisfying the inverse problem

Bα̃
X My(t) = Ly(t)+ f (t)z+ h(t), 0 ≤ t ≤ T , (14)

(My)(0) = My0 , (15)

Φ[My(t)] = g(t), 0 ≤ t ≤ T , (16)

where M, L are closed linear operators on the complex Banach space X with D(L) ⊆ D(M), 0 ∈ ρ(L), z ∈ X ,
h ∈C([0,T ];X), y0 ∈ D(L), Φ ∈ X∗, g ∈C([0,T ];C). Clearly, the compatibility relation

Φ[My0] = g(0)

must hold. To reduce such an inverse problem to a direct one, we need the following important step:

Bα̃
C

Φ[u] = Φ[Bα̃
X u].

Proof. Using [15], one obtains that for u ∈ D(BX)and f ∈ D(BC)

Bα̃
X u =

sinπα̃

π

∫ ∞

0
lα̃−1BX(l +BX)

−1udl, (17)

Bα̃
C

f =
sinπα̃

π

∫ ∞

0
lα̃−1BC(l +BC)

−1 f dl, (18)

respectively.
If u is a function with values in X defined in [0,T ], Φ[u] denotes the function defined by Φ[u](t) = Φ[u(t)], 0 ≤ t ≤ T .

It is evident that if u ∈ D(BX), then Φ[u] ∈ D(BC).
Let u ∈ D(BX). Then, in view of (17) one has

Φ[Bα̃
X u] =

sin πα̃

π

∫ ∞

0
lα̃−1Φ[BX (l +BX)

−1u]dl. (19)

Since

Φ[BX(l +BX)
−1u](t) = Φ[BX(l +BX)

−1u(t)] = Φ

[

Dt

∫ t

0
e−l(t−s)u(s)ds

]

= DtΦ

[

∫ t

0
e−l(t−s)u(s)ds

]

= Dt

∫ t

0
e−l(t−s)Φ[u(s)]ds = Dt

∫ t

0
e−l(t−s)Φ[u](s)ds

= Dt(BC+ l)−1Φ[u](t) = BC(BC+ l)−1Φ[u](t),

one has with the aid of (19) and (18)

Φ[Bα̃
X u] =

sinπα̃

π

∫ ∞

0
lα̃−1BC(BC+ l)−1Φ[u]dl = Bα̃

C
Φ[u]. (20)

Suppose u ∈ D(Bα̃
X ). Set un = n(n+BX)

−1u for n = 1,2, · · · . Then un ∈ D(BX), and

un → u

Bα̃
X un = n(n+BX)

−1Bα̃
X u → Bα̃

X u.

Furthermore applying (20) to un

Φ[Bα̃
X un] = Bα̃

CΦ[un].

Since

‖Φ[Bα̃
X un]−Φ[Bα̃

X u]‖= ‖Φ[Bα̃
X un −Bα̃

X u]‖= sup
0≤t<∞

|Φ[Bα̃
X un(t)−Bα̃

Xu(t)]|

≤ ‖Φ‖X∗ sup
0≤t<∞

‖Bα̃
X un(t)−Bα̃

Xu(t)‖X = ‖Φ‖X∗‖Bα̃
X un −Bα̃

X u‖→ 0,
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one has

Φ[un]→ Φ[u], Φ[Bα̃
X un]→ Φ[Bα̃

X u].

Therefore Φ[u] ∈ D(Bα̃
C
) and Bα̃

C
Φ[u] = Φ[Bα̃

X u] ∀u ∈ D(Bα̃
X ). �

Now, by applying Φ to both sides of equation (14), we get

Bα̃
C

g(t) = Φ[Ly(t)]+Φ[h(t)]+ f (t)Φ[z] .

If Φ[z] 6= 0, then necessarily

f (t) =
1

Φ[z]

{

Bα̃
C

g(t)−Φ[Ly(t)]−Φ[h(t)]
}

.

Therefore, we obtain the direct problem

Bα̃
X My(t) = Ly(t)−

Φ[Ly(t)]

Φ[z]
z+ h(t)−

Φ[h(t)]

Φ[z]
z+

Bα̃
C

g(t)

Φ[z]
z , t ∈ [0,T ] (21)

(My)(0) = My0 . (22)

Let L1 be the operator defined by

D(L1) = D(L), L1y =−
Φ[Ly]

Φ[z]
z .

Then Problem (21)-(22) reduces to

Bα̃
X My(t) = (L+L1)y(t)+ h(t)−

Φ[h(t)]

Φ[z]
z+

Bα̃
C

g(t)

Φ[z]
z , t ∈ [0,T ] (23)

(My)(0) = My0 . (24)

Introduce the multivalued linear operator A := LM−1, D(A) = M(D(L)), so that (H2) holds. This means that ‖(zI −

A)−1‖L (X) ≤
c

(1+ |z|)β
, z ∈ Σα . Theorem 1 in [16], pp. 148-149, see also Lorenzi [17], affirms that if (H2) holds and

L1 ∈ L

(

D(L),Xθ1
A

)

, 1−β < θ1 < 1, where

X
θ1
A =

{

u ∈ X , sup
t>0

tθ1‖A0(t −A)−1u‖X < ∞

}

,

with A0(t −A)−1 =−I+ t(t −A)−1, then

‖M(zM−L−L1)
−1‖L (X) ≤ c(1+ |z|)−β , ∀z ∈ Σα , |z| large .

In order to apply this result to our case, we must assume that z ∈ X
θ1
A for some θ1 ∈ (1−β ,1). Then problem (23)-(24)

admits a unique strict solution y such that Ly,
∂ α̃

∂ t α̃
(My) ∈ Cωα̃([0,T ];X), ω = θ − 2+α +β , provided that α +β > 1,

0< β ≤α ≤ 1, 0< α̃ ≤ 1, Bα̃
C

g(t)∈Cθα̃([0,T ];C), h∈Cθα̃([0,T ];X), Ly0−
Φ[Ly0]

Φ[z]
z+

Bα̃
C

g(0)

Φ[z]
z−

Φ[h(0)]

Φ[z]
z+h(0)= 0.

The construction of the solution tells us that the corresponding function f (·) belongs to C([0,T ];C). Indeed, Bα̃
C

g(·) ∈

Cθα̃([0,T ];C), h ∈ Cθα̃([0,T ];X), Ly ∈ Cωα̃([0,T ];X), so that f ∈ Cωα̃ ([0,T ];C). The same argument applies to the
corresponding inverse problem related to the Caputo fractional derivative

D
α̃
X My(t) = Ly(t)+ f (t)z+ h(t), 0 ≤ t ≤ T .

5 Generalized higher-order abstract equations

Let us consider the abstract equation, generalizing second-order equation in time,

B2CB1u+BB1u+Au = f ,
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where A, B, C are some closed linear operators in the complex Banach space X , while B1 and B2 are suitable operators
defined on suitable Banach spaces. The change of variables B1u = v transforms the given equation to the system

B1u = v ,

B2Cv+Bv+Au= f ,

which is written in the matrix form
[

B1 0
0 B2

][

I 0
0 C

][

u

v

]

+

[

0 −I

A B

][

u

v

]

=

[

0
f

]

with a convenient product space and related domains of operator matrices. Noting

B=

[

B1 0
0 B2

]

, M =

[

I 0
0 C

]

, L =

[

0 I

−A −B

]

, F =

[

0
f

]

,

it assumes the form
(BM −L)U = F , U = (u,v)T .

Here we do not use the assumption D(B)⊆ D(A)∩D(C). Moreover, it is not restrictive to assume that D(B)⊆ D(C) and
this assumption shall be maintained in the sequel. Of course the essential step is to invert P(z) = z2C+ zB+A under the
possibility that AB−1 is not a bounded operator. To this end, we introduce the multivalued linear operator

V = BC−1 , D(V ) = {Cx; x ∈ D(B)}

and the closed linear operator U = AB−1 (assuming that 0 ∈ ρ(A) guarantees that this is true). Here we assume

Assumption 1: The C modified resolvent set ρC(−B) contains

Σα :=
{

z ∈ C : Rez ≥−c(1+ |Imz|)α , c > 0, 0 < β ≤ α ≤ 1
}

,

such that
‖C(zC+B)−1‖L (X) ≤

c1

(1+ |z|)β
, z ∈ Σα . (25)

Assumption 2:

‖B(zB+A)−1‖L (X) ≤
c

(1+ |z|)γ
, ∀z ∈ Σα , (26)

where 0 < γ ≤ 1.

Assumption 3: D(V )⊆ D(U) and there is δ > 0 such that

‖U(z+V)−1‖L (X) ≤
c

(1+ |z|)δ
, ∀z ∈ Σα , |z| large . (27)

Assumption 3 is essential and crucial in the arguments. Taking into account Assumptions: 1-3, one recognizes that the
following improvement of Favini-Yagi, Theorem 6.3, pp. 186-187, holds. Indeed, one takes

D(M) = D(B)×D(B) , M(u,v)T = (u,Cv)T ,

D(L) = D(A)×D(B) , L(u,v)T = (v,−Au−Bv)T

and D(B)×X as a pivot space. Then, see Favini-Yagi, p. 187,

‖M(zM −L)−1‖L (D(B)×X) ≤ c |z|1−(γ+β ) , ∀z ∈ Σα .

Now, we take B1 as Bα̃
D(B)

and B2 as B
β̃
X , 0 < α̃, β̃ ≤ 1. Thus

(

C([0,T ];D(B)), D(Bα̃
D(B))

)

ξ ,∞
=
{

f ∈Cξ α̃([0,T ];D(B)) : f (0) = 0
}

while
(

C([0,T ];X), D(B
β̃
X )
)

ξ ,∞
=
{

f ∈Cξ β̃ ([0,T ];X) : f (0) = 0
}

.
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Therefore, applying Theorem 1, we get that

[

B1 0
0 B2

][

I 0
0 C

][

u

v

]

+

[

0 −I

A B

][

u

v

]

=

[

0
f

]

∈

(

C([0,T ];D(B)), D(Bα̃
D(B))

)

θ ,∞
×
(

C([0,T ];X), D(B
β̃
X)
)

θ ,∞

=
{

w ∈Cθα̃([0,T ];D(B)) : w(0) = 0
}

×
{

v ∈Cθβ̃ ([0,T ];X) : v(0) = 0
}

admits a unique strict

solution (u,v) such that
[

B1 0
0 B2

][

I 0
0 C

][

u

v

]

,

[

0 −I

A B

][

u

v

]

∈

=
{

w ∈Cωα̃([0,T ];D(B)) : w(0) = 0
}

×
{

v ∈Cωβ̃ ([0,T ];X) : v(0) = 0
}

provided that α + β +

γ > 2, 3−α − β − γ < θ < 1, ω = θ +α + β + γ − 3, i.e., Bα̃
D(B) u = v ∈ Cωα̃([0,T ];D(B)) , v(0) = 0, B

β̃
X Cv =

B
β̃
X CBα̃

D(B) u ∈Cωβ̃ ([0,T ];X),
(

B
β̃
X Cv

)

(0) = 0, Au+BBα̃
D(B)u∈Cωβ̃ ([0,T ];X),

(

Au+BBα̃
D(B)u

)

(0) = 0. Therefore, for all f ∈Cθβ̃ ([0,T ];X) , f (0) =

0, α +β + γ > 2, 3−α −β − γ < θ < 1, the problem

B
β̃
X CBα̃

D(B) u(t)+BDα̃
D(B)u(t)+Au(t) = f (t) , 0 ≤ t ≤ T ,

u(0) = 0 , CBα̃
D(B)u(0) = 0

admits a unique strict solution u such that v = Bα̃
D(B)u ∈ Cωα̃([0,T ];D(B)), Au + BBα̃

D(B)u ∈ Cωβ̃ ([0,T ];X),
(

Au+BBα̃
D(B)u

)

(0) = 0,
(

B
β̃
X CBα̃

D(B)u
)

(0) = 0.

Let us consider the inverse problem to find (u, f ) ∈C([0,T ];D(A))×C([0,T ];C) such that

B
β̃
X CBα̃

D(B) u(t)+BDα̃
D(B)u(t)+Au(t) = f (t)z+ h(t) , 0 ≤ t ≤ T , (28)

u(0) = Dα̃
D(B) u(0) = 0 , (29)

Φ[Cu(t)] = g(t) , (30)

where z fixed in X , g ∈Cα̃+β̃ ([0,T ];C). Applying Φ to both sides of equation (28), we get

B
α̃+β̃
C

g(t)+Φ[Bv(t)]+Φ[Au(t)] = f (t)Φ[z]+Φ[h(t)] .

Assume Φ[z] 6= 0 and recall that v(t) = Dα̃
D(B) u(t), so that necessarily

f (t) = (Φ[z])−1
{

B
α̃+β̃
C

g(t)+Φ[Bv(t)]+Φ[Au(t)]−Φ[h(t)]
}

. (31)

After substituting such a value of f in (28), we obtain the direct problem

B
β̃
X CBα̃

D(B) u(t)+BDα̃
D(B)u(t)−

Φ[BDα̃
D(B) u(t)]

Φ[z]
z+Au(t)−

Φ[Au(t)]

Φ[z]
z

= h(t)−
Φ[h(t)]

Φ[z]
z+

B
α̃+β̃
C

g(t)

Φ[z]
z 0 ≤ t ≤ T ,

u(0) = 0 =CBα̃
D(B)u(0) .

Introducing the new variable Bα̃
D(B) u = v, we get

B
β̃
X Cv(t)+Bv(t)+B1v(t)+Au(t)+B0u(t)

= h(t)−
Φ[h(t)]

Φ[z]
z+

B
α̃+β̃
C

g(t)

Φ[z]
z 0 ≤ t ≤ T ,
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where

D(B1) = D(B), B1v =−
Φ[Bv]

Φ[z]
z , v ∈ D(B1) ,

D(B0) = D(A), B0u =−
Φ[Au]

Φ[z]
z , u ∈ D(B0) .

Therefore, we get the direct problem

Bα̃
D(B)u(t) = v(t) , (32)

B
β̃
X Cv(t)+ (A+B0)u(t)+ (B+B1)v(t) = h(t)−

Φ[h(t)]

Φ[z]
z+

B
α̃+β̃
C

g(t)

Φ[z]
z . (33)

We know that :
‖M(zM−L1)

−1‖L (D(B)×X) ≤ c|z|1−(γ+β ) ,

where

M =

[

1 0
0 C

]

, D(M) = D(B)×D(B) ,

L1 =

[

0 0
−B0 −B1

]

, D(L1) = D(L) = D(A)×D(B) .

It follows that the modified resolvent for the system (32)-(33) is

‖M(zM−L−L1)
−1‖L (D(B)×X)

and the resolvent estimate is equal to the previous one, provided that, see [18],
[

0 0
−B0 −B1

]

∈ L
(

D(A)×D(B),Xδ
LM−1

)

, δ > β + γ − 1 ,

where Xδ
LM−1 =

{

(u,v) ∈ D(B)×X ; sup
0<k<t<∞

tδ‖L(tM−L)−1(u,v)T‖D(B)×X < ∞

}

= sup
0<k<t<∞

tδ

∥

∥

∥

∥

∥

[

0 1
−A −B

](

t

[

1 0
0 0

]

+

[

0 −1
A B

])−1 [
u

v

]

∥

∥

∥

∥

∥

D(B)×X

= sup
0<k<t<∞

tδ

∥

∥

∥

∥

∥

[

0 1
−A −B

][

t −1
A tC+B

]−1 [
u

v

]

∥

∥

∥

∥

∥

D(B)×X

.

On the other hand, it is very difficult to characterize such a space, but we observe that MD(L) = D(LM−1) ⊆ Xδ
LM−1 and

thus it suffices to suppose that
[

0 0
−B0 −B1

]

∈ L

(

D(A)×D(B),M(D(L))
)

.

Now, M(D(L)) =

[

1 0
0 C

][

D(A)
D(B)

]

= D(A)×C(D(B)).

Since

B0u+B1v =
Φ[Au]

Φ[z]
z+

Φ[Bv]

Φ[z]
z,

[

0 0
−B0 −B1

][

u

v

]

=

[

0
−B0u−B1v

]

=

[

0

−Φ [Au]
Φ [z]

z− Φ [Bv]
Φ [z]

z

]

.

If z =Cz̄, with z̄ ∈ D(B),
[

0

C
(

−Φ [Au]
Φ [Cz̄]

− Φ [Bv]
Φ [Cz̄]

)

z̄

]

=

[

1 0
0 C

]

[

0
(

−Φ [Au]
Φ [Cz̄]

− Φ [Bv]
Φ [Cz̄]

)

z̄

]

.

Thus, we can apply the previous result assuming equations in Sections 2-4. The details are left to the interested readers.
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Example 6.(see Favini-Yagi p. 203)
Let Ω be a bounded domain in Rn, n ≥ 1, with a smooth boundary ∂Ω , X = Lp(Ω), 1 < p < ∞, and let Y denote the

space W 2,p(Ω) ∩ W
1,p
0 . If ∆ is the Laplacian with D(∆) = Y and m is a positive integer, let

D(∆ m) =
{

u ∈ D(∆ m−1); ∆ m−1u ∈ Y
}

. Let m, and k be two fixed positive integers such that k < m and m + 1 < 2k.
Introduce the operators A, B, C on the space X by

D(A) = D(∆ m) , Au = (−1)m∆ mu , u ∈ D(A),

D(B) = D(∆ k) , Bu = (−1)k∆ ku , u ∈ D(B),

D(C) = Y , Cu = (1−∆)u , u ∈ Y .

It is well known that −AB−1 = −U generates an analytic semigroup in X . It is easy to verify that −BC−1 generates
another analytic semigroup in X , so that α = β = γ = 1. One may also observe that Assumption 3 is verified with
δ =

(

2k− (m+ 1)
)

(k− 1)−1, k > 1.

6 Conclusion

In conclusion, we have shown that initial value problems for degenerate evolution equations including Caputo fractional
derivative can be handled by means of a general abstract equation. Various examples of partial differential equations of
interest in applied mathematics clarifying our abstract results are given.
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