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Abstract: This paper investigates projective synchronization with time delay and parameter mismatch for a lately proposed simple yet
complex one-parameter chaotic system, and Rössler system as well. With an active control scheme, it is proved that the zero solution of
the dynamical error system is globally asymptotically stable based on Barbalat’s lemma. Numerical simulations verify the correctness
and effectiveness of the proposed method.
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1. Introduction

The synchronization of chaotic systems firstly appeared in
the article [1] by Pecora and Carroll, thereafter it has at-
tracted considerably increasing attention and has become a
hot research topic. It has shown that chaotic synchroniza-
tion has potential applications in secure communications
[2,3], as well as oscillator design. Now there are many
candidate chaotic systems, such as, famous Lorenz system
[4], Chen system [5], and the unified chaotic system [6,
7], even hyper-chaotic system. In 2012, Wang etc. found
a simple yet complex one-parameter chaotic system [8],
which has more simple algebraic structure and richer dy-
namic behaviors than the unified chaotic system. Perhaps it
can provide convenience for designing secure communica-
tion circuits, and enhances the security in communication.

Currently, there are several types of synchronization in
chaotic system: complete synchronization, phase synchro-
nization, generalized synchronization, anti-synchronization,
projective synchronization, and lag synchronization [10–
17]. Among these, projective synchronization refers to that
the corresponding state variables of the drive-response sys-
tems evolve in a proportional scale, including complete
synchronization and anti-synchronization. That the state
variable of the response system is synchronized with the
historical state variable of the drive system is called as lag
synchronization, which is more reasonable in engineering

applications because time delay exists inevitably for finite
signal transmission speeds in communication. Therefore,
projective lag synchronization, which can suit for more
practical cases, has attracted wide attention [18,19]. That
they have investigated projective lag synchronization be-
tween the drive-response systems is based on the same
chaotic system with identical system parameter, that is to
say, the drive-response systems are the same and have the
identical parameters. However, dynamical systems is eas-
ily perturbed by external forces, and it was found that syn-
chronization in two different types of chaotic oscillators
can occur in Refs. [20,21], this is very important in engi-
neering applications since no two oscillators can be iden-
tical in practical systems. Therefore, it is very meaningful
to study synchronization in chaotic systems with parame-
ter mismatch.

In this paper, combining the time delay and parame-
ter mismatch, we extend the case of parameter mismatch
in a chaotic system to that of parameter mismatch in a
class of chaotic systems, and firstly propose projective lag
synchronization in chaotic oscillators with parameter mis-
match. The rest of this paper is organized as follows. Pro-
jective lag synchronization and a new family of chaotic
system are introduced respectively in Section 2 and Sec-
tion 3 . The theoretical analysis and numerical results of
projective lag synchronization in a lately found chaotic
system with parameter mismatch, as well as Rössler sys-
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tem [22], are given in Section 4. Finally, some conclusions
are drawn in Section 5.

2. Projective lag synchronization with
parameter mismatch

Consider a drive system

ẋ = f(x) (1)

and the controlled response system

ẏ = f(y) + ∆f(y) + u(t) (2)

where,∆f(y) contains the mismatch parameter,x = (x1,
x2, · · · , xn)T andy = (y1, y2, · · · , yn)T are the state vec-
tors, andf : Rn → Rn is a continuous nonlinear vector
function,u(t) is the controller to be designed. Define the
error vectore(t) = y(t) − λx(t − τ) .= y − λxτ , where
λ is the nonzero scale factor,τ is a constant representing
time delay or lag. The dynamical error system is described
as follows:

ė = ẏ − λẋτ = f(y) + ∆f(y) + u(t)− λf(xτ ) (3)

Definition:(Projective lag synchronization) For any initial
values of systems (1) and (2), if the dynamical error sys-
tem (3) satisfies||e(t)|| → 0 ast → ∞, the zero solution
of the error system is said to be globally stable. The drive-
response systems (1) and (2) are said to be in projective
lag synchronization. Specifically, forλ = 1, τ = 0, it is
reduced to the traditionally global complete synchroniza-
tion. Forλ = −1, τ = 0, it is the traditionally global anti-
synchronization. Whenτ < 0, it is the globally projective
anticipating synchronization.

3. A new one-parameter chaotic system

Recently, Wang et al. [8] found a new family of chaotic
systems described by the following system





ẋ1 = −x1 − x2

ẋ2 = −x1 − x1x3 + rx2

ẋ3 = −0.1x3 + x1x2

(4)

with only one real parameterr, which can continuously
generate a variety of cascading Lorenz-like attractors. Al-
though this new family of chaotic systems has very rich
and complex dynamics, it has a very simple algebraic struc-
ture with only two quadric terms and all nonzero coef-
ficients in linear part being−1 except−0.1 and r. Sur-
prisingly, although this new system does not belong to the
family of Lorenz-type systems in some existing classifi-
cations such as the generalized Lorenz canonical form, it
can generate not only Lorenz-like attractors but also Chen-
like attractors, as shown in Fig 1. This reveals that further

study of the system algebraic structure and its effects on
the system dynamics remain an important and interesting
challenge. In addition, this system withr ∈ [0, 0.05) is
subtle, and contains somewhat complicated dynamical be-
haviors, but it is still chaotic. Whenr ∈ [0.05, 0.74), it has
several common features as that of the unified chaotic sys-
tem [7], which includes Lorenz system [4], Lü system [9]
and Chen system [5].
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Figure 1 The phase diagram of the new chaotic system.

4. Simulation examples

Choose this new chaotic system (4) as the drive system,
wherer is any value in[0, 0.74), implying that the system
is chaotic and contains some types of chaotic systems. The
controlled response system is described as





ẋ1 = −x1 − x2 + u1

ẋ2 = −x1 − x1x3 + rx2 + ∆rx2 + u2

ẋ3 = −0.1x3 + x1x2 + u3

(5)

Here,∆r is the mismatch in parameter,r andr + ∆r ∈
[0, 0.74). By active control technique, one can choose the
controllersu1 = e2, u2 = e1 − le2 + y1y3 − λx1τx3τ −
∆ry2, u3 = −y1y2 + λx1τx2τ . The error system can be
written as




ė1 = −e1 − e2 + u1 = −e1

ė2 = −e1 − y1y3 + λx1τx3τ + re2 + ∆ry2 + u2

= −(l − r)e2

ė3 = −0.1e3 + y1y2 − λx1τx2τ + u3 = −0.1e3

(6)
where,l is a constant andl > r. Construct a Lyapunov
function asV (t) = (e2

1+e2
2+e2

3)/2, and its time derivative
along the trajectories of the error system (6) is

V̇ (t) = ė1e1+ė2e2+ė3e3 = −e2
1−(l−r)e2

2−0.1e2
3 (7)

Denotem = min{l − r, 0.1}, one has

V̇ (t) ≤ −m[e2
1 + e2

2 + e2
3] ≤ 0 (8)
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Obviously 0 ≤ V (t) ≤ V (0), so the limit ofV (t) ex-
ists ast → ∞. From equation (8), one obtainse2

i ≤
− 1

m V̇ (t)(i = 1, 2, 3), and

lim
t→∞

∫ t

0

e2
i (t)dt ≤ − 1

m
lim

t→∞

∫ t

0

V̇ (t)dt

=
1
m

[V (0)− lim
t→∞

V (t)]
(9)

According to Barbalat’s lemma [23],ei(t) → 0(i = 1, 2, 3)
ast →∞. So the error system (6) is global asymptotically
stable at the origin, that is to say, the global asymptoti-
cal projective lag synchronization occurs between systems
(4) and (5) with parameter mismatch. In practice, the error
system easily converges to the origin in finite time.

Numerical simulations are shown in Fig. 2 withτ =
1, λ = 2 and in Fig. 3 withτ = 2, λ = −1. The synchro-
nization errors varying with time are shown in (a) of both
figures, implying that synchronization between the drive-
response systems can be easily achieved, and it clearly
founds that the third components of the new chaotic sys-
tem spare more time to synchronization than the other two.
Specifically, the first components of the drive-response sys-
tems evolving with time are plotted in (b), while the two-
dimensional and three-dimensional phase diagrams are dis-
played in (c) and (d) respectively. From all above panels,
in which the curves of the drive system are shown in blue,
and that of the response system in red, it is well shown
that the drive-response systems with parameter mismatch
are in lag synchronization in a proportional scale.

The R̈ossler system is further considered as the drive
system, 




ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = x3(x1 − c) + b
(10)

where,a = b = 0.2, andc is any value in the interval
[5, 10], implying that the system is chaotic. The controlled
system is described as follows:





ẏ1 = −y2 − y3 + u1

ẏ2 = y1 + ay2 + ∆ay2 + u2

ẏ3 = y3(y1 − c) + b + ∆cy3 + ∆b + u3

(11)

Here,∆a,∆b, and∆c are the mismatches of correspond-
ing parameters. In this paper, we let∆a = ∆b = 0, and
randomly choose∆c such thatc + ∆c ∈ [5, 10]. Let the
controllersu1 = e2 + e3 − e1, u2 = −e1 − le2, u3 =
−y1y3 + λx1τx3τ −∆cy3 + (λ− 1)b, then the error sys-
tem can be written as




ė1 = −e2 − e3 + u1 = −e1

ė2 = e1 + ae2 + u2 = −(l − a)e2

ė3 = y1y3 − λx1τx3τ − ce3 + ∆cy3 + (1− λ)b + u3

= −ce3

(12)
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Figure 2 Projective lag synchronization in newest chaotic sys-
tems under parameter mismatch (τ = 1, λ = 2). (a) The errorei

with time, (b) time series ofy1 andx1τ , (c) the two-dimensional
phase diagrams, (d) the three-dimensional phase diagrams.

Construct a Lyapunov functionV (t) = (e2
1 + e2

2 + e2
3)/2,

and its time derivative along the error system is

V̇ (t) = −e2
1 − (l − a)e2

2 − ce2
3 (13)

Choosel such thatl−a > 0, and letm = min{l−a, c, 1},
then

V̇ (t) ≤ −m[e2
1 + e2

2 + e2
3] ≤ 0 (14)

Similarly, according to Barbalat’s lemma,ei(t) → 0(i =
1, 2, 3) as t → ∞. Thus the error system (12) is global
asymptotically stable at the origin. The drive-response sys-
tems (10) and (11) are in projective lag synchronization.
Figs. 4 and Fig. 5 respectively show the results withτ =
2, λ = 0.5 and withτ = 1, λ = −1, which illustrate the
effectiveness of the proposed method.

5. Conclusions and discussions

In summary, this paper has studied the projective lag syn-
chronization in chaotic systems with parameter mismatch.
To be more specific, the response system follows the driver’s
by synchronizing with its past state in a proportional way.
Based on active control technique and Barbalat’s lemma,
It has theoretically proven that the drive system and the re-
sponse system, which have the mismatches in parameter,
can be in projective synchronization with delay time. The
lately found simple yet complex one-parameter chaotic sys-
tem and famous R̈ossler system have been employed to
further validate the effectiveness of the proposed method,
and numerical results have demonstrated that projective
lag synchronization in the drive-response systems is easy
to achieved. This method combining time delay and pa-
rameter mismatch can be more applicable in practical sys-
tems, and perhaps the one-parameter chaotic system can
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Figure 3 Projective lag synchronization in the new chaotic sys-
tems with parameter mismatch(τ = 2, λ = −1). (a) The errorei

with time, (b) time series ofy1 andx1τ , (c) the two-dimensional
phase diagrams, (d) the three-dimensional phase diagrams.
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Figure 4 Projective lag synchronization in Rössler systems un-
der parameter mismatch(τ = 2, λ = 0.5). (a) The errorei with
time, (b) time series ofy1 andx1τ , (c) the two-dimensional phase
diagrams, (d) the three-dimensional phase diagrams.

reduce the design in secure communication since it has
simple algebra structure and complicated dynamics.
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Figure 5 Projective lag synchronization in Rössler systems un-
der parameter mismatch(τ = 1, λ = −1). (a) The errorei with
time, (b) time series ofy1 andx1τ , (c) the two-dimensional phase
diagrams, (d) the three-dimensional phase diagrams.
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