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Abstract: In this paper, we investigated controllability of a stochastic partial equation driven by Poisson random measure. The stochas-

tic equation was presented as a stochastic evolution equation which is an abstract formulation for stochastic partial equations. Using
semigroup theory, we consider the mild solution of stochastic equation. And then the successive approximations method is used to
consider the controllability in this paper. An application to a Parabolic SPDE is given in the last section of the paper.
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1. Introduction systems with Gaussian white noise to the systems with
Poisson white noise have been recently discussed only in

. . . . ther f ber of publications. In thi ) -
It is well know, parabolic SPDEs [1] driven by Poisson géria or Tew NUMDET of pubications. i this paper, we con

- . ider stochastic systems driven by Poisson white noise which
random measure had been initially introduced and dlscussg y y

by Walsh 211 wh h ioned th bl X n be present as Poisson random measure. The method
y Walsh [21], where he mentioned the cable equation agna; il be used to study the existence of solution for

example. Stochastic partial equations driven Byy.pro-  gy,chastic equations driven by Poisson white noise is used

cesses have been widely studied when the equations afg s paper. The successive approximations method and
place in Hilbert spaces. There exists some literature O%emigroup theory are used in the paper.

this subject, for instance, Albeverio, Wu and Zhang [2], " rpq paper is organized as follows: section 2, we intro-

Rockner and Zhang [20] and Loka, Osendal and Proskey,ce the hasic notations and assumptions which be neces-

[15] (and dreferencesh'ghﬁrgin)_. In [10,11], thehauthor in;]sary to formulate the results in next section. Then the main
vestigated SPDEs which be in certain Banach space, thig; pe presented in the third section and the proof be

space is ofM/ typep, driven by Poisson random measure. o en | section 4, an example is presented to prove the
The obtained are existence, uniqueness and regularity heorem

the solution of the equations.

On the other hand, control theory of stochastic sys-
tems has recently received a lot of attention. See, for ex- L .
ample, Balasubramaniam and Dauer [3-5], Subalakshmi2. Preliminaries
Balasubramaniam and Park [19] and Mahmudov [16,17].
There are many literature presents in references thereirin this section, we present some definitions and prelimi-
Almost all of the paper, the stochastic systems be studnary results that will be used in next sections. (@t F, P)
ied are the stochastic systems driven by Brownian motiorbe a probability space with filtratiofiF; : 0 < ¢ < T'}.
with finite trace nuclear covariance operator. The results ofi, Z andU are separable Hilbert spaces and the sgéace
these papers were obtained using properties of operatorsyith norm|| - ||. £(U; H) is the space of all linear bounded
compact semi groups and the fixed-point theorem. operators fronU to H.

In recent years, the extensions of stochastic control In this paper, our point of interest is the controllability
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of stochastic systems driven by Poisson random measurese present some spaces and a Proposition that will be used

So, in that follow, we give the definition of the Poisson in Section 3. Let the set

random measure.

Definition 2.1[11, Definition 2.2] Let(Z, B(Z)) be a
measurable space aq®, F, P) be a probability space. A
time homogeneous Poisson random meadie z) on
(B(RT),B(Z)) is a collection of random variables
{N(I,A);I € B(R"), A € B(Z)} such that

IN(I,2) =0,1 € B(R")andN (2, A) = 0 a.s. for
A e B(Z);
i) NV is a.s.o-additive;

iii) N is independently scattered, i.e. for any family of

disjoint sets(Iy, Ay) - - -
the random variables

,(In, An) € (B(RT),B(2)),

N(I,Aq)---,N(I,, A,) are independent;

iv)Foreachd € B(Z) andI € B(R") suchthatz N (I, A)
is finite, N (I, A) is a Poisson random variable with pa-
rameterEN (I, A).

The measure is called the characteristic measure/of
which is defined by

v:AeB(Z)— EN((0,1], A) € [0, 0]
The compensatoy : B(R") x B(Z) — B(R*) of N is
the unigue predictable random measure and such that

N((Ovt]v A) - 7((0775}7"4)

is a martingale for eacH € B(Z). Then we call a Poisson

random measur®’ compensated, iV = N — ~.

Remark 2.1 If v(dz,dt) = v(dz)dt, then there is a
Lévy processY (¢) },>0 andN (dt, dz) is the Poisson ran-
dom measure associated to the additive profE%$) }+>o.
Wheredt denotes the Lesbegues measure3¢R ™), and
v(dz) is ao-finite measure or{Z\{0}; B(Z\{0}). The
measure/(dz) is called Levy measure associated to

{Y () }>o0-

Lo(v) ={h: 2 xRt — L(Z H),h
is predictable aglad process

such thatf, [, E||h(s, 2)|[>v(dz)ds < oo}

andDy([0, t]; L2(£2, F, P; H)) is a Skorohod space equipped
with following norm

| X7 :== E sup [[X(s)]I?,
0<s<t
X(s) € Do([0,t]; La(£2, F, P; H)).

From the Skorohod space, we know that
Dy ([0, t]; L2(£2, F, P; H)) is complete, so there exists a
bounded linear operator

I(h‘> : LQ(”) - D2([0at];L2(Q’]:a P; H)>7

wherel(h) := [} J; (s, )N (ds, dz). The next proposi-
tion is the Proposmon 3 3 in paper [10].

Proposition 2.1 AssumeZ and H are separable Ba-
nach spaces, and where the spAcis a Hilbert space. Let
B(Z) and B(H) are Borelo-algebras. Then there exists
some constanf’, < oo such that for all Poisson random
measuresV on B(Z) x B(R™) with characteristic mea-
surer which is symmetric Evy measure, and all functions
h: 2 xRt x Z — H belongs tal(v) we have

” f0+ fZ dT dZ)Hd
< CE( fo fZ ||h (s,2)||2N(dr,dz))2, 0<r < oo,

and

| joJr fz 7, z)N(dr, dz)”d
< Cy( fo [, Ellh(s, 2)||Pv(dz)ds).

We give a definition of mild solution of the problem
(1) and controllability of the stochastic evolution equation
Q).

Definition 2.2 A function X (t) € Dy([0,t]; La2(£2,

Now, we consider a stochastic evolution equation drived” s £; /1)) is said to a mild solution of (1), i (0) = o

by Poisson random measures of the form

|

whereg : [ x H x Z — H is a given function and
xo € H. The control functionu(-) be given inL?(I;U)

dX(t) = [AX(t) + (Bu)(t)]dt
+ [, 9(t, X (t),2)N(dt,dz)
X(0) =z H

@)

andX( ) satisfied the following integral equation

X(t)=S5(t (t — s)Bu(s)ds
—l—fo I, S( (s, X(s),2z)N(ds,dz).
Definition 2.3 The stochastic evolution equation (1) is

said to be controllable ofd, T, if for every X (0) = ¢ €
H andx;, € H, there exists a contral € L?(I;U) such

£Eo+f0
(t—s)g

)

which is a Banach space of admissible control functionthat the mild solutionX (-) of (1) satisfiedX (T") = «;.

and the spac¥ is a real separable Banach space with the

norm || - ||,. The operatorB is a bounded linear opera-
tor fromU into H thatisB € L(U; H) and the operator
A : D(A) — H is the infinitesimal generator of a com-
pact analytic semigroupS(t)}.>o which is a uniformly
bounded linear operator.

In order to consider controllability of the system (1),

For the controllability of the system (1), we need to in-
troduce the following hypotheses.

(H1) For semigroup{S(¢)}:>0, there exists positive
constants”; andw such that

IS < Cre™™", t >0
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(H2) Assume that for any” > 0, there exist some
constantd<{r and L such that

Sz gt X (t), 2)[|*v(dz)
< Kr(1+[IX(®)]?)
fZ ||g(t,X1(t), Z) - g(t7X2(t)> Z)||2V(dz)

< L[ X1 (t) — Xa(8)|1%

(H3) The linear operatdi’ from L?(I;U) into H de-
fined by

Wu :/0 S(T — s)Bu(s)ds

has an invertible operatd¥ —! defined onH/\ ker W and
there exist positive constant$, C's such that

|B|? < Cy and |[W?2 < Cs.

(H4) The characteristic measureof Poisson random
measureN (dt, dz) in equation (1) is a symmetricévy
measure.

3. Main Result

Now, we present main result of our paper in this section
and then give a proof of the result.

Theorem 3.1Suppose hypotheses (H1)-(H4) are satisfied,
then the system (1) is completely controllable[oyl].

We know that we want to prove the theorem is true
just to prove that the system (1) exists a mild solution
X(t) € Do([0,T7; Lo(£2, F, P; H)) for all zp andT. In
this section, we prove existence of the solution by succes-

sive approximations method and induction method. Theb

proof is complete by following Lemmas.
At first, from the hypothesis, we define the control

u(t) = —W=L[S(t)xo
T
+ fO fZ S(T - S—))Q(S—, X(S_)7
using the control, the operatérdefined by

(Q')X)() xo—fo (t—7)BW~—
+fo fz 5=))g(s—, X(s—),
+f() g(S—,X(S—),Z)N
®3)
Therefore, we have that the system (1) exists a mild

solution if and only if the operatab X (¢) has a fixed point,
that is there existX (¢) satisfying® X (¢t) = X (¢). In order

2)N(ds,dz),

HS(T)wo
z)N(ds,dz)|dr
(ds,dz).

For (t,w) € I x 2 andn € N(wherel;(t) andI,(t)
denote the second and third term respectively on the right-
hand side of the second equality). We have following result
for (X, (t))nen-

Lemma 3.2X(t) € Dy([0,T]; L2($2, F, P; H)) and
if X,,(t) € Do([0,T]; Lo2(92, F, P; )) for somen € N,
thenh(t, X, (t)) := S(t—(s—))g(s—, Xn(s—),2) € La(v)
for any arbitrarily fixedt € [0, T7.

Proof: For any fixedt € [0, T, we defined

2(5) = X,,(0)

+ZX(

Xm —

n

2Lkt /2m (b 1)t+1) /2] (5), m €N

fors € [0
set

,t]. Clearly, X7 (s) is Fs-predictable. And we

hm(tvx(t)) = S(t - S)g(S,X;T(S), (5)

for s € [0,¢], thenh™(t, X,,(t)) is F;-predictable. Let us
show that for any fixedn € N andt € [0, T the function
h™(t, X,,(t)) defined by (5) belong td.5(v). In fact, by
the assumption (H2) and Schwarz inequality, we have

Efz IIhm t, Xn(t))|?v(d2)
1St — s)g(s, X (t), 2)|*v(dz)
< E]Z 1St — s)|12[lg(s, X77(2), 2) ||Pv(dz)
< Cre ). Kr(1+ E| X7 (0)]?)
< 00.

z),méeN

(6)

Hence h™(t, X,,(t)) is well defined by (5). Moreover,
(6), we have

Jo szHhm(t Xn()[Pv(dz)
< Jo Cre=*(=9) Ko (1+ E|| X7 (1)]|?)ds < oo

for¢t € [0,T]. Thush™ (¢, X,,(t)) € La(v).
On the other hand, by the second inequality of the as-
sumption (H2), we have

Efofz [[R™(t, Xn(t)) —

< Jo 1St =9)|2ds - [3 [, Ellg(s, Xz (¢
—9(s, X (t ) 2)|IPv(dz)ds

< Jo Cre™=)ds - Ly [§ B|IX7 (@

— 0 asm,l — oo,

hH(t, X (1)) [1Pv(d2)
-),2)
XLt

=) = X, (t-)[*)ds

to prove that the operator defined by equation (3) has ayhere the last line follows from the existence of the left

fixed point, we set

Xi(t) = S(t)wo — [y S(t — ) BW1S(T)aods,
and
Xn—&-j{(ﬂ =X1(t) — fot S(t— 7’)BVV_1
x Jo, Iz S(T = (s=))g(s— Xn(s-), 2)N(ds, dz))dr
+ [y S(t = (s=))g(s—, Xn(s—), 2)N(ds, dz)

)9
= X1(t) + Li(t) + L2(t).

(4)

limit X,,(s—) of X,,(s) in L?(§2). Henceh(t, X,,(t)) €
L?(v) for any fixedt € [0, T].

Lemma 3.31f X, (t) € Do([0,T]; L2(£2,F, P; H))
for somen € N, then the two integral term, (¢) and
I5(t) on the right-hand side of (4) are well defined and
L(t), I2(t) € Do([0,T]; Lo($2, F, P; H)).

Proof: First, we prove that; (t) andI;(t) are well de-

fo I, St —s)g(s, X (t), z)N(ds, dz). Remark-
|ng that by Lemma 3. 2 we havet, X,,(t)) € La(v), thus

fined For the second integral
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I,(t) is well defined (and in fact) as the?(£2)-limit of the

Cauchy sequencesf, " [, h"(s, X (s)) N (ds, dz)},
Then, the first integral
fo —7)BW 1!
xfo J,S(T — (s=))g(s—, X (s—),z)N(ds,dz)|dr

is well defined as thé?(£2)-limit of the Cauchy sequences

{/OtS(t—T)BW_l/OT/th(&X(s))N

Second, we prove that
I(t) € Dy([0,T]; L2($2, F, P; H)), and induction that
Ii(t) € Dy([0,T7; Lo(92, F, P; H)). First of all, we ob-
serve thatl>(t) is right continuous in variable which is
obvious from the fact thak,(¢) is a well-defined integral,
since the upper limit of;(¢) is given by the right limit of
t. Now, for any fixed: € [0, T, we set

Jy(r) == [ [, h(s, X (s))N(ds, dz),

r € [0,¢]. ()

Then, by (5){ J:(r) } is square integrabl&;-martingale

with quadratic variational process given by the following

(non-stochastic) integral

< Ji(r) >= [5 [, I8(t = 5)g(s, Xu(s), 2)[IPv(dz)ds
r € [0,t].
(8)
Since we have derived tha{t, X,,(t)) € Lo(v) from

the proof of Lemma 3.2, itis well know that (see e.g. Theo-

rem 1.6.9 of lkeda and Watanabe 19811}r) has a édlag
version in the variable € [0,¢]. On the other hand, we
havely(t) = J:(t). Hencely(t) is F;-measurable. More-
over, since

BL(r) = T2
— B[ [, S0 —)
—S(tr—S)] 9(s, 2, X (s))|Pv(dz)ds
<E [y IIS(r—s) = S(t—s)]|I?
T [ llgs, 2, X(s))[IPv(dz)ds

that is

L*(2) = lim(J.(r) — J;(r)) = 0,

r1t

we have

Hence, the leftL2(£2)-limit of I,(t) exist for allt €
[0,T]. Combining with the right continuity ofy(t) in ¢,
we get that/»(¢) is modified @dlag int.

(ds, d2)]d7} men.

By (8), we obtain
Elllz(t)\l2 = E[J,(t)]?
= B [ [ 15 = 5)a(s. 2. Xa(s) 2w (dz)ds

< fo IS(t = s)||*ds - Efo Sz la(s, 2z, Xu(s))Pv(dz)ds
< Jy I8t = 9)|Pds - f; Kr(1+ E| X (s)|)ds
< 00,
©)

thatisl(t) € Dg([o T] Ly(02, F, Py H)).

Since I (t fo (t — 7)BW 1 I,(T)dr and the
sem|groupS(t 7‘) is continuous irt. Hence [ (¢) is con-
tinuous in the variable. By (9), we get

E[L®)|? = B [y IS¢ —n)|PIBI W2 1(T)|[2dr
< o0.

So we havd (t) € Do([0,T]; Lo(£2, F

Lemma 3.4 VT > 0, X,(t) €
F,P;H))foralln € N.

Proof: First, we prove that if
Xn(t) € Do([0,T]; Lo(£2,F, P; H)) for somen € N
then X,,11(t) € Do. By Lemma 3.2, we haveX;(t) €
Dy([0,T]; La2($2, F, P; H)). Thus by (4) and Lemma 3.3,
it suffices to show that
I (t), I(t) € Do([0,T]; Lo (82, F, P; H)).

SinceDs([0,T7; L2 (2, F, P; H)) is closed under lin-
ear operations, and by (4), we have

B Xpnl® < 9B X1 ()] + 9| L (1)

HIE|| L) < oc.
Therefore, we conclude that

Xn+1(t) € Do([0,T]; Lo (02, F, P; H)).

Now, combining Lemma 3.2 with the result thaif, (¢)
€ Dy([0,T); Lo (82, F, P; H)) for somen € N, thenX,, 4 (t)
€ Dy([0,T); L2($2, F, P; H)), we obtain that
Xn(t) € Do([0,T); Lo(£2,F, P; H)) for all n € N by
induction. Hence, the sequencE,, (t,w)),en is well de-
fined by (4) andX,,(t) € Do([0,T]; L2(£2, F, P; H)) for
alln e N.

In what follows, we will show thaf X, (¢, w) } nen cON-
verges inDs to a solution of (1), which complete the proof
of Theorem 3.1.

Firstly, we give the existence proof of solution to (1).
Set

Fn(t) =F sup ||X7L+1(S)_X7L(S)||2’
s€[0,t]

neN, tel0,T].

Then by (4), Schwartz inequations and Fibini theorem,
we have

B[ X (1) = X ()]
<2B| [ S(t - T)BW*{S( )zo
+E [y [, S(T — (s-))g(s—, Xn(s—),2)
—g(s—, Xp— ( ),z)]N(dS dz)}ah’H2 (10)
LB f1S(t — (s))lg(s— Xn (). 2)
—g(s— X < D) 2N (s, d) P
= J1+J2.
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For the termJy, by the assumption (H4) and Proposi- the proofs of Lemma 3.2, 3.3 and 3.4, we conclude that

tion 2.1 we obtain that

Ji < 2E f;fTIIS(t = DIPIBIZIWH2IS(T)o
X 0 ZS(T—(s—))[g(s—,Xn(s—),z)
—9(s—, Xp—1(s—), 2)|N (ds, dz) | *dr

<2010203f0 e tdt - IIS(T)IIQII»”CoH2

<E [ 5 [ I1S(T = (s=))1? (11)
x[lg(s—, Xn(s—),2
—g(s— » X 1(s=), 2)|IPv (dZ)dsdT
< 2t010203f e “’sd5016’4f e~ widt
XLTfo EHX ( ) Xn—l( )||2d5
and for the term/,, we have
Ty < 2 [1]|S(t = (s=))[g(s—, Xn(s—),2)
—9(s— Xpn-1(s—), 2)][IPv(dz)ds
<20, [y e ¥sdsCaLy [y E|| Xn(s) — Xn-1(5)||*ds.
(12)

Hence, from (10), (11) and (12), by induction we get

Fo(t) < [CrLe]™=t [7 dty [o" dts -+

whereC'r is a constant about;, Cy, Cs, Cy andfg e w4ds.

Thus, we obtain that

const - [CrLr|" !

1) n €N,

0< Fy(t) <

which implies that the serie§ | F),(t) converges uniformly

neN
on [0, T]. Therefore, the sequence, () converges uni-
formly for ¢ € [0,7] and a.sw € 2. Let X (¢) be the limit
of the sequence,,(t) asn — oo. It is easy to see that
X (t) is Fi-adapted.

It remains to showX (¢) satisfies an equation of the

form (4), namely, we need to prove

X(t) = Xl() f S(t—7)BW™!

Xfo fz 5=)) ( — X(s—),2)N(ds,dz)]dr
J’_fO ( ( ) ) (dS,dZ),

(14)

wmmXNy:ﬂmm_ﬁsu—@Bwﬂs@nm&

In fact, by equations (4), (11) and (12), we have
E||{Xn( — fo (t—7)BW—1!

><f0 fZ s—))g(s—, X (s—),z)N(ds,dz)]dr

9(8* X(s—),2)N(ds,d2)}|?
)||2ds.

—Jy S
< CTLT fO E”Xn 1( ) (8—
(15)

Since X, (t) converges uniformly fot € [0,7] and
a.s.w € {2, we can take the limit aa — oo through
the integral of the variable over [0, ¢] on the right-hand

side of the inequality (15), from which we obtain equation +f0 Iz fz
(14). Moreover, from (14) and by a similar argument as in

X(t) has a version which is modifiedadlag in¢. Thus
X (t) € Do([0,T); L2(£2, F, P; H)) is the solution of (3).

Then, we prove the uniqueness. Lét(t) and X 2(t)
be two solutions of (3), theX ' (¢), X2(t) € D,. Set

H(t) = E|IX(t) - X*(0)]*.

FromX1(t), X%(t) € Do([0, T); L2(£2, F, P; H)), we have
thatH (¢) is modified @lag in variablg and sup H(t) <
te[0,7]

E sup | X1(t) — X2(t)||*> < oo. By equation (14) and

tel0,T
the same argument as in the proof of existence, we get

t
H(t) S CTLT/ H(s)ds
0
By Gronwall inequality, we obtain the uniqueness. Thus

we prove Theorem 3.1.

4. Example

Consider the following Parabolic stochastic partial differ-

I Fl(tnfl()lcg)”*l’ ential equation of the form

Oxlbre) = 190X (t,2,w) + Bul(t)
—i—fZg (t,z, X (t,2,w))n:(dz,w) (16)
X(0,z,w) = ug(x) € H
with the following assumption:
(DLet A = 2 a Z °- andB is a bounded linear operator from

the control spac®; to H;
(2)The semi group of the operatdris

1 a2
S(t7l'): ﬁe 2’/t>0,$€]:K7
s t=0
thatisS(t, «) be the fundamental solution of the oper-
ator 2 — ad—'
(3)n:(dz,w) is Poisson white noise defined heuristically

S
as the Radon-Nikodym derivative
Z\?(dt7 dz,w)
dt

Then, the equation (16) has an abstract formulation of
the following linear stochastic equation in a Hilbert space

ne(dz,w) = (t), t€[0,00).

PO — AX (1) + Bu(t) + [, g(t, X (1), z) He=1,
t € 10,77,
X(0) = o € H,

where N(dz,dt) = N(dz,dt) — v(dz)dt. One rigorous
formulation of (16) can be given by the following integral
equation

T) = fR S(t,x — y)uo(y)dy
+ fot Jo S(t — s, — y)Bu(t)dyds
—s,x—y)g(s, X(s,y),2)dyN(dz,ds)
f Jo [, St —s,2—y)g(s, X (s,y), z)dyv(dz)ds.
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