
Appl. Math. Inf. Sci.7, No. 1, 239-245 (2013) 239

Applied Mathematics & Information Sciences
An International Journal

c© 2013 NSP
Natural Sciences Publishing Cor.

Controllability of Stochastic Evolution Equations Driven
by Poisson Random Measure

Xiangfeng Yin1 and Qingchu Xiao2

1 School of Mathematics and Computing Science, Hunan University of Sciences and technology, Xiangtan, Hunan 411201, P. R. China
2 Information Department of Hunan University of Commerce, Changsha, Hunan 410205, P. R. China.

Received: 18 May 2012; Revised 12 Oct. 2012; Accepted 17 Oct. 2012
Published online: 1 Jan. 2013

Abstract: In this paper, we investigated controllability of a stochastic partial equation driven by Poisson random measure. The stochas-
tic equation was presented as a stochastic evolution equation which is an abstract formulation for stochastic partial equations. Using
semigroup theory, we consider the mild solution of stochastic equation. And then the successive approximations method is used to
consider the controllability in this paper. An application to a Parabolic SPDE is given in the last section of the paper.
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1. Introduction

It is well know, parabolic SPDEs [1] driven by Poisson
random measure had been initially introduced and discussed
by Walsh [21], where he mentioned the cable equation as
example. Stochastic partial equations driven by Lévy pro-
cesses have been widely studied when the equations are
place in Hilbert spaces. There exists some literature on
this subject, for instance, Albeverio, Wu and Zhang [2],
Rockner and Zhang [20] and Loka, Osendal and Proske
[15] (and references therein). In [10,11], the author in-
vestigated SPDEs which be in certain Banach space, the
space is ofM typep, driven by Poisson random measure.
The obtained are existence, uniqueness and regularity of
the solution of the equations.

On the other hand, control theory of stochastic sys-
tems has recently received a lot of attention. See, for ex-
ample, Balasubramaniam and Dauer [3–5], Subalakshmi,
Balasubramaniam and Park [19] and Mahmudov [16,17].
There are many literature presents in references therein.
Almost all of the paper, the stochastic systems be stud-
ied are the stochastic systems driven by Brownian motion
with finite trace nuclear covariance operator. The results of
these papers were obtained using properties of operators,
compact semi groups and the fixed-point theorem.

In recent years, the extensions of stochastic control

systems with Gaussian white noise to the systems with
Poisson white noise have been recently discussed only in
a rather few number of publications. In this paper, we con-
sider stochastic systems driven by Poisson white noise which
can be present as Poisson random measure. The method
that will be used to study the existence of solution for
stochastic equations driven by Poisson white noise is used
in this paper. The successive approximations method and
semigroup theory are used in the paper.

The paper is organized as follows: section 2, we intro-
duce the basic notations and assumptions which be neces-
sary to formulate the results in next section. Then the main
result be presented in the third section and the proof be
given. In section 4, an example is presented to prove the
Theorem.

2. Preliminaries

In this section, we present some definitions and prelimi-
nary results that will be used in next sections. Let(Ω,F , P )
be a probability space with filtration{Ft : 0 ≤ t ≤ T}.
H,Z andU are separable Hilbert spaces and the spaceH
with norm‖ ·‖.L(U ; H) is the space of all linear bounded
operators fromU to H.

In this paper, our point of interest is the controllability
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of stochastic systems driven by Poisson random measures.
So, in that follow, we give the definition of the Poisson
random measure.

Definition 2.1 [11, Definition 2.2] Let(Z,B(Z)) be a
measurable space and(Ω,F , P ) be a probability space. A
time homogeneous Poisson random measureN(t, z) on
(B(R+),B(Z)) is a collection of random variables
{N(I, A); I ∈ B(R+), A ∈ B(Z)} such that

i)N(I,∅) = 0, I ∈ B(R+) andN(∅, A) = 0 a.s. for
A ∈ B(Z);

ii)N is a.s.σ-additive;
iii) N is independently scattered, i.e. for any family of

disjoint sets(I1, A1) · · · , (In, An) ∈ (B(R+),B(Z)),
the random variables

N(I1, A1) · · · , N(In, An) are independent;

iv)For eachA ∈ B(Z) andI ∈ B(R+) such thatEN(I,A)
is finite,N(I, A) is a Poisson random variable with pa-
rameterEN(I, A).

The measureν is called the characteristic measure ofN
which is defined by

ν : A ∈ B(Z) 7−→ EN((0, 1], A) ∈ [0,∞].

The compensatorγ : B(R+) × B(Z) → B(R+) of N is
the unique predictable random measure and such that

N((0, t], A)− γ((0, t], A)

is a martingale for eachA ∈ B(Z). Then we call a Poisson
random measurẽN compensated, if̃N = N − γ.

Remark 2.1 If γ(dz, dt) = ν(dz)dt, then there is a
Lévy process{Y (t)}t≥0 andN(dt, dz) is the Poisson ran-
dom measure associated to the additive process{Y (t)}t≥0.
Wheredt denotes the Lesbegues measure onB(R+), and
ν(dz) is a σ-finite measure on(Z\{0};B(Z\{0}). The
measureν(dz) is called Ĺevy measure associated to
{Y (t)}t≥0.

Now, we consider a stochastic evolution equation driven
by Poisson random measures of the form





dX(t) = [AX(t) + (Bu)(t)]dt
+

∫
Z

g(t,X(t), z)N(dt, dz)
X(0) = x0 ∈ H

(1)

whereg : I × H × Z → H is a given function and
x0 ∈ H. The control functionu(·) be given inL2(I; U)
which is a Banach space of admissible control function
and the spaceU is a real separable Banach space with the
norm ‖ · ‖u. The operatorB is a bounded linear opera-
tor from U into H that isB ∈ L(U ; H) and the operator
A : D(A) → H is the infinitesimal generator of a com-
pact analytic semigroup{S(t)}t≥0 which is a uniformly
bounded linear operator.

In order to consider controllability of the system (1),

we present some spaces and a Proposition that will be used
in Section 3. Let the set

L2(ν) = {h : Ω × R+ → L(Z,H), h
is predictable ćagĺad process
such that

∫ t

0

∫
Z

E‖h(s, z)‖2ν(dz)ds < ∞}

andD2([0, t];L2(Ω,F , P ; H)) is a Skorohod space equipped
with following norm

‖X‖2d := E sup
0≤s≤t

‖X(s)‖2,
X(s) ∈ D2([0, t]; L2(Ω,F , P ;H)).

From the Skorohod space, we know that
D2([0, t]; L2(Ω,F , P ;H)) is complete, so there exists a
bounded linear operator

I(h) : L2(ν) → D2([0, t];L2(Ω,F , P ;H)),

whereI(h) :=
∫ t

0

∫
Z

h(s, z)N(ds, dz). The next proposi-
tion is the Proposition 3.3 in paper [10].

Proposition 2.1 AssumeZ andH are separable Ba-
nach spaces, and where the spaceH is a Hilbert space. Let
B(Z) andB(H) are Borelσ-algebras. Then there exists
some constantC4 < ∞ such that for all Poisson random
measuresN on B(Z) × B(R+) with characteristic mea-
sureν which is symmetric Ĺevy measure, and all functions
h : Ω × R+ × Z → H belongs toL2(ν) we have

‖ ∫ s

0+

∫
Z

h(τ, z)N(dτ, dz)‖r
d

≤ CE(
∫ t

0

∫
Z
‖h(s, z)‖2N(dτ, dz))

r
2 , 0 < r < ∞,

and
‖ ∫ s

0+

∫
Z

h(τ, z)N(dτ, dz)‖2d
≤ C4(

∫ t

0

∫
Z

E‖h(s, z)‖2ν(dz)ds).

We give a definition of mild solution of the problem
(1) and controllability of the stochastic evolution equation
(1).

Definition 2.2 A function X(t) ∈ D2([0, t]; L2(Ω,
F , P ; H)) is said to a mild solution of (1), ifX(0) = x0

andX(t) satisfied the following integral equation

X(t) = S(t)x0 +
∫ t

0
S(t− s)Bu(s)ds

+
∫ t+

0

∫
Z

S(t− s)g(s, X(s), z)N(ds, dz).
(2)

Definition 2.3 The stochastic evolution equation (1) is
said to be controllable on[0, T ], if for everyX(0) = x0 ∈
H andx1 ∈ H, there exists a controlu ∈ L2(I; U) such
that the mild solutionX(·) of (1) satisfiedX(T ) = x1.

For the controllability of the system (1), we need to in-
troduce the following hypotheses.

(H1) For semigroup{S(t)}t≥0, there exists positive
constantsC1 andw such that

‖S(t)‖ ≤ C1e
−wt, t ≥ 0;
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(H2) Assume that for anyT > 0, there exist some
constantsKT andLT such that

∫
Z
‖g(t,X(t), z)‖2ν(dz)
≤ KT (1 + ‖X(t)‖2)∫

Z
‖g(t,X1(t), z)− g(t,X2(t), z)‖2ν(dz)
≤ LT ‖X1(t)−X2(t)‖2;

(H3) The linear operatorW from L2(I;U) into H de-
fined by

Wu =
∫ T

0

S(T − s)Bu(s)ds

has an invertible operatorW−1 defined onH\ kerW and
there exist positive constantsC2, C3 such that

‖B‖2 ≤ C2 and ‖W−1‖2 ≤ C3.

(H4) The characteristic measureν of Poisson random
measureN(dt, dz) in equation (1) is a symmetric Lévy
measure.

3. Main Result

Now, we present main result of our paper in this section
and then give a proof of the result.
Theorem 3.1Suppose hypotheses (H1)-(H4) are satisfied,
then the system (1) is completely controllable on[0, T ].

We know that we want to prove the theorem is true
just to prove that the system (1) exists a mild solution
X(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) for all x0 andT . In
this section, we prove existence of the solution by succes-
sive approximations method and induction method. The
proof is complete by following Lemmas.

At first, from the hypothesis, we define the control

u(t) = −W−1[S(t)x0

+
∫ T

0

∫
Z

S(T − (s−))g(s−, X(s−), z)N(ds, dz),

using the control, the operatorΦ defined by

(ΦX)(t) = S(t)x0 −
∫ t

0
S(t− τ)BW−1[S(T )x0

+
∫ T

0

∫
Z

S(T − (s−))g(s−, X(s−), z)N(ds, dz)]dτ

+
∫ t

0
S(t− (s−))g(s−, X(s−), z)N(ds, dz).

(3)
Therefore, we have that the system (1) exists a mild

solution if and only if the operatorΦX(t) has a fixed point,
that is there existsX(t) satisfyingΦX(t) = X(t). In order
to prove that the operator defined by equation (3) has a
fixed point, we set

X1(t) = S(t)x0 −
∫ t

0
S(t− s)BW−1S(T )x0ds,

and

Xn+1(t) = X1(t)−
∫ t

0
S(t− τ)BW−1

× ∫ T

0

∫
Z

S(T − (s−))g(s−, Xn(s−), z)N(ds, dz)]dτ

+
∫ t

0
S(t− (s−))g(s−, Xn(s−), z)N(ds, dz)

= X1(t) + I1(t) + I2(t).
(4)

For (t, ω) ∈ I × Ω andn ∈ N(whereI1(t) andI2(t)
denote the second and third term respectively on the right-
hand side of the second equality). We have following result
for (Xn(t))n∈N.

Lemma 3.2X1(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) and
if Xn(t) ∈ D2([0, T ]; L2(Ω,F , P ; H)) for somen ∈ N,
thenh(t,Xn(t)) := S(t−(s−))g(s−, Xn(s−), z) ∈ L2(ν)
for any arbitrarily fixedt ∈ [0, T ].

Proof: For any fixedt ∈ [0, T ], we defined

Xm
n (s) := Xn(0)

+
2m+1∑
k=0

Xn( kt
2m )1(kt/2m,((k+1)t+1)/2m](s), m ∈ N

for s ∈ [0, t]. Clearly,Xm
n (s) is Fs-predictable. And we

set

hm(t, x(t)) := S(t− s)g(s, Xm
n (s), z), m ∈ N (5)

for s ∈ [0, t], thenhm(t,Xn(t)) is Ft-predictable. Let us
show that for any fixedm ∈ N andt ∈ [0, T ] the function
hm(t,Xn(t)) defined by (5) belong toL2(ν). In fact, by
the assumption (H2) and Schwarz inequality, we have

E
∫

Z
‖hm(t,Xn(t))‖2ν(dz)

= E
∫

Z
‖S(t− s)g(s, Xm

n (t), z)‖2ν(dz)
≤ E

∫
Z
‖S(t− s)‖2‖g(s,Xm

n (t), z)‖2ν(dz)
≤ C1e

−w(t−s) ·KT (1 + E‖Xm
n (t)‖2)

< ∞.

(6)

Hence,hm(t,Xn(t)) is well defined by (5). Moreover,
by (6), we have

∫ t

0

∫
Z

E‖hm(t,Xn(t))‖2ν(dz)
≤ ∫ t

0
C1e

−w(t−s) ·KT (1 + E‖Xm
n (t)‖2)ds < ∞

for t ∈ [0, T ]. Thushm(t,Xn(t)) ∈ L2(ν).
On the other hand, by the second inequality of the as-

sumption (H2), we have

E
∫ t

0

∫
Z
‖hm(t, Xn(t))− hl(t,Xn(t))‖2ν(dz)

≤ ∫ t

0
‖S(t− s)‖2ds · ∫ t

0

∫
Z

E‖g(s,Xm
n (t−), z)

−g(s,X l
n(t−), z)‖2ν(dz)ds

≤ ∫ t

0
C1e

−w(t−s)ds · LT

∫ t

0
E‖Xm

n (t−)−X l
n(t−)‖2)ds

−→ 0 as m, l →∞,

where the last line follows from the existence of the left
limit Xn(s−) of Xn(s) in L2(Ω). Henceh(t, Xn(t)) ∈
L2(ν) for any fixedt ∈ [0, T ].

Lemma 3.3 If Xn(t) ∈ D2([0, T ];L2(Ω,F , P ; H))
for somen ∈ N, then the two integral termsI1(t) and
I2(t) on the right-hand side of (4) are well defined and
I1(t), I2(t) ∈ D2([0, T ]; L2(Ω,F , P ; H)).

Proof: First, we prove thatI1(t) andI2(t) are well de-
fined. For the second integral
I2(t) =

∫ t

0

∫
Z

S(t− s)g(s,Xn(t), z)N(ds, dz). Remark-
ing that by Lemma 3.2, we haveh(t,Xn(t)) ∈ L2(ν), thus

c© 2013 NSP
Natural Sciences Publishing Cor.



242 Xiangfeng Yin et al : Controllability of Stochastic Evolution Equations ...

I2(t) is well defined (and in fact) as theL2(Ω)-limit of the
Cauchy sequences

{ ∫ t+

0

∫
Z

hm(s,X(s))N(ds, dz)
}

m∈N.
Then, the first integral

I1(t) =
∫ t

0
S(t− τ)BW−1

× ∫ T

0

∫
Z

S(T − (s−))g(s−, X(s−), z)N(ds, dz)]dτ

is well defined as theL2(Ω)-limit of the Cauchy sequences

{
∫ t

0

S(t−τ)BW−1

∫ T

0

∫

Z

hm(s, X(s))N(ds, dz)]dτ}m∈N.

Second, we prove that
I2(t) ∈ D2([0, T ];L2(Ω,F , P ; H)), and induction that
I1(t) ∈ D2([0, T ]; L2(Ω,F , P ;H)). First of all, we ob-
serve thatI2(t) is right continuous in variablet which is
obvious from the fact thatI2(t) is a well-defined integral,
since the upper limit ofI2(t) is given by the right limit of
t. Now, for any fixedt ∈ [0, T ], we set

Jt(r) :=
∫ r+

0

∫
Z

h(s,X(s))N(ds, dz),
r ∈ [0, t].

(7)

Then, by (5),{Jt(r)} is square integrableFt-martingale
with quadratic variational process given by the following
(non-stochastic) integral

< Jt(r) >=
∫ r

0

∫
Z
‖S(t− s)g(s,Xn(s), z)‖2ν(dz)ds

r ∈ [0, t].
(8)

Since we have derived thath(t,Xn(t)) ∈ L2(ν) from
the proof of Lemma 3.2, it is well know that (see e.g. Theo-
rem I.6.9 of Ikeda and Watanabe 1981)Jt(r) has a ćadĺag
version in the variabler ∈ [0, t]. On the other hand, we
haveI2(t) = Jt(t). HenceI2(t) is Ft-measurable. More-
over, since

E[Jr(r)− Jt(r)]2

= E
∫ r+

0

∫
Z
‖[S(r − s)

−S(t− s)]g(s, z, Xn(s))‖2ν(dz)ds
≤ E

∫ r

0
‖[S(r − s)− S(t− s)]‖2

× ∫ r+

0

∫
Z
‖g(s, z, Xn(s))‖2ν(dz)ds,

that is

L2(Ω)− lim
r↑t

(Jr(r)− Jt(r)) = 0,

we have

L2(Ω)− lim
r↑t

I2(t) = L2(Ω)− lim
r↑t

Jr(r)

= L2(Ω)− lim
r↑t

Jt(r)

= Jt(t−).

Hence, the leftL2(Ω)-limit of I2(t) exist for all t ∈
[0, T ]. Combining with the right continuity ofI2(t) in t,
we get thatI2(t) is modified ćadĺag int.

By (8), we obtain

E‖I2(t)‖2 = E[Jt(t)]2

= E
∫ t

0

∫
Z
‖S(t− s)g(s, z, Xn(s))‖2ν(dz)ds

≤ ∫ t

0
‖S(t− s)‖2ds · E ∫ t

0

∫
Z
‖g(s, z, Xn(s))‖2ν(dz)ds

≤ ∫ t

0
‖S(t− s)‖2ds · ∫ t

0
KT (1 + E‖Xn(s))‖2)ds

< ∞,
(9)

that isI2(t) ∈ D2([0, T ];L2(Ω,F , P ; H)).
Since I1(t) =

∫ t

0
S(t − τ)BW−1I2(T )dτ and the

semigroupS(t−τ) is continuous int. Hence,I1(t) is con-
tinuous in the variablet. By (9), we get

E‖I1(t)‖2 = E
∫ t

0
‖S(t− τ)‖2‖B‖2‖W−1‖2‖I2(T )‖2dτ

< ∞.

So we haveI1(t) ∈ D2([0, T ];L2(Ω,F , P ; H)).
Lemma 3.4 ∀T > 0, Xn(t) ∈ D2([0, T ]; L2(Ω,

F , P ; H)) for all n ∈ N.
Proof: First, we prove that if

Xn(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) for somen ∈ N
thenXn+1(t) ∈ D2. By Lemma 3.2, we haveX1(t) ∈
D2([0, T ];L2(Ω,F , P ; H)). Thus by (4) and Lemma 3.3,
it suffices to show that
I1(t), I2(t) ∈ D2([0, T ];L2(Ω,F , P ; H)).

SinceD2([0, T ]; L2(Ω,F , P ;H)) is closed under lin-
ear operations, and by (4), we have

E‖Xn+1‖2 ≤ 9E‖X1(t)‖2 + 9E‖I1(t)‖2

+9E‖I2(t)‖2 < ∞.

Therefore, we conclude that

Xn+1(t) ∈ D2([0, T ];L2(Ω,F , P ; H)).

Now, combining Lemma 3.2 with the result that ifXn(t)
∈ D2([0, T ];L2(Ω,F , P ; H)) for somen ∈ N, thenXn+1(t)
∈ D2([0, T ];L2(Ω,F , P ; H)), we obtain that
Xn(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) for all n ∈ N by
induction. Hence, the sequence(Xn(t, ω))n∈N is well de-
fined by (4) andXn(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) for
all n ∈ N.

In what follows, we will show that{Xn(t, ω)}n∈N con-
verges inD2 to a solution of (1), which complete the proof
of Theorem 3.1.

Firstly, we give the existence proof of solution to (1).
Set

Fn(t) := E sup
s∈[0,t]

‖Xn+1(s)−Xn(s)‖2, n ∈ N, t ∈ [0, T ].

Then by (4), Schwartz inequations and Fibini theorem,
we have

E‖Xn+1(t)−Xn(t)‖2
≤ 2E‖ ∫ t

0
S(t− τ)BW−1{S(T )x0

+E
∫ T

0

∫
Z

S(T − (s−))[g(s−, Xn(s−), z)
−g(s−, Xn−1(s−), z)]N(ds, dz)}dτ‖2
+2E‖ ∫ t

0
S(t− (s−))[g(s−, Xn(s−), z)

−g(s−, Xn−1(s−), z)]N(ds, dz)‖2
:= J1 + J2.

(10)
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For the termJ1, by the assumption (H4) and Proposi-
tion 2.1 we obtain that

J1 ≤ 2E
∫ t

0
‖S(t− τ)‖2‖B‖2‖W−1‖2‖S(T )x0

× ∫ T

0

∫
Z

S(T − (s−))[g(s−, Xn(s−), z)
−g(s−, Xn−1(s−), z)]N(ds, dz)‖2dτ

≤ 2C1C2C3

∫ t

0
e−wtdt · ‖S(T )‖2‖x0‖2

×E
∫ T

0

∫ t

0

∫
Z
‖S(T − (s−))‖2

×‖g(s−, Xn(s−), z)
−g(s−, Xn−1(s−), z)‖2ν(dz)dsdτ

≤ 2tC1C2C3

∫ t

0
e−wsdsC1C4

∫ T

0
e−wtdt

×LT

∫ t

0
E‖Xn(s)−Xn−1(s)‖2ds,

(11)

and for the termJ2, we have

J2 ≤ 2E
∫ t

0
‖S(t− (s−))[g(s−, Xn(s−), z)

−g(s−, Xn−1(s−), z)]‖2ν(dz)ds

≤ 2C1

∫ t

0
e−wsdsC4LT

∫ t

0
E‖Xn(s)−Xn−1(s)‖2ds.

(12)
Hence, from (10), (11) and (12), by induction we get

Fn(t) ≤ [CT LT ]n−1
∫ t

0
dt1

∫ t1
0

dt2 · · ·
∫ tn−2

0
F1(tn−1)dtn−1,

(13)
whereCT is a constant aboutC1, C2, C3, C4 and

∫ t

0
e−wsds.

Thus, we obtain that

0 ≤ Fn(t) ≤ const · [CT LT ]n−1

(n− 1)!
n ∈ N,

which implies that the series
∑

n∈N
Fn(t) converges uniformly

on [0, T ]. Therefore, the sequenceXn(t) converges uni-
formly for t ∈ [0, T ] and a.s.ω ∈ Ω. LetX(t) be the limit
of the sequenceXn(t) asn → ∞. It is easy to see that
X(t) isFt-adapted.

It remains to showX(t) satisfies an equation of the
form (4), namely, we need to prove

X(t) = X1(t)−
∫ t

0
S(t− τ)BW−1

× ∫ T

0

∫
Z

S(T − (s−))g(s−, X(s−), z)N(ds, dz)]dτ

+
∫ t

0
S(t− (s−))g(s−, X(s−), z)N(ds, dz),

(14)
whereX1(t) = S(t)x0 −

∫ t

0
S(t− s)BW−1S(T )x0ds.

In fact, by equations (4), (11) and (12), we have

E‖{Xn(t)−X1(t)−
∫ t

0
S(t− τ)BW−1

× ∫ T

0

∫
Z

S(T − (s−))g(s−, X(s−), z)N(ds, dz)]dτ

− ∫ t

0
S(t− (s−))g(s−, X(s−), z)N(ds, dz)}‖2

≤ CT LT

∫ t

0
E‖Xn−1(s−)−X(s−)‖2ds.

(15)

SinceXn(t) converges uniformly fort ∈ [0, T ] and
a.s.ω ∈ Ω, we can take the limit asn → ∞ through
the integral of the variables over [0, t] on the right-hand
side of the inequality (15), from which we obtain equation
(14). Moreover, from (14) and by a similar argument as in

the proofs of Lemma 3.2, 3.3 and 3.4, we conclude that
X(t) has a version which is modified cádĺag in t. Thus
X(t) ∈ D2([0, T ];L2(Ω,F , P ; H)) is the solution of (3).

Then, we prove the uniqueness. LetX1(t) andX2(t)
be two solutions of (3), thenX1(t), X2(t) ∈ D2. Set

H(t) := E‖X1(t)−X2(t)‖2.
FromX1(t), X2(t) ∈ D2([0, T ];L2(Ω,F , P ; H)), we have
thatH(t) is modified ćalág in variablet and sup

t∈[0,T ]

H(t) ≤
E sup

t∈[0,T ]

‖X1(t) − X2(t)‖2 < ∞. By equation (14) and

the same argument as in the proof of existence, we get

H(t) ≤ CT LT

∫ t

0

H(s)ds.

By Gronwall inequality, we obtain the uniqueness. Thus
we prove Theorem 3.1.

4. Example

Consider the following Parabolic stochastic partial differ-
ential equation of the form

∂X(t,x,ω)
∂t = 1

2
∂2

∂x2 X(t, x, ω) + Bu(t)
+

∫
Z

g(t, z, X(t, x, ω))ηt(dz, ω)
X(0, x, ω) = u0(x) ∈ H

(16)

with the following assumption:

(1)LetA = 1
2

∂2

∂x2 andB is a bounded linear operator from
the control spaceD2 to H;

(2)The semi group of the operatorA is

S(t, x) =

{
1

2√2πt
e−

x2
2t t > 0, x ∈ R

δx t = 0
,

that isS(t, x) be the fundamental solution of the oper-
ator ∂

∂t − 1
2

∂2

∂x2 ;
(3)ηt(dz, ω) is Poisson white noise defined heuristically

as the Radon-Nikodym derivative

ηt(dz, ω) =
Ñ(dt, dz, ω)

dt
(t), t ∈ [0,∞).

Then, the equation (16) has an abstract formulation of
the following linear stochastic equation in a Hilbert space

dX(t)
dt = AX(t) + Bu(t) +

∫
Z

g(t,X(t), z) Ñ(dz,dt)
dt ,

t ∈ [0, T ],
X(0) = u0 ∈ H,

whereÑ(dz, dt) = N(dz, dt) − ν(dz)dt. One rigorous
formulation of (16) can be given by the following integral
equation

X(t, x) =
∫
R S(t, x− y)u0(y)dy

+
∫ t

0

∫
R S(t− s, x− y)Bu(t)dyds

+
∫ t

0

∫
R

∫
Z

S(t− s, x− y)g(s, X(s, y), z)dyN(dz, ds)
− ∫ t

0

∫
R

∫
Z

S(t− s, x− y)g(s, X(s, y), z)dyν(dz)ds.
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Hence by Theorem 3.1, forS(t, x), x ∈ [0, L] ⊂ [0,∞),
the system (16) is completely controllable on[0, T ].

5. Conclusion

In this paper, we employ semigroup theory to consider the
mild solution of a stochastic partial differential equation
driven by a Poisson random measure and then the succes-
sive approximation is used to consider the controllability
of the stochastic equation. The stochastic equation is pre-
sented as a stochastic evolution which is an abstract for-
mulation for stochastic partial equations. We obtain the re-
sult for stochastic system with Poisson white noise. Our
analysis of controllability for stochastic systems of both
conceptual value and practical interest. One interesting fu-
ture direction would be the stochastic system with more
compiled noise such as Levy processes (c.f. [20]), since
many random disturbances of system is an inherently more
compiled then Brownian processes. To capture the infec-
tion process for controllability of systems, approximate
controllability for stochastic systems in Hilbert space are
preferable [19].
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Annals of Applied Probability,14(3)1506-1528,2004.

[16] Mahmudov, N.I. Controllability of semilinear stochastic
systems in Hilbert spaces, Journal of Mathematical Analysis
and Applications, 288(1) 197–211, 2003.

[17] Mahmudov, N.I.Approximate controllability of semilinear
deterministic and stochastic evolution equations in abstract
spaces, SIAM journal on control and optimization, 42:1604,
2003.

[18] Pazy,A. Semigroups of Linear Operators and Applications
to Partial Differential Equations. Springer-Verlag, Berlin,
1983.

[19] Subalakshmi, R. and Balachandran, K. and Park,
JY.Controllability of semilinear stochastic functional
integrodifferential systems in Hilbert spaces, Nonlinear
Analysis: Hybrid Systems,3(1):39–50, 2009.
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