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Abstract: The object of this paper is to derive generating relations for the generalized Incomplete 2D Hermite 

polynomials );,(, τφ yxnm  by giving suitable interpretations to the indices (m) and (n) through Weisner's method. 
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1. Introduction 
The generalized incomplete 2D Hermite 
polynomials discussed in the present paper 
are characterized by two indices, two 
variables and one parameter. 
 
These polynomials are defined [2, Eq.(12)] 
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where the Incomplete 2D Hermite polynomials 

),,(, τyxh nm are explicitly provided by the 

series [2,Eq.(1a)] 
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These polynomials defined by (1.1) satisfy the 
following simultaneous partial differential 
equations 
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Dattoli et al. [2, 3,4] introduced and discussed a 
theory of  Incomplete 2D Hermite polynomials. 

They discussed the properties of  a new family of 
multi index Lucas type polynomials , which are 
often encountered in problems of intracavity photon 
statistics . They develop an approach based on the 
integral representation method and show that this 
class of polynomials can be derived from recently 
introduced multi-index Hermite like polynomials. 
 
Wunnsche [7] introduced   Hermite 2D 
polynomials and discussed their properties and their 
explicit representations. Recently, Subuhi et al.[5,6] 
derived some generating relations involving  
Hermite 2D and some implicit summations 
formulae for Incomplete 2D Hermite polynomials 
by using different analytical means on their 
respective generating functions. 
 
In this paper, we have obtained new generating 
relations for the generalized Incomplete 2D 
Hermite Polynomials  by constructing a Lie algebra 
with the help of Weisner's [1] method by giving 
suitable interpretations to the indices (m) and (n) of 
the polynomials under consideration. The principal 
interest in the given results lies in the fact that a 
number of special cases listed in section 3 would 
yield many new results of the theory of special 
functions. 
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2. Group-theoretic method 

Replacing n  by  and
p

p
∂

∂
m  by

s
s

∂

∂
 in (1.3) 

and (1.4) respectively, we get  
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We see that  mn

nm spyxspyxu );,();,,,( , τφτ =  

is a solution of (2.1) and (2.2), since 

),,(, τφ yxnm  is a solution of (1.3) and (1.4). 

 
We first consider the following first order 
linear differential operators  
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such that 
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where the operators { }6,5,4,3,2,1: =iAi  satisfy 

the  following commutation relations 

0],[ 21 =AA         332 ],[ AAA −=      

0],[ 43 =AA     0],[ 54 =AA    0],[ 65 =AA  

0],[ 31 =AA         442 ],[ AAA =        

0],[ 53 =AA     0],[ 64 =AA    0],[ 41 =AA          

0],[ 52 =AA         0],[ 63 =AA      

551 ],[ AAA −=     0],[ 62 =AA    661 ],[ AAA =

   

where  BAABBA −=],[ . 

The above commutation relations show that the 

set of operators{ }6,5,4,3,2,1: =iAi  generate a 

Lie-algebra λ  and the sets of operators 

}{  A,A,A 651 and }{ 432 A ,A ,A  form a sub 

algebras of  λ . 
 
It is clear that the differential operators 
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which can be expressed as:    mAAL −= 431  

and nAAL −= 652  

 

commutes with { }6,5,4,3,2,1: =iAi  that is 
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The extended form of the groups generated by 

{ }6,5,4,3,2,1: =iAi  are as follows: 
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where );,,,( τspyxf is an arbitrary function.  

Then we have 
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3. Generating functions 

 From the above discussion, we see that 
mn

nm spyxspyxu );,();,,,( , τφτ =  is a solution 

of the following systems 
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From (2.3) , we easily see that 
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where  
 
Therefore, the transformation 
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L2. 

By setting { }baaaiai ==== 65 ,;4,3,2,1:0  

and writing mn
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in (2.4), we get  
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Combining the above two relations (3.1) and 
(3.2), we get 
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where ∞<b and ∞<a .                                

       

If we put 1,0 == pa  in equation (3.3), we get 
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where ∞<b .  

  

If we put 1,0 == pb  in equation (3.3), we 

get 
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  where ∞<a . Again by setting 

{ }dacaiai ==== 43 ,;6,5,2,1:0  and writing 
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Combining the above two relations (3.6) and 
(3.7), we get 
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where ∞<c , ∞<d .                                        

 
If we put 1,0 == sc  in equation (3.8), we get 
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where  ∞<d .  If we put 1,0 == sd  in 

equation (3.8), we get 
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where ∞<c .   

 
4. Conclusion 

 
We have seen that Weisner's group theoretic 
method is a power full tool in getting 
generating functions. It is also interesting to 
define a new function which forms 
generalization for the generalized incomplete 
2D Hermite Polynomials under consideration 
and then by using Lie theoretic technique, we 
can obtain generating functions. We will deal 
with this aspect in the subsequent 
communication. 
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