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Abstract: An A-semiring has commutative multiplication and the property that every proper#lsatontained in a prime ided?,

with /B, the intersection of all such prime ideals. In this paper, we define homogeneous ideals and their radicals in a graded semiring
R.WhenB is a proper homogeneous ideal in.drsemiringR, we show that/B is homogeneous wheneve(B is ak-ideal. We also

give necessary and sufficient conditions that a homogeneddsal P be completely prime (i.ek ¢ P,G ¢ P impliesF'G ¢ P)in

any graded semiring. Indeed, we may restficandG to be homogeneous elementsidf

Keywords: semiring, &-) ideal, homogeneous (ideal), graded.

1. Introduction A set R together with two associative binary opera-

. N o tions called addition and multiplication (denoted-byand
The notion of semiring was first introduced by H. S. Van- ., respectively) will be called semiringprovided:

diver in 1934, and since then many other researchers also . ) _

developed the theory of semirings as a generalization of (i)addition is a commutative operation;

rings. Semirings occur in different mathematical fields, e.g. (i) there exisb € R suchthat:+0 = = andz0 = 0z = 0
as ideals of a ring, as positive cones of partially ordered _ foreachz € R, and 3

rings and fields, in the context of topological considera- (iil) multiplication distributes over addition both from the
tions, and in the foundations of arithmetic, including ques-  |eftand from the right.

tions raised py school education (6. In the.1980’s j[he The element in item (i) is called the zero of the
theory Qf semirings contributed to computer science, SinC&emiring 2. A subsetS of the semiringR will be called
the rapid development of computer science needed _add'élsubsemiring)f R provided (1)z + y € S andzy € S
tional theoretical mathematical background. The SemirinGyheneverz,y € S and (2)0 € S. By anadditive sub-

structure does not contain an additive inverse, and this po@emigroupwe mean a subset @ that contains the zero
is very helpful in developing the theoretical structure of ot p and is closed under addition. A subgeof a semir-

cqmputer science. For e_xample., _hemirings, as a semiringqg R will be called aridealif a,b € T andr € R implies
with zero and commutative addition, appeared ina natu,, 1 4 c 1 4 € 7 andar € I.

ral manner in some applications to the theory of automata
and formal languages. Recently, J. S. Han and et al. ([5])
discussed semiring orders in semirings. We refer to J. S L

Golan’s remarkable book for general reference ([4]). 3. Graded semirings

WheneverR is a commutative semiring, we I1ét[X] de-
2 Preliminaries note the semiring of polynomials with coefficients ih
over the transcendental elemeént Then each non-zero el-
There are many different definitions of a semiring appear-ementf(X) in R[.X] can be represented by a unique sum
ing in the literature. Throughout this paper, a semiring will Zle an,, X™ of non-zero monomials,,, X™ of unique
be defined as follows: degrees. An ideaB in R[X] is said to behomogeneous
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if f(X) =30 a,X" € Bimpliesa,, X" € B, for

eachs. In this article, a number of properties of homoge-
neous ideals will be derived. However, it will not be nec-

essary to restrict ourselves to polynomial semirings since
g and letz be a non-zero element . If Z -, Tq isthe

homogeneous ideals can be studied in semirings more ge
eral than polynomial semirings, namely in graded semir-
ings. The first problem encounted will be the presentatio
of a definition of a graded semiring.

Definition 3.1. Let {R,},cz be a collection of addi-
tive subsemigroups of a semiriigg We say thatR is the
internal direct surrof the collection{ R, },c ~ provided:

(1)Each non-zero elementin R has a unique represen-
tatipn of the forme:1 Tq; yvhereqi #q;ifi# jand
4, IS @ non-zero element iR, for eachi; and

QN 74,745, -+ ,7q, are non-zero elements iR where
¢ # q; if i # j, and each,, € R,,,thenY " r,. is
a non-zero element iR.

The notation ® = >, R, " will be used to indi-
cate that the semiring is the mternal direct sum of the
collection{R, },cz. Although the collectiof R;},cz In
the above definition could be taken withany non-empty
set, we will always us¢ to denote the ring of integers.

Let Z be denote the ring of integers and {&, },c~
be a collection of additive subsemigroups of a semiring
R. The symbol}__, R, will denote the set consisting of
0 together with allz in R for which there exist integers
q1,92, - Gk, (@ # g; if @ # j), and non-zero elements

Tgi:Tqs, * ,Tqe SUChthaty, € Ry, andz = Zle Tg;-
Definition 3.2. A semiring R is said to begradedif
there exists a collectiofi?, },c z of additive subsemigroups

of R satisfying the following conditions:

MR = quz Ry;

(2)R4Ry C Ryyq foreachq,q’ € Z;

Nf rgy,7gy,- -+ ,7q, are non-zero elements K where
¢ # q; if i # j, and each,, € R,,, then}"_ r, is
a non-zero element iR.

)

WheneverR is a graded semiring, the notatio® “=
>_qez Rg" Will be used to indicate tha{ R, },c is the
glven collectlon of additive subsemigroups satisfying the
above definition.

Theorem 3.3.If R = 3 ., R, is a graded semiring,
and ifn andm are distinct integers, theR,, N R,,, = () or
R, N R,, = {0}, where0 denotes the zero iR.

Proof. Assume there exists a hon-zero elemein R
suchthatr € R, N R,,. Thus,z € R,, andx € R,, and it

follows thatz does not have a unique representation of therp — Z

form Zl 1 .- ConsequentlyR is not the internal direct
sum of the collectioq{ R, },c z, a contradiction. Note that

it may happen thak, N R,, = 0. O

Definition 3.4.Let R = >° _, R, be a graded semir-
ing. An element ofR is said 0 behomogeneouef it be-
longs to ank,, and it is said to bdomogeneous of degree
q if it belongs toR, and is different from zero.

Since the graded semiring is the internal direct sum
of the collection{ R, },cz, it is clear that every non-zero

Mof distinct degree, the homogeneous elemeptsy,, - -

elementz in R can be written, in a unique way, as a fi-
nite sum of non-zero homogeneous elements of distinct
degrees.

Definition 3.5.Let R = }_ . , R, be a graded semir-

decomposition of: into non-zero homogeneous elements
)T k
will be called thehomogeneous componenfsz, and the !
homogeneous componentobf least degree will be called
theinitial componenof z.

Let R be a semiring and leR[X] be the semiring of
polynomials overR. If ¢ is a non-negative integer, then
R, will denote the set consisting of the zero polynomial
O(X) together with all basic polynomials of degreelf
¢ is a negative integei?, will denote the se{O(X)}. It
is clear that{ R, },cz is a collection of additive subsemi-
groups of the semiring[X]. With the aid of this notation,
it can be shown that every polynomial semiring is a graded
semiring.

Theorem 3.6.If R is a semiring , the®R[ X ]| = quz R,
is a graded semiring, where the collectiaR, } ,c z is de-
fined as above.

Proof. It is easy to observe tha&R[X] is the internal
direct sum of the collectiofiR, } scz. If a, X9 andb, X9
are basic polynomials of degre@ndq’, respectively, then
ag X9 - by X9 is eitherO(X) or a basic polynomial of
degreey+¢’. Thus,R R, C R,y foreachy, ¢’ € Z. An
inspection of the definition of addition iR[X] shows that
condition (3) in Definition 3.2 is satisfied, and the proof is
complete. O

The following example will show that there exist graded
semirings other than polynomial semirings, and it will be
clear that the notion of a graded semiring is a generaliza-
tion of the notion of a polynomial semiring.

Example 3.7.Let R be a semiring. LeRy = R and let

q = {0} if ¢ is a non-zero element id. It is clear that
{R,}4ez is a collection of additive subsemigroups of the
semiringR. An inspection shows that = > qez Blqisa
graded semiring. IR has only a finite number of elements
then the finite, graded semiridg =} ., I, cannotbe a
polynomial semiring, since polynomlal semlrlngs contain
an infinite number of elements.

4. Homogeneous ideals in graded semirings

Definition 4. 1 Let B be an ideal in the graded semiring
. If the homogeneous components of each
non-zero element i belong toB, thenB will be called
ahomogeneous ideal

Theorem 4.2.If B is an ideal in the commutative semir-
ing R, thenB[X] is a homogeneous ideal in the graded

semiringR[X| =" ., Rq
Proof. Let f(X Z a,X" be a non-zero polyno-
n=0

mial in B[X] and Ieth:1 aq, X% be the decomposition
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of f(X) into its homogeneous components. CleaflyX) <
B[X] impliesa,, € B U {0} for each non-negative integer
n. Consequentlyg,, X% € B[X]i=1,2,--- ,k, and it
follows that B[ X] is a homogeneous ideal iR[X]. O

Further examples of homogeneous ideals can be con-

structed as follows:

Example 4.3.Let B be an ideal in the semiring. In
view of Example 3.7R = 3 __, R, is agraded semiring,
and it is clear tha3 is a homogeneous ideal iR.

Definition4.4.LetR = Y _, R,andR’' =, R,/
be two graded semirings. A homomorphigrof R into R’
is said to behomogeneous of degreef n(R,) C R,
for eachq € Z.

Theorem 4.5.Letn be a homogeneous homomorphism
of the graded semirin®® = >’ q4ez Bq into the graded
semiringR’ =% _, R, If ker(n) # 0, thenker(n) is a
homogeneous ideal iR.

Proof. Supposey is a homogeneous homomorphism
of degrees. Let p be a non-zero element iker(n) and
let Zle rq, be the decomposition gfinto homogeneous
elements of distinct degrees. Singes ker(n), it is clear
that

k
> rg)n=pn=0.

i=1

k
Z Tq,M = (
i=1

Sincen is a homogeneous homomorphism of degsei
follows thatry,n € Ry,+s,7 = 1,2,--- , k. Condition (3)
of Definition 2 impliesr,,n = 0,4 = 1,2,--- , k. Thus,
the homogeneous componentspobelong toker(r) and
the proof is complete. O

With the aid of the following definitions, a necessary
and sufficient condition can be given for an ideal to be ho-
mogeneous in a graded semiring.

Definition 4.6. Let ¢ be a set of non-zero elements
in the semiringR. A linear combinationin & is a sum
Zi'c:l r;b; Where‘f’l, T,
are elements ig.

Definition 4.7. Let B be an ideal in the semiring. A
subset of B will be called abasisfor B if B is the set of
all linear combinations .

Theorem 4.8.Let R be a graded semiring and I8t
be anideal irR. If B has a basis, theB is homogeneous

if and only if B has a basis consisting of homogeneous

elements.

Proof. SupposeB is a homogeneous ideal and #ebe
abasisfoB. Itisclearthatt ¢ B.If x € ¢, letd, denote
the set of homogeneous componentwpfand letd* =
Uzce®,.. SinceB is homogeneous, it follows thét, ¢ B
foreachr € @. Thus,®* is a set of homogeneous elements
and®* C B. SinceB is an ideal, any linear combination
in &* is an element irB. Letp be an element iB. Since
@ is a basis forB, there exist elements;, ro,--- ,7, in
R and there exist elements, by, - -- , b, in @ such that
p=>;_ b Let> [ b] be the decomposition d;

into homogeneous components. It is clear thate ¢*,

, 1, are elements ik andby, bo, - - -

for eachi andj. Moreover,

n n m;
p=2_ribj = Q3 b)
j=1 j=1 i=1

= Z(Z ’I“jbij).

j=1 i=1
Consequentlyp is a linear combination i@*. Thus, if B
has a basis, then the fact thatis homogeneous implies
that B has a basis consisting of homogeneous elements.

Conversely, suppose th#t has a basi® consisting
of homogeneous elements. Letbe a non-zero element
in B and |eth=1pqi be the decomposition of into its
homogeneous components. It will be shown thate B
for eachi, and it will follow that B is homogeneous. Since
@ is a basis forB, there exist elements,, r5, -+ ,7, in
R and there exist elements, bs,--- , b, in @ such that
p =, rb;. Let Z?;l r;* be the decomposition of;
into its homogeneous components. Clearly,

n

p=> b= Z(Z r;')b
i=1

i=1 j=1
n

=> O ri'b),

=1

K

andr;'b; is a homogeneous elementfih Thus, the above
sum is the sum of homogeneous elements. If all terms of
the same degree are combined into one term, it is clear
thaty~" | (3°7, 7;°bi) is the decomposition gf into its
homogeneous components. Consequently, ggcmust

be a linear combination i. Thus, eacly,, € B. O

Theorem 4.8 indicates a method for generating homo-
geneous ideals in a graded semiring with an identity. In
view of Theorem 4.2, Example 4.3 and the above result, it
is clear that the homogeneous ideals form a large class of
idegls in graded semirings.

The following theorem will show that the class of ho-
mogeneous ideals in a graded semiring with zero is closed
under the standard ideal-theoretic operations.

Theorem 4.9.Let A andB be ideals in a graded semir-
ing R. If A andB are homogeneous, theint- B andANB
are homogeneous idealsih

Proof. It is clear thatA + B and A N B are ideals in
R. Letp be anon-zero elementih+ B. Thus,p=a+b
wherea € A andb € B. LetYp,,“ andYp,," be the
decompositions ofi andb, respectively, into their homo-
geneous components. Sindeand B are homogeneous, it
is clear that eacp,,® € A and eackqub € B. Clearly,

p=a-+b

= 0"+ Py, =D Pans

where the terms of like degree are combined to form a sin-
gle term in the last sum. Thu, p,,, is the decomposition
of p into its homogeneous components, and it is clear that
eachp,,, € A+ B. Thus,A + B is a homogeneous ideal
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in R. The assertion relative td N B results trivially from
the definition of homogeneous ideald

In [1], the authors defined and investigated several no-
tions from ideal theory in commutative semirings. Anideal

in the semiringR is said to beprime provided (1)P # R;
and (2) if A and B are ideals ink such thatAB C P, then
AcC PorB C P,whereAB = {ab|a € Aandb € B}.
The semiringR is said to be ani-semiringprovided (1)R

has commutative multiplication and (2) every proper ideal

in R is contained in a prime ideal @&8. WheneverB is a
proper ideal in arR, theradical of B is denoted by/B
and is defined to be the intersection of all prime ideals i
R that containB.

An ideal B in the semiringR is said to be &-idealin
Rif b e Bandr € R, thenb+r € B(orr+b € B)

impliesr € B. Such ideals were of special interest to S.

Bourne [3], M. Henrikson [7], D. R. La Torree [8] and P.
J. Allen [2].

Theorem 4.10.Let B be a proper, homogeneous idea
in a graded,R. If \/B is ak-ideal in R, thenv/B is a
homogeneous ideal iR.

Proof.Letp be a non-zero elementiB and lety""" | 7,
be the decomposition gf into its homogeneous compo-

nents, wherg; < ¢; < --- < ¢,. Sincep € VB, there
exists a positive integen such thap™ € B. Thus,

- (Z Tfh‘)m

where X consists of terms of degree greater thag; .
Thus,r,, ™ is the homogeneous componentydf of de-
greemg; . SinceB is homogeneous, it is clear that ™ <

B. Thus,r,, € V/B. Sincep,r,, € VB andV/B is ak-
ideal inR, p =1y, +> 1 o 7q € VBimpliesy ) , 7, €
V/B. By the same argument,, € VB andY ] .7, €

:meB’

V/B. Continuing in this fashion, it is clear that the homo-

geneous components pbelong toy/B. O

sum

O - 9+ Qo Y 9)+

i<ig Jj<Jjo 1<ig Jj2Jjo
OO g+ O 9)
i>1o Jj<jo 1210 Jj>jo

is equal to the product

O L+ O g+ > 9)

1<ig 1210 J7<jo J>Jo

nwhich is in turn equal ta#'G an element inP. Since the
first three terms of the above sum are elementB iiand
sinceP is ak-ideal in R, it follows that

OO g)ePr

1> J>Jjo

ja contradiction. Therefordy, G ¢ P imply F'G ¢ P, and

it follows that P is a completely prime ideal iR. O

Let R be a graded semiring. Suppose that= P; N

- N P,, where theP; are prime homogeneousideals.
Suppose alsothgty € B, f; ¢ P, impliesg € P, fori =
1,---,n when f andg are homogeneous elements. Then
it follows that 'G € B implies, foreach = 1,--- ,n, if
F ¢ P, thenG € P;. FurthermoreB = VB andB =
VCNvD = CnD,whereC = N{P|F € P;},D =
{P;|G € P;}. Here ifn{P;|F € P;} contains naP;, we
let C = R, while if n{P;|G € P;} contains naP;, we let
D =R.

5. Conclusion

In this paper we have considered the situation whis
an A-semiring and where the semiring is graded so that
one may consider proper homogeneous idé&asnd their
radicalsv/B which were shown to be homogeneous as
well if they werek-ideals and furthermore necessary and

To conclude this paper, necessary and sufficient condisufficient conditions were found for a homogenedus

tions will be given in order that a homogenedugieal in
a graded semiring be completely prime.

Theorem 4.11.Let P be a homogeneousideal in the
graded semirind®. In order that? be completely prime in
R, itis necessary and sufficientthat € P impliesf € P
org € P for homogeneous elementsiih

Proof. Let F and G be elements inR — P and let
> fiand " g; be the decompositions df and G, re-
spectively, into their homogeneous components. Clearl
F ¢ PandG ¢ P imply there exist homogeneous com-
ponents of least degreg, andg;, of £ and G, respec-
tively, which are not inP. Consequentlyﬁ0 gjo & P. As-
sume (s, fi) (s, € P. Thus, fi g5, + X €
P where X consists 019 terms of degree greater that-

Jjo. Since f;, g5, i1s the homogeneous component of de-

greeig + jo of an element in the homogeneous idéal
it is clear thatf; g;, € P, a contradiction. Therefore,
(D isio [) Xy, 94) & P. AssumeFG € P. Thus, the

ideal P to be completely prime. Looking forward ques-
tions arise concerning the softening of conditions under
which the equivalents (i.e., generalizations) of Theorems
4.10 and 4.11 may be deduced. Thus, one may look at the
role played byA-semirings in the arguments above and
of course the question about the condition on ideals be-
ing k-ideals as being replaceable through conditions on
the semiringR itself. The extents to which all this may

Ybe done is a set of questions and topics of possible interest
in future investigations.
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