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Abstract: This paper investigates parametric stability for nonlinear differential equations with “maxima”. Several sufficient conditions
for parametric stability as well as uniform parametric stability are obtained based on the Razumikhin method. Two different types of
Lyapunov functions have been applied. A comparison with scalar ordinary differential equations is offered.
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1. Introduction

One of the main problems in the qualitative theory of dif-
ferential equations is stability of the solutions. There are
various types of stability. One very useful stability type is
connected with parameters. Uncertain parameters in non-
linear systems can cause a shift in the equilibrium state
resulting in a loss of stability or destruction of the equilib-
rium altogether. The concept of parametric stability (see
[3,9,15]) has been introduced to consider the joint prob-
lem of feasibility and stability of equilibria when param-
eters belong to a bounded uncertainty set. It is a robust
stability concept, which explicitly deals with uncertainty
of equilibrium location caused by uncertain values of sys-
tem parameters. General conditions for parametric stabil-
ity have been obtained in the context of Lyapunov stability
theory and subsequently applied to Lotka–Volterra models
in population dynamics (see [9,12]). The study on para-
metric stability analysis of rotor bearing systems via Lya-
punov’s direct method is discussed in [2]. Some computer
experiments on testing the parametric stability of eukary-
otic molecular genetic systems controlling gene expres-
sion are given in [16]. Parametric stability is also applied
to control theory (see [17,18]).

In the last couple of decades, great attention has been
paid to automatic control systems and their applications
to computational mathematics and modeling. Many prob-

lems in control theory correspond to maximal deviation
of the regulated quantity (see [14]). Such kind of problems
could be adequately modeled by differential equations that
contain the maxima operator. A. D. Mishkis also points
out the necessity to study differential equations with “max-
ima” in his survey [13]. Various conditions for stability for
differential equations with “maxima” are obtained in [6,4,
5] (see also [1,7,8]).

In the present paper, the parametric stability of differ-
ential equations with “maxima” is studied in the context of
Lyapunov functions and the Razumikhin method. Several
sufficient conditions for parametric stability and uniform
parametric stability in terms of two measures are obtained.
Note that stability in terms of two measures is studied in
[10,11,7]. In this paper, additionally to the existing re-
sults, two different measures for the initial functions and
for the solutions are applied. This helps to widen the area
of applications of the obtained results to real world prob-
lems. Some examples are given to illustrate the concept
of the considered type of stability and applications of the
obtained results.
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2. Preliminary Notes and Definitions

Let R+ = [0,∞) andr, t0 > 0. Consider the system of
nonlinear differential equations with “maxima”

x′(t) = f

(
x, max

s∈[t−r,t]
x(s), p

)
, t ≥ t0 (1)

with an initial condition

x(t) = ϕ(t− t0), t ∈ [t0 − r, t0], (2)

wherex ∈ Rn, p ∈ Rm, f : Rn × Rn × Rm → Rn, and
ϕ : [−r, 0] → Rn. Denote byx(·; t0, ϕ, p) the solution of
(1), (2). In our further considerations, we will assume that
for any initial functionϕ ∈ C([−r, 0],Rn), the solution
x(·; t0, ϕ, p) is defined on[t0 − r,∞).

We now introduce the classΛ of Lyapunov functions.

Definition 1. Let ∆ ⊂ [−r,∞) and Ω ⊂ Rn. We say
that the functionV ∈ C(∆ × Ω,R+) belongs to classΛ
provided it is Lipschitz with respect to its second argument.

LetV ∈ Λ, t ∈ R+, p ∈ Rm, andφ ∈ C([t−r, t],Rn).
We define a derivative of the functionV along the trajec-
tory of system (1) by

D(1)(V, φ, t, p) = lim sup
ε→0

1
ε
×

{
V

(
t + ε, φ(t) + εf

(
φ(t), max

s∈[−r,0]
φ(t + s), p

))

− V (t, φ(t))
}

.

Consider the following set:

K =
{

a ∈ C(R+,R+) : a is strictly increasing

anda(0) = 0
}

.

We define the set of measures:

Γ =
{

h ∈ C([−r,∞)× Rn,R+) : min
x∈Rn

h(t, x) = 0

for eacht ≥ −r
}

.

Let ϕ ∈ C([−r, 0],Rn) andh0 ∈ Γ , t0 ∈ R+. We will use
the notation

H0(t0, ϕ) = max
t∈[−r,0]

h0(t + t0, ϕ(t + t0)).

The following two definitions are taken from [11].

Definition 2. Let h, h0 ∈ Γ . Thenh0 is calleduniformly
finer than h if there existδ > 0 and a ∈ K such that
h0(t, x) < δ impliesh(t, x) ≤ a(h0(t, x)).

Definition 3. Let h ∈ Γ . The functionV ∈ Λ is said to
beh-decrescentif there existδ > 0 anda ∈ K such that
h(t, x) < δ impliesV (t, x) ≤ a(h(t, x)).

Let ρ > 0, ξ ∈ Rn, andh ∈ Γ . We define the follow-
ing sets:

S(h, ξ, ρ) = {(t, x) ∈ R+ × Rn : h(t, x− ξ) < ρ} ,

SC(h, ξ, ρ) = {(t, x) ∈ R+ × Rn : h(t, x− ξ) ≥ ρ} .

In our further investigations, we will use the initial value
problem for the comparison scalar differential equation

u′ = g(t, u), t ≥ t0, u(t0) = u0, (3)

whereu ∈ R, g : R+ × R → R, u0 ∈ R. We will also
assume that the initial value problem (3) has a solution
u(·; t0, u0) defined on[t0,∞) for any initial pointu0 ∈ R.

Definition 4. A constant pointξ∗ ∈ Rn is called anequi-
librium of the system of differential equations with “max-
ima” (1) for p = p∗ ∈ Rm if ξ∗ is a solution(1), i.e.,
f(ξ∗, ξ∗, p∗) = 0.

Note that the equilibrium of (1) depends onp and we
denote it byξp.

We now introduce the concept of parametric stability:
Let us assume that for some valuep∗, there exists an equi-
librium ξp∗ which is stable. Let the parameterp change its
value fromp∗ to another valuẽp. Then is there a new equi-
librium stateξp̃, i.e.,f(ξp̃, ξp̃, p̃) = 0, and if there is, then
how far is it from the old oneξp∗ and is it stable as the old
one? The answer of this question is given by the concept
of parametric stability as studied for ordinary differential
equations in [9,15] and for differential equations with de-
lay in [3]. In order to generalize the concept of parametric
stability, we will use two different measures in the defini-
tion of stability of equilibrium.

Definition 5. The equilibriumξp of (1) for p ∈ Rm is
called stable in terms of both measures(h0, h), in short,
(h0, h)-stable, if for anyt0 ∈ R+ andε > 0, there exists
δ = δ(t0, ε, p) > 0 such that for anyϕ ∈ C([−r, 0],Rn),
H0(t0, ϕ − ξp) < δ impliesh(t, x(t; t0, ϕ, p) − ξp) < ε
for t ≥ t0.

Let us introduce the following definitions of paramet-
ric stability in terms of two measures from the setΛ.

Definition 6. Let h, h0 ∈ Γ . The system of differential
equations with “maxima”(1) is said to be

(S1)parametrically stableatp∗ ∈ Rm in terms of both mea-
sures(h0, h) if there exist an(h0, h)-stable equilib-
rium ξp∗ of (1) for p = p∗ and a neighborhoodN(p∗)
such that for anyp ∈ N(p∗),
(i) there exists an equilibriumξp of the system of dif-

ferential equations with “maxima”(1);
(ii) the equilibriumξp is (h0, h)-stable.

(S2)uniformly parametric stableat p∗ ∈ Rm in terms of
both measures(h0, h) if the numberδ in (S1) is inde-
pendent oft0 ∈ R+.

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 1, 41-48 (2013) / www.naturalspublishing.com/Journals.asp 43

Remark. Note that if h(t, x) = h0(t, x) ≡ ‖x‖, then
the defined types of stabilities in Definitions 5 and 6 are
known in the literature asstability andparametric stabil-
ity, respectively.

We will give some examples to illustrate the concepts
of parametric stability and to compare this type of stability
with stability of an equilibrium. To simplify the consider-
ations, we consider the case ofh(t, x) = h0(t, x) ≡ ‖x‖
andr = 0, i.e., ordinary differential equations.

Example 1. Consider the scalar linear differential equa-
tion x′ = −x + p, wherep is a parameter. The equation
has a solutionx(t; t0, x0, p) = p+(x0−p)e−(t−t0), where
x(t0) = x0. For anyp∗, the equation has an equilibrium
ξp∗ = p∗, which is stable. At the same time, the equa-
tion is parametrically stable, whereN(p∗) is an arbitrary
neighborhood.

Example 2. Consider the scalar linear differential equa-
tion x′ = −x + px, wherep is a parameter. The solution
of this equation isx(t; t0, x0, p) = x0e

(p−1)(t−t0), where
x(t0) = x0.

Let p∗ = 0. The differential equation has an equilib-
rium ξ∗ = 0 which is stable. LetN(p∗) = {p : |p| < 1}.
Then the equation is parametrically stable atp∗ = 0 since
|x(t; t0, x0, p)| ≤ x0 for t ≥ t0 andp ∈ N(p∗).

Let p∗ = 1. The differential equation has an equilib-
rium ξ∗ = 0 which is stable. At the same time, for any
p = 1 + b, whereb > 0 is an arbitrary small number,
there is an equilibriumξp = 0 which is not stable, since
the corresponding solution isx(t; t0, x0, p) = x0e

b(t−t0).
Therefore, the differential equation is not parametrically
stable atp∗ = 1.

Example 3.Consider the scalar differential equation [15]:
x′ = p − cos(x), wherep is a parameter. Forp∗ = 1,
the equation has the formx′ = 1 − cos(x) = 2 sin2(x

2 ),
and it has an equilibriumx∗ = 0 which is unstable. At the
same time, the instability of the equilibriumx∗ = 0 does
not persist for small variations of the parameter since for
any small variation of the parameterp > 1, there is no
equilibrium.

In the proofs of our main results, we will use the fol-
lowing comparison result.

Lemma 1. Let following conditions be fulfilled:

1. f ∈ C(Rn × Rn × Rm,Rn) andϕ ∈ C([−r, 0],Rn).
2. There exists an equilibriumξp ∈ Rn of the differential

equation with “maxima”(1) for a fixed valuep of the
parameter.

3. The initial value problem(1), (2) possesses a solution
x(·; t0, ϕ, p) defined on[t0 − r, T ), whereT ≤ ∞.

4. g ∈ C(R+ × R,R+).
5. V : [t0, T ) × Rn → R+, V ∈ Λ, and for any number

t ∈ [t0, T ) and any functionψ ∈ C([t− r, t],Rn) such
that

V (t, ψ(t)− ξp) > V (t + s, ψ(t + s)− ξp)

for s ∈ [−r, 0), the inequality

D(1)(V, ψ − ξp, t, p) ≤ g(t, V (t, ψ(t)− ξp))

holds.

Then the inequality max
s∈[−r,0]

V (t0 + s, ϕ(s) − ξp) ≤ u0

implies

V (t, x(t; t0, ϕ, p)− ξp) ≤ u∗(t; t0, u0) for t ∈ [t0, T ),

whereu∗(·; t0, u0) is the maximal solution of the initial
value problem(3).

Proof. Let u0 ∈ R+ be such that

max
s∈[−r,0]

V (t0 + s, ϕ(s)− ξp) ≤ u0.

Let n ∈ N andvn be the maximal solution of the problem

u′ = g(t, u) +
1
n

, u(t0) = u0 +
1
n

.

From g(t, u) + 1
n > 0 on [t0, T ), it follows that vn is

increasing on[t0, T ).
Define a functionm ∈ C([t0, T ),R+) by

m(t) = V (t, x(t; t0, ϕ, p)− ξp).

Because of the fact thatu∗(t; t0, u0) = limn→∞ vn(t), it
is enough to prove that for anyn ∈ N, we have

m(t) ≤ vn(t) for t ∈ [t0, T ). (4)

Note that for anyn ∈ N, the inequalitym(t0) < vn(t0)
holds. Assume inequality (4) is not true. Letn ∈ N be such
that there exists a pointη ∈ (t0, T ) with m(η) > vn(η).
Define

t∗ = sup {t ∈ [t0, T ) : m(s) < vn(s) for s ∈ [t0, t)} .

Notet∗ ∈ (t0, T ). Therefore

m(t∗) = vn(t∗), m(t) < vn(t) for t ∈ [t0, t∗). (5)

From inequality (5), it follows that

D−m(t∗) = lim
h→0−

m(t∗ + h)−m(t∗)
h

≥ lim
h→0−

v(t∗ + h)− v(t∗)
h

= v′n(t∗)

= g(t∗, vn(t∗)) +
1
n

= g(t∗,m(t∗)) +
1
n

.

(6)

As Case 1, supposet∗ − r ≥ t0. From the inequality
m(t∗) = vn(t∗) ≥ vn(s) > m(s) for s ∈ [t∗ − r, t∗),
according to condition 5, we get

D−m(t∗) ≤ g(t∗, m(t∗)) < g(t∗,m(t∗)) +
1
n

,
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contradicting (6). Therefore, (4) holds. As Case 2, suppose
t∗ − r < t0. Hence fors ∈ [t∗ − r, t0], we obtain the
relations

m(s) = V (s, x(s; t0, ϕ, p)− ξp)
≤ max

s∈[t0−r,t0]
V (s, x(s; t0, ϕ, p)− ξp)

= max
s∈[−r,0]

V (t0 + s, ϕ(s)− ξp) ≤ u0 < u0 +
1
n

= vn(t0) ≤ vn(t∗) = m(t∗).

For s ∈ [t0, t∗], as in Case 1, we obtainm(s) < m(t∗).
Therefore applying condition 5, we get

D−m(t∗) ≤ g(t∗,m(t∗)) < g(t∗,m(t∗)) +
1
n

,

contradicting (6).

3. Main Results

Initially, we will give some sufficient conditions for para-
metric stability applying only one Lyapunov function and
the Razumikhin method.

Theorem 1. Let the following conditions be fulfilled:

1. f ∈ C(Rn × Rn × Rm,Rn).
2. g ∈ C(R+ × R,R+) andg(t, 0) ≡ 0 for t ∈ R+.
3. h0, h ∈ Γ , andh0 is uniformly finer thanh.
4. There exist a pointp∗ ∈ Rm, an(h0, h)-stable equilib-

rium ξp∗ of (1), and a neighborhoodN(p∗) of p∗ such
that for anyp ∈ N(p∗), there exists an equilibriumξp

of the system of differential equations with “maxima”
(1) for p.

5. There exist a functionV : R+ × Rn → R+, V ∈ Λ,
and a constantρ > 0 such that:
(i) for anyp ∈ N(p∗), any numbert ∈ R+, and any

ψ ∈ C([t − r, t],Rn) with (t, ψ(t)) ∈ S(h, ξp, ρ)
andV (t, ψ(t)− ξp) > V (t + s, ψ(t + s)− ξp) for
s ∈ [−r, 0), the inequality

D(1)(V, ψ − ξp, t, p) ≤ g(t, V (t, ψ(t)− ξp))

holds;
(ii) for any p ∈ N(p∗) and any(t, x) ∈ S(h, ξp, ρ),

the inequality

a(h(t, x− ξp)) ≤ V (t, x− ξp) ≤ b(h0(t, x− ξp))

holds, wherea, b ∈ K.

Then the system of differential equations with “maxima”
(1) is parametrically stable (uniformly parametrically sta-
ble) atp∗ in terms of both measures(h0, h) if the zero so-
lution of the scalar differential equation(3) is stable (uni-
formly stable).

Proof. Let t0 ∈ R+ be an arbitrary fixed point,p ∈ N(p∗)
be a fixed parameter, andε ∈ (0, ρ). There exists an equi-
librium ξp of (1). Let the zero solution of the scalar differ-
ential equation (3) be stable, i.e., there existsδ1 ∈ (0, ρ),
δ1 = δ1(t0, ε) such that|u0| < δ1 implies

|u(t)| < a(ε), t ≥ t0, (7)

whereu is a solution of (3). According to condition 3, there
existδ2 > 0 and a functionψ ∈ K such that

h0(t, x− ξp) < δ2 (8)

implies
h(t, x− ξp) ≤ ψ(h0(t, x− ξp)). (9)

Sinceb ∈ K andψ ∈ K, we can findδ3 = δ3(ε) > 0,
δ3 < min(δ2, ρ), such that

ψ(δ3) < ε, b(δ3) < δ1. (10)

Choose an initial functionϕ ∈ C([−r, 0],Rn) such that

H0(t0, ϕ− ξp) < δ3 < δ2. (11)

From inequalities (8), (10), and (11), we get the inequality

h(t0, ϕ− ξp) ≤ ψ(h0(t0, ϕ− ξp))
≤ ψ(H0(t0, ϕ− ξp))
< ψ(δ3) < ε.

We will prove that if (11) is satisfied, then

h(t, x(t; t0, ϕ, p)− ξp) < ε, t ≥ t0. (12)

Assume inequality (12) is not true. Then there exists a
point t∗ > t0 such that

h(t∗, x(t∗; t0, ϕ0, p)− ξp) = ε,
h(t, x(t; t0, ϕ0, p)− ξp) < ε, t ∈ [t0, t∗).

(13)

Denotex(s) = x(s; t0, ϕ, p) for s ∈ [t0 − r, t∗]. Since
ε < ρ, we have(t, x(t)) ∈ S(h, ξp, ρ) for t ∈ [t0, t∗].
If we assume thath0(t∗, x(t∗) − ξp) ≤ δ3, then from the
choice ofδ3 and inequalities (8), (9), and (10), we obtain

h(t∗, x(t∗)− ξp) ≤ ψ(h0(t∗, x(t∗)− ξp)) ≤ ψ(δ3) < ε,

contradicting (13). Hence

h0(t∗, x(t∗)− ξp) > δ3, H0(t0, ϕ− ξp) < δ3. (14)

Therefore there exists a pointt∗0 ∈ (t0, t∗) such that

h0(t∗0, x(t∗0)− ξp) = δ3,

h0(t, x(t)− ξp) < δ3, t ∈ [t0 − r, t∗0).

Let u∗(·; t∗0, u∗0) be the maximal solution of (3) with initial
value

u∗0 = max
t∈[t∗0−r,t∗0 ]

V (t, x(t)− ξp).
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According to Lemma 1, the inequality

V (t, x(t)− ξp) ≤ u∗(t; t∗0, u
∗
0), t ∈ [t∗0, t

∗] (15)

holds. From (10) and condition 5(ii), we get

V (t, x(t)− ξp) ≤ b(h0(t, x(t)− ξp)) < δ1

for all t ∈ [t∗0 − r, t∗0]. Hence|u∗0| < δ1, and according to
(7),

|u∗(t; t∗0, u∗0)| < a(ε), t ≥ t∗0. (16)

From (15), (16), and condition 4(ii), we obtain

a(ε) = a(h(t∗, x(t∗)− ξp)) ≤ V (t∗, x(t∗)− ξp)
≤ u∗(t∗; t∗0, u

∗
0) < a(ε).

This contradiction proves that the inequality (12) holds.

Corollary 1. Let the conditions of Theorem 1 be satisfied
for g(t, x) ≡ 0 for (t, x) ∈ R+ × Rn. Then the system
(1) is uniformly parametric stable atp∗ in terms of both
measures(h0, h).

In the case when the Lyapunov function does not sat-
isfy all the desired conditions, it is useful to perturb the
function rather than discard it. In this case, we will use
two different comparison scalar differential equations:

u′ = g1(t, u), t ≥ t0, (17)

and
v′ = g2(t, v), t ≥ t0, (18)

whereu, v ∈ R, t0 ∈ R+.

Theorem 2. Let the following conditions be fulfilled:

1. The conditions 1 and 4 of Theorem 1 are satisfied.
2. There exist a constantρ > 0 and anh0-decrescent

functionV1 : R+ × Rn → R+, V1 ∈ Λ, such that:
(i) for anyp ∈ N(p∗), t > 0, andψ ∈ C([t−r, t],Rn)

such that(t, ψ(t)) ∈ S(h, ξp, ρ) and

V1(t, ψ(t)− ξp) > V1(t + s, ψ(t + s)− ξp)

for s ∈ [−r, 0), the inequality

D(1)(V1, ψ − ξp, t, p) ≤ g1(t, V1(t, ψ(t)− ξp))

holds, whereg1 ∈ C(R+ × R,R+), g1(t, 0) ≡ 0
for t ∈ R+.

3. For anyµ > 0, there existsV (µ)
2 : R+ × Rn → R+,

V
(µ)
2 ∈ Λ, such that:

(ii) for anyp ∈ N(p∗) and any point

(t, x) ∈ S(h, ξp, ρ) ∩ SC(h0, ξp, µ),

the inequality

a(h(t, x− ξp)) ≤ V
(µ)
2 (t, x− ξp)

≤ b(h0(t, x− ξp))

holds, wherea, b ∈ K;

(iii) for anyp ∈ N(p∗), t > 0, andψ ∈ C([t−r, t],Rn)
such that(t, ψ(t)) ∈ S(h, ξp, ρ) ∩ SC(h0, ξp, µ)
and

V1(t, ψ(t)− ξp) + V
(µ)
2 (t, ψ(t)− ξp)

> V1(t + s, ψ(t + s)− ξp)

+ V
(µ)
2 (t + s, ψ(t + s)− ξp)

for s ∈ [−r, 0), the inequality

D(1)(V1, ψ − ξp, t, p)

+D(1)(V
(µ)
2 , ψ − ξp, t, p)

≤ g2

(
t, V1(t, ψ(t)− ξp) + V

(µ)
2 (t, ψ(t)− ξp)

)

holds, whereg2 ∈ C(R+ × R,R+), g2(t, 0) ≡ 0
for t ∈ R+.

4. The zero solution of the scalar differential equation
(18) is uniformly stable.

Then the system of differential equations with ”maxima”
(1) is parametrically stable (uniformly parametrically sta-
ble) at p∗ in terms of both measures(h0, h) if the zero
solution of the scalar differential equation(17) is stable
(uniformly stable).

Proof. Let t0 ∈ R+ be an arbitrary fixed point,p ∈ N(p∗)
be a fixed parameter, andε ∈ (0, ρ). There exists an equi-
librium ξp of (1). SinceV1 is h0-decrescent, there exist
ρ1 ∈ (0, ρ) and a functionψ1 ∈ K such that

h0(t, x) < ρ1, (t, x) ∈ R+ × Rn (19)

implies
V1(t, x) ≤ ψ1(h0(t, x)). (20)

From the properties of the measuresh0(t, x) andh(t, x),
it follows that there existρ0 > 0 and a functionψ2 ∈ K
such that

h0(t, x) < ρ0 (t, x) ∈ R+ × Rn (21)

implies
h(t, x) ≤ ψ2(h0(t, x)). (22)

From condition 4, there existsδ1 = δ1(ε) > 0 such that
inequality|v0| < δ1 implies

|v(t; t0, v0)| < a(ε) for t ≥ t0, (23)

where v(·; t0, v0) is a solution of the scalar differential
equation (18) with the initial conditionv(t0) = v0. Since
b, ψ2 ∈ K, we can findδ2 = δ2(ε) > 0, δ2 < ε, such that
the inequalities

b(δ2) <
δ1

2
(24)

and
ψ2(δ2) < ε (25)

c© 2013 NSP
Natural Sciences Publishing Cor.



46 M. Bohner, A. Georgieva, and S. Hristova: Nonlinear Differential Equations with “Maxima”

hold. Let the zero solution of the scalar differential equa-
tion (17) be stable, i.e., there existsδ3 = δ3(t0, ε) > 0
such that the inequality|u0| < δ3 implies

|u(t; t0, u0)| < δ1

2
, t ≥ t0, (26)

whereu(·; t0, u0) is a solution of the scalar equation (17)
with the initial conditionu(t0) = u0. Sinceψ1 ∈ K, there
existsδ4 = δ4(δ3) > 0 such that the inequality|u| < δ4

implies
ψ1(u) < δ3. (27)

From inequalities (19) and (27), it follows that there ex-
ists δ5 = δ5(δ4) > 0, δ5 < min{δ4, ρ1}, such that the
inequalityh0(t, x) < δ5 implies

V1(t, x) ≤ ψ1(h0(t, x)) < δ3. (28)

Choose the initial functionϕ ∈ C([−r, 0],Rn) such that

H0(t0, ϕ− ξp) < δ6, (29)

whereδ6 = min{δ2, δ5}, δ6 = δ6(t0, ε) > 0. From in-
equalities (21) and (22), it follows that

h(t0, ϕ− ξp) ≤ ψ2(h0(t0, ϕ− ξp))
≤ ψ2(H0(t0, ϕ− ξp))
< ψ2(δ6) ≤ ψ2(δ2) < ε.

We will prove that if inequality (29) is satisfied, then

h(t, x(t; t0, ϕ, p)− ξp) < ε for t ≥ t0 − r. (30)

From inequality (29), it follows that

h0(t, x(t; t0, ϕ, p)− ξp) < ε, t ∈ [t0 − r, t0].

Assume that inequality (30) is not true fort ≥ t0. Accord-
ing to the assumption, there exists a pointt∗ > t0 such
that

h(t, x(t∗; t0, ϕ, p)− ξp) = ε (31)

and

h(t, x(t; t0, ϕ, p)− ξp) < ε, t ∈ [t0 − r, t∗). (32)

Denotex(t) = x(t; t0, ϕ, p), t ∈ [t0 − r, t∗]. From the
choice ofϕ andδ6, we haveh0(t0, ϕ − ξp) < δ6 ≤ δ2.
If we assume thath0(t∗, x(t∗) − ξp) ≤ δ2, then from the
choice ofδ2 and inequalities (22) and (25), we obtain

h(t∗, x(t∗; t0, ϕ, p)− ξp) ≤ ψ2(h0(t∗, x(t∗)− ξp)) < ε,

contradicting (31). Hence

h0(t∗, x(t∗)− ξp) > δ2, H0(t0, ϕ− ξp) < δ2. (33)

Then there exists a pointt∗0 ∈ (t0, t∗) such that

h0(t, x(t∗0)− ξp) = δ2,

h0(s, x(t)− ξp) < δ2 for s ∈ [t0 − r, t∗0)

and(t, x(t)) ∈ S(h, ξp, ε) ∩ SC(h0, ξp, δ2), t ∈ [t∗0, t
∗].

From the choice ofε, it follows that

(t, x(t)) ∈ S(h, ξp, ρ) ∩ SC(h0, ξp, δ2), t ∈ [t∗0, t
∗].

Let r1(·; t0, u0) be the maximal solution of the differential
equation (17), where

u0 = max
s∈[−r,0]

V1(t0 + s, ϕ(s)− ξp).

From condition 3(i) and Lemma 1, it follows that

V1(s, x(s)− ξp) ≤ r1(s; t0, u0), s ∈ [t0, t∗]. (34)

From inequality (29), we obtain

h0(t0 + s, ϕ(s)− ξp) < δ5, s ∈ [−r, 0]. (35)

From (35) and (28), we get

V1(t0 + s, ϕ(s)− ξp) ≤ ψ1(h0(s, ϕ(s)− ξp)) < δ3,

s ∈ [−r, 0], from which, together with (26), it follows that

r1(t; t0, u0) <
δ1

2
. (36)

From (34) and (36), we obtain the inequality

V1(t∗0 + s, x(t∗0 + s)− ξp) <
δ1

2
, s ∈ [−r, 0]. (37)

Consider the functionV (δ2)
2 (t, x) defined in condition 3,

whereµ = δ2. Let us defineV : [−r,∞) × Rn → R+,
V ∈ Λ, such that

V (t, x) = V1(t, x) + V
(δ2)
2 (t, x).

From inequality (24), condition 3, and the choice oft∗0, we
get

V
(δ2)
2 (t∗0 + s, x(t∗0 + s)− ξp)
≤ b(h0(t∗0 + s, x(t∗0 + s)− ξp))

≤ b(δ2) <
δ1

2
, s ∈ [−r, 0].

Hence

V (t∗0 + s, x(t∗0 + s)− ξp)
= V1(t∗0 + s, x(t∗0 + s)− ξp)

+ V
(δ2)
2 (t∗0 + s, x(t∗0 + s)− ξp)

<
δ1

2
+

δ1

2
, s ∈ [−r, 0].

(38)

The functionV satisfies the conditions of Lemma 1 on
[t∗0, t

∗]. Hence, from Lemma 1, it follows that

V (t, x(t)− ξp) ≤ v∗(t; t∗0, v
∗
0), t ∈ [t∗0, t

∗], (39)
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wherev∗ is the maximal solution of the scalar differential
equation (18) with initial condition

v∗0 = max
s∈[−r,0]

V (t∗0 + s, x(t∗0 + s)− ξp).

From (38), it follows thatv∗0 < δ1, and according to (23),
the inequality

v∗(t; t∗0, v
∗
0) < a(ε), t ≥ t∗0 (40)

holds. From (39), (40) and condition 4(ii), we obtain

a(ε) = a(h(t∗, x(t∗)− ξp)) ≤ V (t∗, x(t∗)− ξp)
≤ v∗(t∗; t∗0, v

∗
0) < a(ε).

This contradiction proves the validity of the inequality (30)
and the claim.

Now we will give an example in order to illustrate
some of the obtained sufficient conditions on a system of
differential equations with “maxima”.

Example 4. Consider the system of differential equations
with “maxima”

x′(t) = −p2e2y + max
s∈[t−r,t]

y(s),

y′(t) = −y + 2p
√

xey − max
s∈[t−r,t]

x(s),
(41)

wherep is a parameter. There exists no explicit solution
of the considered system (41), but we will apply the above
results in order to investigate the parametric stability of the
system.

Forp∗ = 0, the system (41) reduces to

x′(t) = max
s∈[t−r,t]

y(s),

y′(t) = −y − max
s∈[t−r,t]

x(s).
(42)

The system (42) has an equilibriumξ∗ = 0, ξ∗ = (ξ∗1 , ξ∗2),
which is stable.

For anyp ∈ N(p∗) = {p : |p| <
√

0.5}, the cor-
responding algebraic system to the system of differential
equations with “maxima” (41) is

− p2e2y + y = 0,

− y + 2p
√

xey − x = 0.
(43)

The algebraic system (43) has a solutionξp = (ξ1,p, ξ2,p),
whereξ2,p > 0 is a solution of the equationy = p2e2y,
andξ1,p = ξ2,p. Let V (t, x, y) = 1

2 (x2 + y2) ∈ Λ. Let
t ∈ R+ be an arbitrary point, the parameterp ∈ N(p∗),
and the functionψ ∈ C([t − r, t],R2), ψ = (ψ1, ψ2) be
such that|ψk(t)−ξk,p| > |ψk(t+s)−ξk,p| for s ∈ [−r, 0),

k = 1, 2. Then we have

D(42)(V, ψ − ξp, t, p) = (ψ1(t)− ξ1,p)×(
−p2e2(ψ2(t)−ξ2,p) + max

s∈[−r,0]
(ψ2(t + s)− ξ2,p)

)

+ (ψ2(t)− ξ2,p)×(
−(ψ2(t)− ξ2,p) + 2p

√
ψ1(t)− ξ1,pe

ψ2(t)−ξ2,p

− max
s∈[−r,0]

(ψ1(t + s)− ξ1,p)
)

≤(ψ1(t)− ξ1,p)
(
−p2e2(ψ2(t)−ξ2,p) + (ψ2(t)− ξ2,p)

)

+ (ψ2(t)− ξ2,p)
(
− (ψ2(t)− ξ2,p)

+ 2p
√

ψ1(t)− ξ1,pe
ψ2(t)−ξ2,p − (ψ1(t)− ξ1,p)

)

=−
(

p
√

ψ1(t)− ξ1,pe
ψ2(t)−ξ2,p − (ψ2(t)− ξ2,p)

)2

≤0.

According to Corollary 1, the considered system of differ-
ential equations with “maxima” is uniformly parametric
stable atp∗ = 0.
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