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Abstract: This paper investigates parametric stability for nonlinear differential equations with “maxima”. Several sufficient conditions
for parametric stability as well as uniform parametric stability are obtained based on the Razumikhin method. Two different types of
Lyapunov functions have been applied. A comparison with scalar ordinary differential equations is offered.
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1. Introduction lems in control theory correspond to maximal deviation
of the regulated quantity (see [14]). Such kind of problems
could be adequately modeled by differential equations that

ferential equations is stability of the solutions. There areCOntain the maxima operator. A. D. Mishkis also points
q y . out the necessity to study differential equations with “max-

various types of stability. One very useful stability type is ima” in his survey [13]. Various conditions for stability for

qonnected with parameters. U”.Ceftai” paramgtgrs in nondifferential equations with “maxima” are obtained in [6,4
linear systems can cause a shift in the equilibrium statqs] (see also [1,7,8)) n

resulting in a loss of stability or destruction of the equilib-
rium altogether. The concept of parametric stability (see
[3,9,15]) has been introduced to consider the joint prob-
lem of feasibility and stability of equilibria when param-
eters belong to a bounded uncertainty set. It is a robust
stability concept, which explicitly deals with uncertainty
of equilibrium location caused by uncertain values of sys-
tem parameters. General conditions for parametric stabil-  In the present paper, the parametric stability of differ-
ity have been obtained in the context of Lyapunov stability ential equations with “maxima” is studied in the context of
theory and subsequently applied to Lotka—\Volterra modeld yapunov functions and the Razumikhin method. Several
in population dynamics (see [9,12]). The study on para-sufficient conditions for parametric stability and uniform
metric stability analysis of rotor bearing systems via Lya- parametric stability in terms of two measures are obtained.
punov’s direct method is discussed in [2]. Some computemote that stability in terms of two measures is studied in
experiments on testing the parametric stability of eukary-[10,11,7]. In this paper, additionally to the existing re-
otic molecular genetic systems controlling gene expressults, two different measures for the initial functions and
sion are given in [16]. Parametric stability is also applied for the solutions are applied. This helps to widen the area
to control theory (see [17,18]). of applications of the obtained results to real world prob-

In the last couple of decades, great attention has beelems. Some examples are given to illustrate the concept
paid to automatic control systems and their applicationsof the considered type of stability and applications of the
to computational mathematics and modeling. Many prob-obtained results.

One of the main problems in the qualitative theory of dif-
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2. Preliminary Notes and Definitions

LetR; = [0,00) andr, ¢y > 0. Consider the system of

nonlinear differential equations with “maxima”

)= f (az, max x(s),p) , t>tg 1)

seft—r,t]
with an initial condition
.%‘(t) :(p(t—ﬁo), t e [to —’I“,to], (2)

wherex € R", p € R™, f : R* x R" x R"™ — R", and
¢ : [-r,0] — R™. Denote byz(-; to, ¢, p) the solution of

Letp > 0,¢ € R™, andh € I'. We define the follow-
ing sets:

S(h,&.p) = {(t,z) € Ry x R" : hit,z —€) < p},
S9(h,&,p) = {(t,x) e Ry x R™: h(t,z — &) > p}.

In our further investigations, we will use the initial value
problem for the comparison scalar differential equation

ul = g(t7u)7 t 2 tO; u(tO) = U, (3)

whereu € R, g : Ry xR — R, ug € R. We will also
assume that the initial value problem (3) has a solution

(1), (2). In our further considerations, we will assume that, .. 1, ) defined orjto, oo) for any initial pointu, € R.

for any initial functiony € C([—r,0],R™), the solution
x(+;t0, @, p) is defined orfty — r, 00).
We now introduce the clas$ of Lyapunov functions.

Definition 1. Let A C [-r,00) and 2 C R"™. We say
that the function € C(A x £2,R,) belongs to classl

provided it is Lipschitz with respect to its second argument.

LetV € A,t e R,p € R™, and¢ € C([t—r,t],R").
We define a derivative of the functidr along the trajec-
tory of system (1) by

1
Dwy(V, ¢,t,p) = limsup — X
e—0 13

{v (t fe bt +ef (¢(t), ‘max_o(t + s),p>)

s€[—r,0]
—V(t.6(1) }-
Consider the following set:
K = {a € C(R4,Ry) : ais strictly increasing
anda(0) = 0}.
We define the set of measures:

I = {h € C([-r,00) x R®",Ry) : min h(t,z) =0

ajeR‘n

for eacht > —r}.

Lety € C([—r,0],R™) andhy € I', ¢ty € R4. We will use
the notation

Hy(to, ) = ten[li?.(o] ho(t + to, ¢(t + to))-

The following two definitions are taken from [11].

Definition 2. Leth, hg € I'. Thenhy is calleduniformly
finer than h if there existd > 0 anda € K such that
ho(t,z) < § impliesh(t, x) < a(ho(t, x)).

Definition 3. Leth € I'. The functionV € A is said to
be h-decrescenif there existy > 0 anda € K such that
h(t,z) < ¢ impliesV (¢, z) < a(h(t, x)).

Definition 4. A constant poing* € R” is called anequi-
librium of the system of differential equations with “max-
ima” (1) for p = p* € R™ if £* is a solution(1), i.e.,
[, &) =0.

Note that the equilibrium of (1) depends prand we
denote it byg,,.

We now introduce the concept of parametric stability:
Let us assume that for some valuie there exists an equi-
librium &,- which is stable. Let the paramefechange its
value fromp* to another valug. Then is there a new equi-
librium state;, i.e., f(¢5,&5,p) = 0, and if there is, then
how far is it from the old on€,- and is it stable as the old
one? The answer of this question is given by the concept
of parametric stability as studied for ordinary differential
equations in [9,15] and for differential equations with de-
lay in [3]. In order to generalize the concept of parametric
stability, we will use two different measures in the defini-
tion of stability of equilibrium.

Definition 5. The equilibrium¢, of (1) for p € R™ is

called stable in terms of both measur@s, k), in short,

(ho, h)-stable, if for anyty, € Ry ande > 0, there exists
d = d(to,&,p) > 0 such that for anyp € C([—r,0],R"™),

Ho(to, p — &) < 6 impliesh(t, z(t;to, p,p) — &) < €

fort > tg.

Let us introduce the following definitions of paramet-
ric stability in terms of two measures from the get

Definition 6. Let h,hy € I'. The system of differential
equations with “maxima’(1) is said to be

(S1) parametrically stablat p* € R™ in terms of both mea-

sures(ho, h) if there exist an(hg, h)-stable equilib-

rium &,+ of (1) for p = p* and a neighborhoodV (p*)

such that for any € N(p*),

(i) there exists an equilibriurg, of the system of dif-
ferential equations with “maxima(2);

(ii) the equilibriumg,, is (ho, h)-stable.

(S2) uniformly parametric stablat p* € R™ in terms of

both measureghy, h) if the number in (S1) is inde-
pendent ofy, € R,.
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Remark. Note that if h(t,z) = ho(t,x) = ||z, then for s € [-r,0), the inequality
the defined types of stabilities in Definitions 5 and 6 are
known in the literature astability andparametric stabil- Day(V, o = &pot,p) < g(t, V(L 9(t) — &)
ity, respectively. holds.
We will give some examples to illustrate the conceptsTnen the inequalit Vite + _e) <
of parametric stability and to compare this type of stability q Bég[@r},(] (o + 5,0(8) = &) < wo
with stability of an equilibrium. To simplify the consider- implies
ations, we consider the caseldft, z) = ho(t,z) = ||z .
andr = 0, i.e., ordinary differential equations. V(t,2(tt0, 0, p) — &) < u'(t;to, uo) for t € [to, T),
Example 1. Consider the scalar linear differential equa- Wherew*(-;to,uo) is the maximal solution of the initial

tion 2/ = —z + p, wherep is a parameter. The equation Value problent(3).
has a solution:(¢; to, zo, p) = p+(zo—p)e” ¢, where

x(tp) = xo. For anyp*, the equation has an equilibrium Proof. Letug € Ry be such that

&~ = p*, which is stable. At the same time, the equa- max V(to +s,0(s) — &) < uo.
tion is parametrically stable, wher€(p*) is an arbitrary s€[—7,0] P
neighborhood.

Letn € N andwv,, be the maximal solution of the problem
Example 2. Consider the scalar linear differential equa-

tion 2’ = —x + pz, wherep is a parameter. The solution u' = g(t,u) + l’ u(to) = ug + l.

of this equation isc(t; o, 2o, p) = xeeP~D{E=t0) where n n

I(to) = Zp. From 1 . .
D . . . - g(t,u) + - > 0 on[ty,T), it follows that v, is
Let p* = 0. The differential equation has an equilib- increasing orito. 7).

rium &* = 0 which is stable. LetV(p*) = {p : |p| < 1}. . ;
Thenfthe equation is parametrica(lly ?stabi@’atL |0 sin(];e Define a functionn € C([to, T), R+) by
|(t; to, zo, p)| < @o fort = to andp € N (p*). m(t) = V(t, z(t; to, 0, ) — &)

Let p* = 1. The differential equation has an equilib-
rium £ = 0 which is stable. At the same time, for any Because of the fact that*(¢; g, ug) = lim, 00 v, (t), it
p = 1+ b, whereb > 0 is an arbitrary small number, is enough to prove that for any e N, we have
there is an equilibriung, = 0 which is not stable, since
the corresponding solution ig(t; to, zo, p) = el —10), m(t) < va(t) for t € [to, T). (4)
Therefore, the differential equation is not parametrically Note that for anyn € N, the inequalitym(to) < v (to)

stable ap™ = 1. holds. Assume inequality (4) is not true. Let N be such
Example 3.Consider the scalar differential equation [15]: that there exists a point < (to, T') with m(n) > vn(1).
2’ = p — cos(z), wherep is a parameter. Fop* = 1, ~ Define

the equation has the formf = 1 — cos(z) = 2sin?(%), . )
and itqhas an equilibrium* = 0 which i(s l>mstable. ,&% zhe t"=sup{t € [to, T) : m(s) <vn(s)fors € fto, 1)}
same time, the instability of the equilibriunt = 0 does  Notet* € (¢, T'). Therefore
not persist for small variations of the parameter since for
any small variation of the parametgr> 1, there is no m(t*) = v, (t*), m(t) <wvn(t) fort € [to,t*). (5)
equilibrium.

From inequality (5), it follows that

In the proofs of our main results, we will use the fol-
lowing comparison result. m(t* + h) — m(t*)
o h—0— h

ot +h) —o@) _

Lemma 1. Let following conditions be fulfilled:

1. f € C(R" x R" x R™, R") andp € C([—r,0],R"). > lim 3 = v, (t7)

2. There exists an equilibriugy, € R™ of the differential 1 (6)
equation with “maxima”(1) for a fixed valuep of the =g(t*, v, (t")) + —
parameter. n

3. The initial value problen{l), (2) possesses a solution = g(t*, m(t*)) + l,
x(+;to, @, p) defined onjty — r, T'), whereT < cc. n

4.9 € C(Ry xR, Ry ). As Case 1, suppose — r > to. From the inequality

5.V :[to,T) x R" — Ry, V € 4, and for any number mt*) = va(t*) > va(s) > m(s) for s € [t* — r,t*),
the [to, T') and any function) € C([t —r,t],R™) such according to condition 5, we get
that

1

V(t,0(t) = &) > V(t+s,0(t+5) = &) D_m(") < g(t7, m(t")) < g(t", m(t")) + —,
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contradicting (6). Therefore, (4) holds. As Case 2, supposéroof. Lett, € R be an arbitrary fixed poing € N (p*)

t* —r < to. Hence fors € [t* — r,to], we obtain the
relations

m(s) = V(va(s; to, Sovp) - fp)
< V(Saz(s;t07¢7p) 75}))

max
sE [to 7T‘,t0]

V(t -
Jnax (to +5,0(s) = &p)

= vp(to) < vp(t*) = m(t").

1
<wug <ug+ —
n

For s € [tg,t*], as in Case 1, we obtain(s) < m(t*).
Therefore applying condition 5, we get

D_m(t") < g(t*,m(t*)) < g(t*,m(t")) + %,

contradicting (6).

3. Main Results

Initially, we will give some sufficient conditions for para-
metric stability applying only one Lyapunov function and
the Razumikhin method.

Theorem 1. Let the following conditions be fulfilled:

1. f € C(R™ x R™ x R™,R").

2.9 € C(Ry xR,R;)andg(t,0) =0fort € R,.

3. hg, h € I', andhy is uniformly finer tharh.

4. There exist a point* € R™, an(hg, h)-stable equilib-
rium &,- of (1), and a neighborhood (p*) of p* such
that for anyp € N(p*), there exists an equilibriurg,
of the system of differential equations with “maxima”
(2) for p.

. There exist a functio : Ry x R" — Ry, V € 4,
and a constanp > 0 such that:

(i) for anyp € N(p*), any number € R, and any
v € C([t — r,t],R™) with (t,5(t)) € S(h, &, p)
andV (t,¥(t) — &) > V(t+s,v(t+s)—&p) for
s € [—r,0), the inequality

D(l) (V? 1/] - §p> tap) < g(t7 V(t’ w(t) - gp))

holds;
(i) for anyp € N(p*) and any(t,z) € S(h, &, p),
the inequality

a(h(t,z —&)) S V(t,x — &) < blho(t,x —&p))
holds, where:, b € K.

Then the system of differential equations with “maxima”
(1) is parametrically stable (uniformly parametrically sta-
ble) atp* in terms of both measuréé,, ) if the zero so-
lution of the scalar differential equatiof8) is stable (uni-
formly stable).

be a fixed parameter, asde (0, p). There exists an equi-
librium &, of (1). Let the zero solution of the scalar differ-
ential equation (3) be stable, i.e., there exitse (0, p),

91 = 01(to, €) such thatug| < J; implies

lu(t)| <al(e), t=>to,

()

whereu is a solution of (3). According to condition 3, there
existd, > 0 and a function) € K such that

ho(t,l’ — fp) < 09 (8)

implies
h(t,x — &) < ¥(ho(t,x — &)).- )

Sinceb € K andy € K, we can findj; = d3(¢) > 0,
d3 < min(da, p), such that

w((s?)) <g,

Choose an initial functiop € C([—r, 0], R™) such that

b((53) < 4. (10)

Hy(to, p — &p) < 03 < 02. (11)
From inequalities (8), (10), and (11), we get the inequality

h(to, o — &) < t(ho(to, — &p))
< Y(Ho(to, » — &p))
< (d3) < e.
We will prove that if (11) is satisfied, then
h(t7x(t7t0a ¢7p) - fp) <kg, t 2 tO- (12)

Assume inequality (12) is not true. Then there exists a
pointt* > ¢y such that

h'(t*a (E(t*vt()a @0729) - é-p) =g,

h(tax(tath @07]7) - E[J) <g, te [tht*) (13)

Denotex(s) = z(s;to, ¢, p) for s € [ty — r,t*]. Since
e < p, we have(t,z(t)) € S(h,&,p) fort € [to,t*].
If we assume thak, (¢t*, z(t*) — §,) < d3, then from the
choice ofd; and inequalities (8), (9), and (10), we obtain

h(t™, z(t") = &) < P(ho(t™, x(t”) — &) < ¢(ds) <e,
contradicting (13). Hence
ho(t*,z(t*) — &) > 03, Ho(to,p —&p) < 03.

Therefore there exists a poitjf € (to,t*) such that

ho(tg, z(tg) — &p) = s,
ho(t7$(t) — fp) < (537 te [t() -, té)

(14)

Letw*(-; 5, uy) be the maximal solution of (3) with initial

value
V(t’ CC(t) - SP)

uy = max

te [fs _7'7t8]

© 2013 NSP
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According to Lemma 1, the inequality
V(t,z(t) = &) < u'(titg, ug), t €[t t"]  (15)
holds. From (10) and condition 5(ii), we get
V(t,2(t) = &) < b(ho(t, x(t) — &) <01

forall ¢ € [t§ — r,t§]. Hencelug| < d1, and according to

(@),

[u*(t; 85, ug)| < ale), t>¢.
From (15), (16), and condition 4(ii), we obtain

a(e) = a(h(t™,x(t") = &)) < V(t*, x(t7) — &)
< ur (g, ug) < ale).

(16)

This contradiction proves that the inequality (12) holds.

Corollary 1. Let the conditions of Theorem 1 be satisfied
for g(t,z) = 0 for (¢t,z) € Ry x R™. Then the system

(i) foranyp € N(p*),t > 0,andy € C([t—r,t],R™)
such that(t,4(t)) € S(h, &, p) N S (ho, &p, 1)
and

Vi(t, (1) — &) + Vi (8, () — &)
> Vit + 5, 0(t +5) — &)
F VI + 5,0t + 5) — &)

for s € [-r,0), the inequality
D(1)<‘/17 w - fpa tap>
+ Dy (Vs 9 — &, t,p)
< g2 (LVA( (1) - &) + V3" (L) - &)

holds, whergys € C(Ry x R,R,), g2(¢,0) = 0
fort e R;.

4. The zero solution of the scalar differential equation

1) is uniformly parametric stable at* in terms of both
(1) y P a (18)is uniformly stable.

measureghg, h).

Then the system of differential equations with "maxima”

In the case when the Lyapunov function does not sat-,_ .~ ; . .
yap (1) is parametrically stable (uniformly parametrically sta-

isfy all the desired conditions, it is useful to perturb the
function rather than discard it. In this case, we will use

two different comparison scalar differential equations:
ul = gl(tvu)7 t Z th (17)

and
UI = gQ(tv’U)7 t Z t07

whereu,v € R, ¢ € R,.

(18)

Theorem 2. Let the following conditions be fulfilled:

1. The conditions 1 and 4 of Theorem 1 are satisfied.
2. There exist a constant > 0 and an hg-decrescent
functionV; : Ry x R™ — R, V; € A, such that:
(i) foranyp € N(p*),t > 0,andy € C([t—r,t],R")
such that(¢, ¥ (t)) € S(h,&,, p) and

for s € [—-r,0), the inequality

Day(Vi, ¥ — &, t,p) < g1(t, Vit v(t) — &)

holds, whergy; € C(R; x R,Ry), g1(¢,0)
fort € R;.
3. For anyy > 0, there existsVQ(”) Ry x R® — Ry,

V" e 4, such that:
(i) for anyp € N(p*) and any point

(f,iﬂ) € S(hvgpa ,0) n Sc(h()vfpvﬂ)a

the inequality

0

holds, wherei, b € K;

ble) atp* in terms of both measureg,, h) if the zero
solution of the scalar differential equatiqid7) is stable
(uniformly stable).

Proof. Letty € R, be an arbitrary fixed poing € N (p*)
be a fixed parameter, amde (0, p). There exists an equi-
librium &, of (1). SinceV; is ho-decrescent, there exist
p1 € (0, p) and a function); € K such that
hO(ta I) < p1, (t,CC) € R-l— x R™ (19)
implies
Vl (t, .’E) S ¢1(h0(t, SL)) (20)

From the properties of the measurest, =) andh(t, ),
it follows that there exisp, > 0 and a functiony, € K
such that
ho(t,z) <po (t,z) e Ry xR" (21)
implies
h(t,z) < a(ho(t,x)). (22)

From condition 4, there existy = ¢;(¢) > 0 such that
inequality|vo| < d; implies

[v(t; to, vo)| < a(e) fort > to, (23)
wherev(+;tp,v9) is @ solution of the scalar differential
equation (18) with the initial condition(tg) = vy. Since
b, o € K, we can finddy = d2(g) > 0, d2 < &, such that
the inequalities

and
Pa(d2) <€ (25)

© 2013 NSP
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hold. Let the zero solution of the scalar differential equa-and (¢, z(t)) € S(h,&,,€) NS (ho,&p, 82), t € [th, t¥].

tion (17) be stable, i.e., there exists = d3(tg,e) > 0
such that the inequalitiug| < é3 implies

o
[u(t; to, wo)| < 5 > to, (26)

whereu(+; to, ug) is a solution of the scalar equation (17)

with the initial conditionu(ty) = ug. Sincey, € K, there
existsds = d4(d3) > 0 such that the inequalitijts| < o4
implies

1(u) < 0. (27)

From inequalities (19) and (27), it follows that there ex-
ists d5 = J5(d4) > 0, d5 < min{da4, p1}, such that the

inequalityho(t, z) < 05 implies
Vl(t,i) < ’(/Jl(ho(t,l‘)) < 03. (28)
Choose the initial functiop € C([—r, 0], R™) such that

HO(tO7()0_§p) <56a (29)

wheredg = min{62,55}, 0 = 56(t0,€) > 0. From in-
equalities (21) and (22), it follows that

h(to, o — &) < alho(to, o —&p))
< o(Ho(to, 9 — &p))
< a(dg) < Pa(d2) < e.
We will prove that if inequality (29) is satisfied, then
h(t,z(t;t0, 0, p) — &) <€ for ¢ >ty —r. (30)
From inequality (29), it follows that
ho(t, z(t;to, 0,p) — &) <&, tE€ [to—7,to].

Assume that inequality (30) is not true fop tq. Accord-
ing to the assumption, there exists a paiht> ¢, such
that

h(t7 .fL'(t*, th 807p) - €P) =¢ (31)

and
h(tax“;t(),@vp) - E;D) <g, te [tO - t*)

Denotex(t) = x(t;to, v, p), t € [to — r,t*]. From the
choice ofy andds, we haveh(to, p — &) < 06 < 0a.

If we assume thak, (¢t*, z(t*) — &,) < J2, then from the
choice ofd, and inequalities (22) and (25), we obtain

h(t™, z(t" 0, 0, p) — &) < ha(ho(t™, 2(t") — &)) <&,
contradicting (31). Hence
hO(t*7m(t*)_§p) >627 HO(thQD_gP) <62-

Then there exists a poit € (o,t*) such that

ho(hl‘(té) - gp) = 2,
ho(S,.’E(f) — fp) < o for s e [t() -, ta)

(32)

(33)

From the choice of, it follows that
(t,z(t)) € S(h, &y, p) NS (ho,&p, 02), t € [t 7).

Letr (+;to, up) be the maximal solution of the differential
equation (17), where

up = max | Vi(to + s,0(s) = &p).

s€[—r,0

From condition 3(i) and Lemma 1, it follows that

Vi(s,z(s) — &) < ri(s;to,uo), s € [to,t*]. (34)
From inequality (29), we obtain
hO(tO + S, 90(5) - é.p) < 557 s € [77’7 O] (35)

From (35) and (28), we get

Vl(tO + S, 90(5) - gp) S wl(hO(Sa QD(S) - gp)) < 53;

s € [—r,0], from which, together with (26), it follows that

Tl(t;to,UQ) < % (36)
From (34) and (36), we obtain the inequality
)
Vit +s,2(th +5) — &) < —, se[-r0. (37)

57

Consider the functioﬁ@(‘b)(t,x) defined in condition 3,

wherey = d,. Let us defindl : [—r,00) x R" — Ry,
V € A, such that

V(t,z) = Vilt,z) + V) (¢, z).

From inequality (24), condition 3, and the choicegfwe
get

VO (4 5wt + 5) — &)
< b(ho(ty + s, x(th 4+ 5) — &)
P
< b(d,) < 51 s € [-r,0].
Hence

V(ty+ s, x(ty +3) — &)
=Vi(ty +s,2(tg +5) — &)

VO (t5 + s, ats +5) - &) (8)
01 61
< 5 + 5, S € [—7",0].

The functionV satisfies the conditions of Lemma 1 on
[t5, t*]. Hence, from Lemma 1, it follows that

V(t,z(t) — &) < v (t;t5,v5), telty,t™], (39)
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wherev* is the maximal solution of the scalar differential & = 1,2. Then we have

equation (18) with initial condition

vy = sen[lﬁfo] V(ts + s, x(ty +s) — &p)-

From (38), it follows thaty; < §;, and according to (23),
the inequality

(it vy) < ale), t>t] (40)
holds. From (39), (40) and condition 4¢(ii), we obtain

a(e) = a(h(t™,(t") = &)) < V(" 2(t") — &)
<v*(t"; 15, v5) < ale).

This contradiction proves the validity of the inequality (30)
and the claim.

Now we will give an example in order to illustrate

Duaa(V, v = &pit,p) = (W (t) — &1,p) %
(pzez(wz(t)fz,p) 4 ser?—arxo](%(t +5) — 524)))
+ (W2(t) — &2.p)%

((%(t) — &) + 20/ (t) — &1 pe?2 () E20
_ 33[1?501(1/)1 (t+s) — fl,p))
<(1(t) = &1,p) (_p262<w2(t)—£2,p) + (a(t) — £z,p))

+ (a(t) = 2) (= (alt) - &2)

20 () — E1,pe O — (U () — 1))
2
=~ (p/ 10— €005 — (10 - )

some of the obtained sufficient conditions on a system of

differential equations with “maxima”.

According to Corollary 1, the considered system of differ-
Example 4. Consider the system of differential equations ential equations with “maxima” is uniformly parametric

with “maxima”
'(t) = —p*e® + max y(s),

set—r,t]
y'(t) = —y + 2pVwe? — max x(s),

sE[t—r,t]

(41)

wherep is a parameter. There exists no explicit solution
of the considered system (41), but we will apply the above
results in order to investigate the parametric stability of the
system.

Forp* = 0, the system (41) reduces to

2(t) = max y(s),
set—r,t]
/ (42)
Yy (t) = —y— max x(s).
SE[t—r,t]
The system (42) has an equilibrigh= 0, £* = (£5,£5),

which is stable.
Foranyp € N(p*) = {p : [|p| < V0.5}, the cor-

responding algebraic system to the system of differential

equations with “maxima” (41) is

—p*e? +y =0,

—y+2pVze¥ —x =0. (43)
The algebraic system (43) has a solutfgn= (&1, &2,p),
whereé, , > 0 is a solution of the equatiop = p2e§y,
andé;, = & Let V(L z,y) = 3(2® + ¢?) € A Let
t € R, be an arbitrary point, the paramefere N (p*),
and the functionp € C([t — r,t],R?), ¢ = (31,1) be
such thatyy (t) =&k p| > |k (t+s)—E&kp| fors € [—r,0),

stable ap* = 0.
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