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Abstract: Packet classification is an essential function for next-generation Internet routers to provide high quality of service. Packet
classification using multiple header fields is a challenging problem that should be performed at wire speed for all incoming packets.
This paper proposes a novel mathematical framework for packet classification problem. Then the priority area-based quad-tree (PAQT)
packet classification algorithm combining priority search and recursive space decomposition is formally described using the framework.
The validity of the PAQT algorithm is mathematically proved for theoretical justification. The proposed mathematical framework can
be applied to other packet classification algorithms for formal description and theoretical justification. Extensive simulation results
demonstrate that the PAQT algorithm has very good performance compared to other packet classification algorithms in terms of search
speed, memory size, and scalability.
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1. Introduction

Traditional routers provide the best-effort service to all
incoming packets, and hence they treat every incoming
packet equally. However, emerging multimedia applica-
tions request multiple levels of quality of service (QoS) [1]-
[4]. Advanced routers can use packet classification to sup-
port higher level functions such as QoS routing and ac-
cess control [5]. For the Internet routers to provide the re-
quested QoS, they should provide various features such as
admission control, resource reservation, per-flow queuing,
and output scheduling [6].

As an essential pre-requisite for these features, pack-
ets need to be classified into multiple flows. The rules for
packet classification consists of a set of fields and an asso-
ciated action [7]. Each rule in a classification table has a
priority which is defined by multiple fields. Header fields
included in a given input packet are compared with corre-
sponding rule fields, and multiple rules can match to an in-
put packet. The highest priority rule is selected among the
matching rules. Most of the previous packet classification
algorithms have a trade-off between the required memory

size and the search speed. The search speed is often mea-
sured by the number of memory accesses since memory
access is the most time consuming operation in the search
procedure.

Ternary content addressable memory (TCAM) has been
widely used in commercial routers since TCAM provides
very good search performance [11], [27], [28], [29], [30].
However, TCAM consumes a lot of power and about six
times larger than ordinary memory. Studies have been con-
ducted to reduce the required space [28], to reduce the
power consumption [29], and to improve the throughput of
TCAM [30]. The large size and power consumption make
large classifiers implemented with TCAM impractical.

As a basic algorithmic approach, trie-based algorithms
use a source IP prefix and a destination IP prefix to build
tries [9], [15], [20], [24]. A hierarchical trie (H-trie) [13]
constructs the first trie using the source prefix field, and
each node of the trie connects to the second trie constructed
with the destination field rules with the same source field
so that both fields are searched simultaneously. In H-trie,
searching for matching rules has to be continued until a
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leaf of the first trie is visited even if a match is already
found in a higher level because of the possibility that other
nodes with higher priorities will match. Set-pruning tries
[13] improve the search time of the H-trie by copying all
the possible matching rules in the search path into the leaves.
It improves the search time, but requires huge amount of
memory. The approach used in the grid-of-tries [24] and
the extended grid-of-tries [9] overcomes the disadvantage
of rule duplication by pre-computing the best matching
rule of each node and storing switch pointers from one
node to another. The intrinsic problem of trie-based al-
gorithms is that there are often a large number of empty
nodes which do not store any rule, resulting in a large
memory requirement and a slow search speed.

The HiCuts (hierarchical intelligent cuttings) [14] and
HyperCuts [22] algorithms partition a multi-dimensional
search space based on heuristics that exploit the structure
of classifiers. The decision tree characteristics such as its
depth, the degree of the node, and the local search decision
to be made at each node are determined in a pre process-
ing step based on the structure of the classifier. Each leaf
node in the tree includes a pre-determined small number of
rules that can be searched linearly. The cutting algorithms
have some issues that the search speed is highly dependent
on the characteristics of the classifiers and excessive pre
processing time may be required.

The tuple-space search algorithm [23] decomposes a
classification query into a number of exact match queries.
Since the number of tuples consisting of the source and
destination prefixes is usually small, the algorithm decom-
poses a classification table into multiple tuples. Rules mapped
to the same tuple have fixed lengths, so they can be stored
in a hash table. Each tuple is searched sequentially by hash-
ing, thus the classification speed depends on the number of
tuples.

In the cross-product algorithm [24], the distinct val-
ues in each field of the classification table are listed and
a cross-product table combining them is constructed. The
best matching rule is pre-computed and stored in the cross-
product table. In search, the results of each field search
are combined to produce a pointer to the cross-product ta-
ble. This algorithm provides fast classification since packet
classification is done with multiple one-dimensional field
searches and a lookup to the cross-product table, but it has
the disadvantage that it requires huge memory for tables in
each field and the cross-product table. Moreover it is diffi-
cult to update because of the pre-computation required to
build the cross-product table.

The geometric interpretation of the packet classifica-
tion is based on the fact that ak-dimensional rule repre-
sents a hyper-rectangle in ak-dimensional space. A packet
header represents a point (a smallest hyper-rectangle) in
k-dimensional space. Classifying a packet is finding the
highest-priority hyper-rectangle that contains the point us-
ing space decomposition [10],[12],[18]. In the area-based
quad-tree (AQT) algorithm [10], a 2-dimensional (2D) search
space using source and destination prefix fields is recur-
sively partitioned into four equal-sized spaces. If the par-

titions are repeatedL times,4L equal-sized spaces are ob-
tained, and each space is represented byL-bit prefix pairs.
Each rectangular search space is mapped into a node in
a quad-tree. Thus the entire space is mapped into the root
node of the quad-tree, and four equal-sized quadrants which
partition the space are mapped into four children of the
root node, etc. The AQT defines a crossing filter as a rule
which spans at least one dimension of the rectangular space.
Rules that belong to a crossing filter set (CFS) are stored
into the corresponding quad-tree node. The AQT is an ef-
ficient data structure, but it has some issues which affect
its practicality. The search speed is directly related to the
depth of the quad-tree, and the depth of the quad-tree in
AQT is usually the maximum prefix length. Moreover, the
quad-tree may be very sparse with many empty internal
nodes that waste memory space and increase the number
of memory accesses.

The basic idea of a priority-based quad-tree algorithm
was presented in [18], in which crossing filters in AQT
are not necessarily stored into the corresponding quad-tree
node. If inputs are compared with prefix values, rules can
be stored in a node at a higher level. However the priority-
based quad-tree algorithm was not theoretically justified
and only preliminary simulation results were presented in
[18].

In this paper, we first propose a new mathematical frame-
work for packet classification problem. Priority search and
recursive space decomposition concepts are described in
this mathematical framework. Then this paper presents the
priority area-based quad-tree (PAQT) algorithm using the
novel mathematical framework. The data structure, build
process, search process, and update process of the PAQT
algorithm are presented using the mathematical framework.
Especially the validity of the build and search process is
proved to provide the theoretical justification of PAQT al-
gorithm. Extensive simulation results are presented to com-
pare the PAQT algorithm with various packet classification
algorithms.

This paper is organized as follows. In Section 2, packet
classification problem is formulated in a new mathemati-
cal framework. Section 3 presents the priority search and
the recursive space decomposition using the framework,
which are the basis of the PAQT algorithm. In Section 4,
we present the PAQT algorithm in terms of data structure,
build process, search process, update process, and scala-
bility, with an implementation example. The validity of
PAQT algorithm is proved mathematically in this section.
Simulation results to compare with various packet classifi-
cation algorithms are presented in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. Packet Classification Problem

Let F = {F1, F2, · · · , FN} represent a classifier where
Fi (i = 1, · · · , N) is a rule, andN is the number of rules
in the classifier. Each rule consists of multiple fields. For
each ruleFi, letFi = (Fi[1], · · · , Fi[k]), whereFi[j] (j =
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1, · · · , k) is the jth field. A field can be expressed as a
rangeFi[j] = [b, e], whereb ande are the beginning and
end points of the field, respectively [25].

When a packet arrives, header valuesH[j](j = 1, · · · , k)
from the relevantk fields in the packet header are extracted,
and the headers are expressed asH = (H[1], · · · ,H[k]),
where each field is a bit string.

Let r1 = [b1, e1] andr2 = [b2, e2] be two ranges in
the same field (or dimension), where range inclusion is de-
fined asr1 ∈ r2 if b1 ≥ b2 ande1 ≤ e2. A packet with
header fieldsH = (H[1], · · · ,H[k]) matches ruleFi =
(Fi[1], · · · , Fi[k]), if H[j] ∈ Fi[j] for all j = 1, · · · , k
[25].

Rules in a classifier are usually sorted in priority or-
der and each rule has a priority index. This priority index
is necessary because a packet could match more than one
rule. In this case, the rule with the highest priority is se-
lected. In this paper, it is assumed that rules are sorted in
order of decreasing priority (or increasing priority index).
In a classifierF , F1 has the highest priority andFN has the
lowest priority. When a packet matches multiple rules, the
rule with the smallest priority index (the highest priority)
is defined as the best matching rule (BMR). If a packetH
matches multiple rules, the rule with the smallest priority
index is selected as the BMR.

Let M(H) represent the set of rules that a packetH
matchesM(H) = {Fi ∈ F : H[j] ∈ Fi[j], ∀j =
1, · · · , k}. Let P (C) represent the smallest priority index
of a set of rules,C. The packet classification problem is
to find the smallest priority index in the set of matched
rules,P (M(H)), in the set of rules in the classifier,F =
{F1, F2, · · · , FN}, for a given packetH = (H[1], · · · ,H[k]).

3. Priority Search and Space Decomposition

3.1. Priority Search

In most of the previous packet classification algorithms
except the simple linear search, the set of matching can-
didates is first searched for a given packetH, and then the
highest priority rule is selected. Thus all the rules belong-
ing toM(H) are first searched inF beforeP (M(H)) is
searched.

However, in the linear search, not all of the elements
(rules) ofM(H) need to be searched to findP (M(H)).
The packet matching condition,H[j] ∈ Fi[j], ∀j = 1, · · · , k,
is checked in the order ofF1, F2, · · · , FN , i.e., in decreas-
ing priority order. The search is completed when either a
match is found or the last rule is examined. If the match is
found atFm, it is concluded thatm = P (M(H)). In this
case,H has not matched any ofF1, · · · , Fm−1, andFm

is the BMR with the smallest priority index. Although the
linear search can find the BMR without searching the en-
tire set of rules belonging toM(H), it has a problem that
the search space is reduced only by1/N with each mem-
ory access. Hence it is not scalable to large classifiers.

The PAQT packet classification algorithm combines
priority search and recursive space decomposition. The pri-
ority search is used to find the BMR without searching en-
tire rules inM(H), and the recursive space decomposition
is used to reduce the search space exponentially with each
memory access.

3.2. Recursive Space Decomposition

The recursive space decomposition can be described ei-
ther in 1-dimensional (1D) space or in multi-dimensional
space. In 1D space, among fields comprising rules, either
the source prefix or destination prefix is generally used in
recursively partitioning the 1D line. In 2-dimensional (2D)
space, both the source and the destination prefixes are con-
sidered at the same time in recursively partitioning the 2D
area. While a range in 1D line corresponds to a node in a
binary trie, a rectangle in 2D area corresponds to a node in
a quad-tree (or quad-trie) in the recursive decomposition.
In this paper, the PAQT algorithm is presented for the 2D
case, but it can be extended easily to higher dimensions.

Rules are also calledfilters. In this paper, the term filter
is used for a rule that relates to a 2D space of the source and
destination prefixes. IfW is the maximum prefix length,
the size of a 2D search space is2W × 2W . If the length of
the source and the destination prefixes ares andd, respec-
tively, a filter is a rectangle with the size of2W−s×2W−d.
A node in a quad-tree corresponds to a 2D rectangle. The
root node of the quad-tree corresponds to the entire 2D
space, and four children of the root node correspond to
four equal-sized quadrants, etc.

For a nodev, let A(v) represent the area which corre-
sponds to the nodev. An areaA(v) can be represented as
ranges, i.e.,A(v) = (av[1], av[2]) = ([b1, e1], [b2, e2]).

Definition 1 AreaA(v) andA(w) are disjoint, ifA(v) ∩
A(w) = ∅.
Theorem 1.AreaA(v) = (av[1], av[2]) andA(w) = (aw[1],
aw[2]) are disjoint, ifav[1]∩aw[1] = ∅ or av[2]∩aw[2] =
∅.

The relation between a filterFi = (Fi[1], · · · , Fi[k])
and an areaA = (a[1], a[2]) is defined by the first two
fields,Fi[1] andFi[2], which are the source and destination
prefixes, respectively.

Definition 2 A filter Fi = (Fi[1], · · · , Fi[k]) is included
in an areaA = (a[1], a[2]), i.e.,Fi ∈ A, if Fi[1] ∈ a[1]
andFi[2] ∈ a[2].

Let I(A) represent the set of filters that are included
in an areaA. Whenn filters are included inA, I(A) can
be represented asI(A) = {Fi1 , · · · , Fin}, if Fip ∈ A
for all p = 1, · · · , n. If the setI(A) = {Fi1 , · · · , Fin}
is sorted in the order of the increasing priority index, then
P (I(A)) = i1. Crossing filters are defined using the source
and the destination prefixes in the 2D space [10]. LetC(A)
represent the set of filters that cross the areaA. The cross-
ing filter is formally defined as follows.

c© 2013 NSP
Natural Sciences Publishing Cor.



12 H. Lim et al : Priority Area-based Quad-Tree Packet Classification ...

Definition 3 A filter Fi = (Fi[1], · · · , Fi[k]) is a crossing
filter of areaA = (a[1], a[2]) if (Fi[1] = a[1] andFi[2] ∈
a[2]) or (Fi[1] ∈ a[1] andFi[2] = a[2]).

Theorem 2.For areaA, C(A) ⊂ I(A).

Theorem 2 can be proved from Definition 2 and Defini-
tion 3.

4. The PAQT Algorithm

This section presents the priority area-based quad-tree (PAQT)
algorithm using the proposed mathematical framework in-
cluding data structure, build process, search process, up-
date process, and scalability. Especially the validity of build
and search process is mathematically proved to provide
the theoretical justification. An implementation example
is also presented for easier adaptation of mathematical for-
mulation.

4.1. Data Structure

LetS(v) represent the set of filters that are stored in nodev
in the build process. In the AQT [10], only the crossing fil-
ters ofA(v) are stored in nodev, i.e.,S(v) = C(A(v)).
Hence if there is no crossing filter ofA(v), then S(v)
would be empty in the AQT. However, filters are not nec-
essarily stored into the corresponding node, only when one
of their fields crosses an area. If a filter is stored in a lower
level node than its crossing level node, the filter should be
replicated into multiple filters, but there is no reason not to
store a filter in a higher level node.

In the proposed data structure, not only the crossing
filters, but also the highest priority filter that are included
in A(v) are stored. In the proposed data structure, the set
S(v) for a node at levell is formally defined as

S(v) = C(A(v)) ∪ {Fm}, m = P (I(A(v)) ∩ Fl) (1)

whereFl is the set of filters that can be stored at levell
and it is updated from the initial classifierF in the build
process. ThusFl is composed of the filters that are not
stored in nodes at levels 0 throughl− 1, that are described
in the next subsection.

Theorem 3.S(v) ⊂ I(A(v)).

Proof In Eq. (1), the filterFm has the smallest priority
index among the filters inI(A(v)) ∩ Fl. Hence{Fm} ⊂
(I(A(v)) ∩ Fl) ⊂ I(A(v)). By Theorem 2,C(A(v)) ⊂
I(A(v)). ThusS(v) = C(A(v)) ∪ {Fm} ⊂ I(A(v)).

Theorem 4. If I(A(v)) ∩ Fl is not empty for a node at
levell, thenS(v) is not empty.

Proof If I(A(v)) ∩ Fl is not empty, there existFip ’s in
Fl for p = 1, · · · , n wheren is the number of elements in
I(A(v))∩Fl. Then there exists the filter with the smallest
priority index (the highest priority)Fim such thatim < ip
for all p = 1, · · · , n, p 6= m. HenceFim ∈ S(v) and there
exists at least one filter inS(v).

Theorem 5. Let A(v) and A(w) be two disjoint areas,
A(v)∩A(w) = ∅. If an input packetH matches a filterFm

in I(A(v)), thenH cannot match any filter inI(A(w)).

Proof LetA(v) = (av[1], av[2]) andA(w) = (aw[1], aw[2]).
SinceA(v) andA(w) are disjoint,av[1] ∩ aw[1] = ∅ or
av[2] ∩ aw[2] = ∅. SinceH = (H[1],H[2]) matchesFm,
H[1] ∈ Fm[1] andH[2] ∈ Fm[2]. SinceFm ∈ I(A(v)),
Fm[1] ∈ av[1] andFm[2] ∈ av[2]. HenceH[1] ∈ av[1]
andH[2] ∈ av[2]. If av[1] ∩ aw[1] = ∅, H[1] 6∈ aw[1]. If
av[2] ∩ aw[2] = ∅, H[2] 6∈ aw[2]. Hence(H[1], H[2]) 6∈
A(w), andH cannot match any filter inI(A(w)).

Theorem 6. Let A(v) and A(w) be two disjoint areas,
A(v) ∩ A(w) = ∅. If input packetH matches a filterFm

in S(v), thenH cannot match any filter inS(w).

Proof By Theorem 3,S(v) ⊂ I(A(v)) and S(w) ⊂
I(A(w)). If input packetH matchesFm in S(v), thenH
matchesFm in I(A(v)). By Theorem 5,H cannot match
any filter inI(A(w)). HenceH cannot match any filter in
S(w).

4.2. Build Process

The build process begins at a root node. Letvr be the root
node at level 0 and letA(vr) represent the 2D space which
corresponds to the root node. If a classifierF is sorted in
the order of increasing priority index,F1 has the smallest
priority index. SinceA(vr) = (a[1], a[2]) is the entire 2D
space,a[1] = [0, 2W−1] anda[2] = [0, 2W−1], whereW
is 32 for IPv4. If the source prefix ofFi is a wildcard (with
prefix length 0),Fi[1] = [0, 2W − 1] = a[1]. Similarly if
the destination prefix ofFi is a wildcard,Fi[2] = [0, 2W −
1] = a[2]. The crossing filter set of the root nodevr is
composed as

C(A(vr)) = {Fi ∈ F : Fi[1] = [0, 2W − 1] (2)

or Fi[2] = [0, 2W − 1]}.
The set of filters that are stored in the root nodevr in

the PAQT packet classification algorithm is

S(vr) = {F1} ∪ C(A(vr)). (3)

The filters inS(vr) are stored in a nodevr as a linked
list in order of increasing priority index. The set of filters
that can be stored in the nodes of level 1 is now updated as

F1 = F − S(vr). (4)
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Equation (4) means that once a filter is stored in a node,
this filter is removed from the current set of rules and is
not stored in any other node at lower levels.

After the setS(vr) for the root nodevr is constructed,
the search spaceA(vr) is decomposed into four equal-
sized rectangles,A(v0), A(v1), A(v2), andA(v3), and
they correspond to source and destination prefix pair (0*,
0*), (0*, 1*), (1*, 0*), and (1*, 1*), respectively.

Note that these four areas are disjoint. In each node
vi (i = 0, 1, 2, 3), the smallest priority index in the fil-
ter setF1, which is included in eachA(vi), i.e., mi =
P (I(A(vi)) ∩ F1) is identified, and the crossing filter set
C(A(vi)) is composed for each areaA(vi). For example,
C(A(v0)) comprises

C(A(v0)) = {Fi ∈ F1 : Fi[1] = [0, 2W−1 − 1] (5)

or Fi[2] = [0, 2W−1 − 1]}.
Other crossing filter sets,C(A(v1)), C(A(v2)), and

C(A(v3)) can be constructed similarly. NowS(vi) = {Fmi}
∪ C(A(vi)) for i = 0, 1, 2, 3 from filter setF1 at level

1. If I(A(vi)) ∩ F1 is empty for anyi, then nodevi be-
comes invalid. This invalid node is not generated in the
build process. Hence there is no empty node in the PAQT
data structure in contrast to the AQT [10] data structure.

The set of filters that can be stored in the nodes of level
2 is similarly updated as

F2 = F1 −
3⋃

i=0

S(vi). (6)

The search space for eachA(vi) is decomposed into four
equal-size rectangles, etc. The build process continues un-
til the set of filters that should be stored is empty. LetL(v)
represent the level of a nodev. For example,L(vr) = 0
andL(v0) = 1. Equation (6) can be generalized to the set
of filters that can be stored at levell + 1 as

Fl+1 = Fl −
⋃

{v:L(v)=l}
S(v). (7)

Note that the set of filters at a lower level is a subset of
the set of filters at a higher level since

Fl+1 ⊂ Fl ⊂ · · · ⊂ F1 ⊂ F . (8)

Theorem 7.If L(v) = l andFl is the set of filters at level
l, P (S(v)) = P (I(A(v)) ∩ Fl).

Proof From Eq. (1),S(v) = C(A(v)) ∪ {Fm}, m =
P (I(A(v)) ∩ Fl). SinceC(A(v)) ⊂ (I(A(v)) ∩ Fl),
P (C(A(v))) ≥ P (I(A(v))∩Fl) andP (C(A(v))∪{Fm})
= min(P (C(A(v)),m) = m. HenceP (S(v)) = P (I(A(v))
∩Fl).

Theorem 8.If w is a valid child node ofv, thenP (S(v)) <
P (S(w)).

Proof Let m = P (S(v)), n = P (S(w)), L(v) = l,
andFl be the set of remaining filters at levell. Sincew is
a child node ofv, L(w) = l + 1. From Eq. (1),S(v) =
C(A(v))∪{Fm}. From Eq. (7),Fl+1 = Fl −

⋃
{v:L(v)=l}

S(v). Sincew is a child node ofv, A(w) ⊂ A(v) and
I(A(w)) ⊂ I(A(v)). By Theorem 7,m = P (I(A(v)) ∩
Fl) andn = P (I(A(w)) ∩ Fl+1). Sincen = P (S(w)),
Fn ⊂ I(A(w)) ⊂ I(A(v)) andFn ⊂ Fl+1 ⊂ Fl. Hence
Fn ⊂ I(A(v)) ∩ Fl. By the definition in Eq. (1),m is the
smallest priority index inI(A(v))∩Fl. Thusm is less than
any other priority index inI(A(v)) ∩ Fl. Hencem < n,
i.e.,P (S(v)) < P (S(w)).

Corollary 1. If w is a valid descendent node of nodev,
thenP (S(v)) < P (S(w)).

Corollary 1 can be proved by induction from Theorem 8.

4.3. Search Process

For classifierF , assume that filters are sorted in decreasing
priority (or increasing index) order.

During initialization, the matching rule (MR) is first set
asN + 1 (default class) andv is set as the root node. Then
I(A(v)) = F andP (I(A(v))∩F) = 1. Pseudo-code for
the search process can be represented as follows:

Get PacketH = (H[1], · · · ,H[k])
MR = N + 1; // Initial value of MR (default class)
m = P (S(v));
do

if (H[j] ∈ Fm[j] for all j = 1, · · · , k) // Input packet
matches filterFm

if (m < MR) // The BMR is found (Theorem 9)
MR ← m; break;

else if(C(A(v)) is not empty) // Crossing filters exist
C(A(v)) = {Fi1 , · · · , Fin}
//Crossing filter set constructed in build process
for p ← 1 to n do

if (H[j] ∈ Fip [j] for all j = 1, · · · , k)
if (ip < MR)

MR ← ip; break;
v ← w;
// w is the child node ofv identified by the next one bit

of H[1] andH[2]
m = P (S(v));

while (v is a valid node andm < MR)
// Search ends at a leaf or ifm > MR (Corollary 2)
BMR ← MR;
return BMR;

Theorem 9. Let v be a node withL(v) = l and m =
P (S(v)). If an input packetH matchesFm andm is less
than the smallest priority index among current matched
rules (m < MR), thenm = P (M(H)), i.e., Fm is the
rule with the best match in the given classifierF .
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Proof We prove by induction. IfL(v) = 0, v is the root
node andm = P (S(v)) = 1. The MR is initially set
asN + 1. H matchesF1 andm < MR. Since 1 is the
smallest possible priority index,F1 is the BMR andm =
P (M(H)) = 1. Assume that MR is the smallest prior-
ity index among current matched rules in nodes at levels 0
throughl− 1. Actually this MR might be the default class
(N +1) or a crossing filter of a node at levels0, · · · , l−1.
For a nodev with L(v) = l, assume thatm = P (S(v))
andm < MR. There can be four cases that the BMR in
F = {F1, F2, · · · , FN} can exist. Case 1: The BMR ex-
ists in a node at levels0, · · · , l−1. Case 2: The BMR exists
in a nodeu (u 6= v) at levell. Case 3: The BMR exists in a
nodev at levell. Case 4: The BMR exists in a descendent
nodew of v at a lower level thanl (L(w) ≥ l + 1). Since
m = P (S(v)) for a nodev with L(v) = l andm < MR,
the MR cannot be the BMR and the BMR does not ex-
ist at a node at levels0, · · · , l − 1, and hence Case 1 is
eliminated. Assume thatu is a node at levell andu 6= v.
ThenA(u) andA(v) are disjoint. By the Theorem 6, the
input packetH cannot match any filter inS(u). Hence the
BMR cannot exist in a nodeu (u 6= v) at level l, and
hence Case 2 is eliminated. If there is no matching rule in
the descendent nodes ofv, thenFm in the nodev is the
BMR. Assume that a matching rule exists in a descendent
nodew of v. By Theorem 1,P (S(v)) < P (S(w)), i.e., the
smallest priority index inS(w) is greater than the small-
est priority index inS(v). Hence the BMR cannot exist in
a descendent node ofv at lower levels, and hence Case 4
is eliminated. Thus descendent nodes ofv at lower levels
do not need be searched. Thus the matching ruleFm in the
nodev at levell (Case 3) is the BMR andm = P (M(H)).

Theorem 9 indicates that the search process can be fin-
ished in a node at any level without searching lower level
nodes, if a given input matches a priority rule. Thus, the
BMR for a packetH can be found without searching all
the rules inM(H), which is a very important characteris-
tic of the PAQT algorithm in improving the search speed.

Corollary 2. Let v be a node withL(v) = l and m =
P (S(v)). If m is greater than the smallest priority in-
dex among current matched rules (m > MR), then MR
= P (M(H)), i.e.,FMR is the BMR in the given classifier
F = {F1, F2, · · · , FN}.

Corollary 2 indicates that the search process finishes
in a node at any level without searching lower levels, if the
priority index of a node is greater than the priority index of
the current match. Thus if an input packet matches a filter
stored by a crossing filter, the index of the crossing filter
becomes the current MR. If the MR is less thanP (S(v))
in a nodev, then the search finishes at nodev. The rules
in nodev do not need to be compared and the lower level
nodes ofv do not need to be searched. This also means that
the BMR for a packetH can be found without searching
all the rules inM(H), which is another important charac-
teristic in improving the search performance.

4.4. Update Process

Easy incremental update is also important for a good packet
classification algorithm [19]. The PAQT data structure pro-
vides simple incremental update of classification tables.
First, consider inserting a new rule,Fn = (Fn[1], · · · , Fn[k]).
Based on the first two fields(Fn[1], Fn[2]) and the priority
of the rule, a nodevn to storeFn is located.

Assume thatC(A(vn)) = {Fi1 , · · · , Fin
} andS(vn) =

{Fm} ∪ C(A(vn)). Fm is the rule stored by priority and
C(A(vn)) is not empty if crossing filters exist. If the new
rule Fn has a higher priority thanFm, thenFn should be
stored invn andS(vn) should be updated asS(A(vn)) =
{Fn, Fm, Fi1 , · · · , Fin}. In this case, two priority rules are
stored in the node. The linked list of the nodevn is updated
in this order. If the new rule is to be inserted as a crossing
filter, it is inserted in the appropriate location in the linked
list of vn so that the priority order is maintained.

Now consider deleting a rule,Fd. From the first two
fields and the priority ofFd, the nodevd is located. As-
sume that

S(vd) = {Fi1 , · · · , Fiq−1 , Fiq , Fiq+1 , · · · , Fid
}

whereFiq = Fd. The ruleFd is deleted andS(vd) is up-
dated asS(vd) = {Fiq , · · · , Fiq−1 , Fiq+1 , · · · , Fid

}. The
linked list of vd is updated so that the priority order is
maintained. If the nodevd (before the deletion ofFd) con-
tains only one rule, then this node is empty after the dele-
tion. Since this node still contains child pointers, it is main-
tained. The empty nodevd can be used for an insertion of
a new rule later. For example, if there is a new rule to be
inserted, and if the proper location of the new rule is one
of the descendent nodes of the nodevd, then the new rule
can be stored in nodevd since rules can be stored into a
higher level node than their crossing levels. In this case,
the new rule cannot be a priority rule since there might be
other rules with a higher priority in lower level nodes, and
hence it is marked as a crossing filter rule even though it is
not. The new rule will be compared earlier than it should
be, but that causes no problems. Since the insertion or the
deletion of a rule affects only a single node in the proposed
data structure, simple incremental update is achieved.

4.5. Scalability

There are two aspects of scalability: more fields and larger
classifiers.

First, consider the scalability to more fields. The fol-
lowing definition can be used for field scalability (similar
to [25]).

Definition 4 Let F be a k-dimensional classifier where
Fi = (Fi[1], · · · , Fi[k]) (i = 1, · · · , N) is a rule con-
sisting ofk fields. One more field can be added to each
rule inF such thatF e

i = (Fi[1], · · · , Fi[k], Fi[k+1]) and
Fe = {F e

1 , · · · , F e
N}. The (k+1)-dimensional ruleF e

i is a
(k+1)-dimensional extension ofFi and (k+1)-dimensional
classifierFe is a (k+1)-dimensional extension ofF .
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In the 2D PAQT algorithm, if the memory entry struc-
ture including the new field is extended, the build process
and the search process can be performed in the same way.
The build process is the same since the node location in a
quad-tree is determined by the first two fields of the rule.
The search process is also the same except there is an ad-
ditional comparison for the new field in each visited mem-
ory address. Hence the algorithm is easily scaled to packet
classification with more fields.

Second, consider the scalability to larger classifiers.
For scalability to larger classifiers in terms of required mem-
ory size, the PAQT algorithm requires a memory size of
O(N) for N rules. Only the linear search, TCAM, and the
tuple space search (with perfect hash function) schemes re-
quire a memory size ofO(N), which is the minimal mem-
ory size. Hence the algorithm is scalable to larger classi-
fiers in terms of the memory size.

For scalability to larger classifiers in terms of search
speed, even though the worst-case bound in the number of
memory accesses of the PAQT algorithm is theoretically
O(N), the number of memory accesses of the algorithm
increases only moderately for larger classifiers as will be
shown in the simulation results in Section 5. Hence the
algorithm is scalable to larger classifiers in terms of the
search speed.

4.6. Implementation Example

Table 1 shows an example rule set which is composed of
8 rules (or filters), and each rule is composed of 5 fields;
a source prefix, a destination prefix, a source port num-
ber, a destination port number, and a protocol type. Rules
with a smaller priority index are assumed to have higher
priorities. Fig. 1 shows the quad-tree built by AQT, where
white nodes are empty and gray nodes contain rules. In
Fig. 1, since rules are stored only by crossing filter con-
dition, there are many empty nodes in the paths to the
low level rule nodes. There are 10 empty nodes for 8 rules
and the depth is 5. For real packet classification tables, the
maximum level would be typically 32 since there could
exist rules with both source and destination prefix lengths
of 32.

Fig. 2 shows the quad-tree built by the PAQT algo-
rithm, wherevr is the root node andv1, v2, v3, andv4 are
four valid children ofvr. In Fig. 2, the first rule in each
node is the rule stored by the priority in that node.

In this example, the initial classifier in the build pro-
cess is

F = {F1, F2, · · · , F8}.
For the root nodevr, the smallest priority index, the set of
crossing filters, and the set of stored filters areP (A(vr) ∩
F) = 1, C(A(vr)) = {F2, F7}, S(vr) = {F1, F2, F7}, re-
spectively. The set of filters for level 1 is updated asF1 =
F−S(vr) = {F3, F4, F5, F6, F8}. For nodesv0, v1, v2, v3

at level 1, the smallest priority index, the set of crossing fil-
ters, and the set of stored filters are as follows.P (A(v0)∩

Figure 1 Quad-tree by the AQT.

Figure 2 Quad-tree by the PAQT algorithm.

F1) = 4, C(A(v0)) = ∅,S(v0) = {F4}, P (A(v1)∩F1) =
6, C(A(v1)) = {F6}, S(v1) = {F6}, P (A(v2)∩F1) = 8,
C(A(v2)) = ∅, S(v2) = {F8}, P (A(v3) ∩ F1) = 3,
C(A(v3)) = {F5}, S(v3) = {F3, F5}. The set of filters
for level 2 is updated as

F2 = F1 −
3⋃

i=0

S(vi) = ∅.

Hence the build process is completed at level 1 in this
case. From this example, it is clear that the quad-tree of the
PAQT algorithm has no empty nodes and the tree depth is
much smaller than that of the AQT.
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Table 1 An example classification table

Rule Src Dst Src Dst Protocol Action
(Filter) Prefix Prefix Port Port Type

F1 10100* 01000* > 1024 > 1024 * Permit
F2 * 10101* 80 80 * Permit
F3 111* 11110* * > 1024 UDP Deny
F4 01110* 0111* 80 80 TCP Permit
F5 1* 10011* 21 21 TCP Permit
F6 0* 11100* 80 80 TCP Permit
F7 1100* * 88 88 TCP Permit
F8 1101* 0101* * * * Deny

5. Simulation Results and Performance
Evaluation

Class-Bench [26] provides rule sets and input traces simi-
lar to real classifiers used by Internet routers. Simulations
have been performed using three different types of rule sets
generated by class-bench: access control list (ACL), fire-
wall (FW), and IP chain (IPC). Rule sets in the sizes of
approximately 1000 and 5000 rules are used for the simu-
lations.

Each type of classifier has different characteristics. When
each type of classifier is built using AQT algorithm, the
ACL type classifier has a relatively large number of empty
nodes, and it has relatively few crossing filters associated
with each node. On the other hand, the FW type classifier
has fewer empty nodes and more crossing filters in a node.
The IPC type classifier is in-between. In case of 5000-rule
sets, the number of the empty nodes is 3214, 27, and 1055,
and the maximum number of crossing filters in a node is
27, 231, and 146 for the ACL, FW, and IPC types, respec-
tively. The different characteristics of classifiers affect the
performance of packet classification algorithms in differ-
ent ways.

Extensive simulations are performed for various packet
classification algorithms including the linear search, hier-
archical trie (H-trie) [13], set-pruning trie [13], grid-of-
tries (GOT) [24], extended grid-of-tries (EGT) [9], bit-
vector algorithm [16], and AQT [10] to compare with the
PAQT algorithm. The performance of cutting algorithms
such as HiCuts [14] and HyperCuts [22] depends on the
number of rules for linear search in a leaf node of the deci-
sion tree and the number of cuts made in each dimension.
Determining the number of cuts and the number of rules in
a leaf highly depends on the heuristics related to the char-
acteristics of rule distribution, and hence the simulation
results could not be included in this paper.

Table 2 shows the required memory sizes for storing
classifiers. The number of table entries is equal to the num-
ber of rules in the linear search, and hence the required
memory size scales linearly. The linear search algorithm
requires the smallest memory as expected. For the bit-vector
algorithm [16], three separate memories are required, one
for storing the trie structure, another for storing the bit-

vectors, and a third for storing the rules. Depending on
the number of rules in a classifier, entries for storing bit-
vectors havedN/8e byte width. The width could be greater
for large classifiers so that it is not possible to be read and
written through one single memory access, and hence it
may affect the search performance. This issue has been re-
searched in [8].

For the PAQT algorithm, the entry width in the routing
table can be implemented with 32 bytes. The AQT algo-
rithm is implemented using two tables: a quad-tree table
and a rule table. The width of the quad-tree table is 10
bytes and the rule table is the same as that in the linear
search. The AQT can be implemented with a single table
(like the PAQT algorithm), but it wastes memory space be-
cause of empty nodes included in the AQT quad-tree.

The PAQT algorithm is close to the linear search algo-
rithm in terms of the required memory size. The number
of entries of the PAQT algorithm is equal to the number
of rules as the linear search, but the memory width of the
PAQT algorithm is 11 bytes wider than that of the linear
search algorithm because of additional pointers such as
the child pointers and the linked list pointer. The AQT al-
gorithm requires more memory than the PAQT algorithm
because of the additional quad-tree table. The bit-vector
algorithm requires the largest amount of memory. Since
the constructed trie structure is highly dependent on the
classifier characteristics, the required memory size varies
in the hierarchical approach such as H-trie, set-pruning,
GOT, and EGT. For example, the FW2 classifier requires
a lot smaller memory space than ACL2 or IPC2 since pre-
fix lengths are generally short in FW type classifiers and
hence the number of empty nodes are small.

Table 3 shows the worst-case number of memory ac-
cesses in searching the BMR in each type of classifiers.
The worst-case number of memory accesses for linear search
is equal to the number of rules, and hence it is much larger
than the other algorithms. The number of memory accesses
depends on the number of nodes including empty nodes
and the number of crossing filters in each node in the AQT
algorithm and the PAQT algorithm. Since the ACL classi-
fier has a relatively small number of crossing filters com-
pared with other two types, it has better worst-case mem-
ory access performance. The FW type classifier has many
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Table 2 Memory size comparison for ACL, FW, and IPC type classifiers

Type ACL FW IPC
Name ACL1 ACL2 FW1 FW2 IPC1 IPC2

No. of Rules 958 4659 870 4343 988 4467
Linear search 20.1 97.9 17.8 91.2 20.5 101.2

H-trie [13] 192.8 950.9 65.3 127.7 296.1 416.1
Set-pruning [13] 258.6 1746.7 291.9 286.8 1165.4 896.8

GOT [24] 192.8 950.9 65.3 127.7 296.1 416.1
EGT [9] 210.5 1036.9 70.9 136.0 323.5 453.6

Bit-vector [16] 153.3 2793.2 111.9 2394.6 154.3 2531.5
AQT [10] 56.4 200.2 35.3 479.8 71.2 234.3

PAQT 29.9 145.6 27.2 136.0 30.9 139.9

Table 3 Worst-case number of memory accesses for ACL, FW, and IPC type classifiers

Type ACL FW IPC
Name ACL1 ACL2 FW1 FW2 IPC1 IPC2

No. of Rules 958 4659 870 4343 988 4467
Linear search 958 4659 870 4343 988 4467

H-trie [13] 104 158 104 134 122 181
Set-pruning [13] 90 102 77 104 69 87

GOT [24] 90 102 75 104 69 82
EGT [9] 94 109 104 134 104 176

Bit-vector [16] 68 76 318 1044 80 230
AQT [10] 64 94 444 1193 119 415

PAQT 75 113 293 999 106 295

Table 4 Average number of memory accesses for ACL, FW, and IPC type classifiers

Type ACL FW IPC
Name ACL1 ACL2 FW1 FW2 IPC1 IPC2

No. of Rules 958 4659 870 4343 988 4467
Linear search 407.8 2399.0 447.1 2292.3 569.1 1957.2

H-trie [13] 74.3 80.1 46.7 63.1 70.4 80.2
Set-pruning [13] 64.8 64.6 36.5 50.2 49.5 56.5

GOT [24] 64.8 64.3 35.2 48.9 49.5 53.0
EGT [9] 68.9 70.4 45.9 62.8 59.7 65.9

Bit-vector [16] 66.0 64.1 196.6 738.8 63.6 151.9
AQT [10] 38.6 50.1 369.3 660.5 94.5 344.8

PAQT 35.6 59.6 197.9 571.1 73.6 202.1

crossing filter rules associated with a node, and hence the
worst-case search performance is the worst among the three
types of classifiers. For the ACL classifiers, the AQT al-
gorithm shows better performance than the PAQT algo-
rithm. If a given input matches only a crossing filter in
a low level node, the AQT algorithm has better worst-
case search performance than the PAQT algorithm. The
PAQT algorithm has better worst-case search performance
for FW and IPC types. The worst-case number of memory
accesses of the PAQT algorithm can be reduced by adopt-
ing a 1-dimensional version [17] instead of the simple lin-
ear search for nodes with many crossing filters.

It should be noted that the performance of the bit-vector
algorithm could be worse than the result that is shown here
for large classifiers since the width of memory is too large
to be read and written through a single memory access.
If the maximum memory width is 32 bytes, the number
of memory accesses for the bit-vector algorithm should be
multiplied by a factor of 4 or 20 for 1000-rule and 5000-
rule classifiers, respectively. Algorithms in hierarchical ap-
proach show similar worst-case search performance.

Table 4 shows the average number of memory accesses
in searching the BMR. The linear search algorithm has
the worst performance as the size of classifier grows. The
PAQT algorithm shows better performance than AQT al-
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gorithm for all types of classifiers except the ACL2 in
terms of the average number of memory accesses. For ACL
type classifiers, the PAQT algorithm and the AQT algo-
rithm show the best average search performance among
all algorithms. The hierarchical approach algorithms con-
sistently show very good average search performance for
all types of classifiers.

From Table 3 and Table 4, the scalability issue in worst-
case and average search performance can be discussed.
For the ACL type classifiers, since rules are evenly dis-
tributed to nodes and not many crossing filters are asso-
ciated with each node, the number of memory accesses is
almost flat even though the size of classifier grows. On the
other hand, for the FW type classifier, since many crossing
filters are associated with each node, the number of mem-
ory accesses rapidly increases as the size of the classifiers
grows, but it is still a lot better than the worst-case bound
of O(N). The IPC type classifier shows scalability in the
middle among the three types of classifiers.

6. Conclusion

A novel mathematical framework for packet classification
is proposed in this paper. We present the priority area-
based quad-tree (PAQT) algorithm including data struc-
ture, build process, search process, and update process us-
ing the mathematical framework. The validity of build and
search process is proved mathematically to provide the
theoretical justification of the PAQT algorithm. We be-
live that the new mathematical framework can also be ap-
plied for the justification of other packet classification al-
gorithms.

Compared with the previous recursive space decompo-
sition algorithm, the highest priority rule that is included
in the search space is compared first, even if it does not sat-
isfy the crossing filter condition. In this way, empty nodes
are completely removed, and hence the required memory
size scales linearly with the number of rules and the search
speed is improved. The PAQT algorithm also provides in-
cremental update by limiting the change to a single node
when inserting or deleting a rule.

Extensive simulation results show that the PAQT al-
gorithm is attractive in terms of search speed, memory
size, and scalability. The PAQT algorithm is formally jus-
tified using the mathematical framework, while the sim-
ulation results show the competitiveness compared with
previous packet classification algorithms. Hence we con-
clude that the PAQT packet classification algorithm can be
used effectively for providing high quality of service in
next-generation networks.
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