
Appl. Math. Inf. Sci.7, No. 4, 1263-1274 (2013) 1263

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070401

AND-NOT logic framework for steady state analysis of
Boolean network models
Alan Veliz-Cuba1,2,∗, Kristina Buschur2, Rose Hamershock2, Ariel Kniss2, Esther Wolff2, Reinhard Laubenbacher2

1University of Nebraska-Lincoln, 203 Avery Hall, Lincoln, NE 68588, USA.
2Virginia Bioinformatics Institute, Washington Street, Blacksburg, VA 24061, USA.

Received: 15 Nov. 2012, Revised: 13 Jan. 2013, Accepted: 2 Mar.2013
Published online: 1 Jul. 2013

Abstract: In this paper we propose the class of AND-NOT networks for modeling biological systems and show that it provides
several advantages. Some of the advantages include: Any finite dynamical system can be written as an AND-NOT network with similar
dynamical properties. There is a one-to-one correspondence between AND-NOT networks, their wiring diagrams, and their dynamics.
Results about AND-NOT networks can be stated at the wiring diagram levelwithout losing any information. Results about AND-NOT
networks are applicable to any Boolean network. We apply our results to a Boolean model of Th-cell differentiation.
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1 Introduction

Discrete models have a long and successful history in
systems biology, beginning with Boolean network
representations of molecular networks [1] and their later
generalization, so-called logical models [2]. They are
qualitative, time-discrete models that focus attention on
the qualitative features of the system, such as the wiring
diagram, and are particularly suitable for the analysis of
steady state behavior of molecular networks. However, as
models become larger it is increasingly difficult to
analyze them. In order to keep the analysis of such
networks tractable, many studies have focused on specific
classes of networks such as: single-switch, unate, nested
canalizing, threshold, AND, AND-OR, and linear
networks [3,4,5,6,7,8,9,10,11,12,13,14]. In order to be
useful for modeling, a family of networks has to be
“sufficiently general” for modeling biological interactions
and “simple enough” for theoretical analysis. In this paper
we propose the family of AND-NOT networks as such
family. AND-NOT networks are a particular the class of
Boolean networks that are constructed using only the
AND (∧) and NOT (¬) operators.

A biological justification for the use of AND-NOT
networks is that there is evidence that for genes that are
regulated by more than one other gene, the different
binding sites exhibit synergistic effects between the

different regulators [15,16,17]. This fact motivated the
study of conjunctive Boolean networks, that is, networks
whose logical rules are constructed using exclusively the
AND operator [5], where explicit formulas for steady
states are given; also, upper and lower bounds for the
number and length of limit cycles are provided. But
conjunctive Boolean networks cannot account for
inhibitory regulation and the resulting negative feedback
loops, which are common in gene regulatory networks.
Allowing the NOT operator, in addition to the AND
operator (i.e. using AND-NOT networks), can make the
family of networks sufficiently general to be useful for
modeling [18].

For a formal argument that the family of AND-NOT
networks is general enough for modeling, we will show
that any discrete model (finite dynamical system, to be
precise) can be represented by an AND-NOT network.
More precisely, we present an algorithm that assigns to a
given general discrete model an AND-NOT network
which has the same number of steady states, together with
an algorithmic correspondence between steady states of
the two networks. This is achieved by adding nodes to the
network as needed. The potential drawback of this
algorithm is of course that the network size can
potentially get significantly larger, thereby potentially
negating any computational advantage gained by the
specialized logic. However, since molecular networks
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have typically small in-degree, this growth in the number
of network nodes to be added is modest in the case of
molecular network models. We demonstrate this through
an analysis of several published models and random
networks.

To argue that AND-NOT networks are simple enough
for theoretical analysis, we will show how using the
specialized logic of AND-NOT networks can provide
better theoretical results. For example, in [19], it was
shown that an upper bound for the number of steady
states can easily be computed for AND-NOT networks
(which is not true for arbitrary networks). Also, in [20], it
was shown that the exact number of steady states of
AND-NOT networks are encoded in the topological
features of the wiring diagram, and that, in some cases,
the problem of finding the exact number of steady states
can be transformed to the problem of finding maximal
independent sets of the wiring diagram, which has been
extensively studied [21,22,23,24,25,26,27,28,29,30]. In
this paper we will show how the specialized logic of
AND-NOT networks can give us better upper bounds for
the number of steady states; more precisely, we provide
an upper bound for AND-NOT networks that improves on
previous upper bounds. Furthermore, we show how this
upper bound for AND-NOT networks can actually be
used for general networks. We use our results to analyze a
Boolean model of Th-cell differentiation. Another
theoretical advantage of AND-NOT networks is that they
are in a one-to-one correspondence with their wiring
diagrams. This observation has several implications, one
of which is the possibility to relate dynamic network
properties with features of the wiring diagram [5,20].
Also, from a given signed wiring diagram one can
unambiguously construct and AND-NOT network, which
implies that all algorithms or results can be stated at the
“wiring diagram level.”

2 Definitions

Definition 1. For a signed directed graph G= (VG,EG),
we denote Ii = { j : ( j, i,s) ∈ EG},
I+i = { j : ( j, i,+) ∈ EG} and
I−i = { j : ( j, i,−) ∈ EG}.That is, Ii is the set of all
incoming edges for node i, and I+

i , resp. I−i is the subset
of positive, resp. negative, edges. All graphs in the rest of
the paper will be signed directed graphs unless noted
otherwise.

In order to simplify the graphical representation, we
denote two negative (positive) edges betweeni and j by a
bidirectional negative (positive) edge,•—• (◭—◮). If the
edges have different signs we denote them by•—◮.

Definition 2. An AND-NOT function is a Boolean
function, h: {0,1}n → {0,1}, such that h can be written
in the form

h(x1, . . . ,xn) =
∧

j∈P

x j ∧
∧

j∈N

¬x j ,

where P∩N = { }. If P = N = { }, then h is the constant
function 1. If i∈ P (i ∈ N, respectively) we say that i or xi
is a positive (negative) regulator of h or that it is an
activator (repressor). AnAND-NOT network is a
Boolean network (BN),
f = ( f1, . . . , fn) : {0,1}n → {0,1}n, such that fi is an
AND-NOT function for all i= 1, . . . ,n. AND-NOT
networks are also calledsigned conjunctive networks.

Definition 3. The wiring diagram of an AND-NOT
network is defined by a graph G= (VG,EG) with vertices
VG = {1, . . . ,n} (or {x1, . . . ,xn}) and edges EG given as
follows: (i, j,+) ∈ EG ((i, j,−) ∈ EG, respectively) if xi is
a positive (negative, respectively) regulator of fj . Notice
that nodes corresponding to constant functions have
in-degree zero. Also, the wiring diagram of an AND-NOT
network contains all the information about the network;
that is, we only need to specify the wiring diagram in
order to define an AND-NOT network.

Example 1. Consider the Boolean network
f = ( f1, . . . , f6) : {0,1}6 →{0,1}6 given by
f (x) = (x2 ∧ x4 ∧ ¬x5,x1 ∧ x6 ∧ ¬x3 ∧ ¬x5,1,x6 ∧ ¬x1 ∧
¬x5,x6∧¬x1,1). It is easy to see thatf is an AND-NOT
network. Its wiring diagram is shown in Figure1.

1 2 3

4 5 6

Fig. 1: Wiring diagram of the AND-NOT network in Example1.

As mentioned in the introduction, some other families
of networks that have been studied in the past are
single-switch, linear, AND, AND-OR, unate and nested
canalyzing functions [3,4,5,6,7,8,9,12]. Each family has
its own advantages; however, for the purpose of modeling
biological systems and for theoretical analysis, it is of
interest to have the following properties: First, networks
generated using these families should be able to admit a
sign assignment; that is, it should be possible to
determine the sign of an interaction. Second, in principle,
it should be general enough to model all networks; that is,
it should be possible to model any type of regulation.
Third, for theoretical analysis, it would be useful to have
a one-to-one correspondence between wiring diagrams
and networks. This property would allow complete
encoding of a network in its wiring diagram. The family
of linear functions satisfies the third property but not the
first two. The family of AND functions satisfies the first
and third property but not the second. The family of
AND-OR functions satisfies the first property but not the
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last two. Single-switch, unate, and nested canalyzing
functions satisfy the first two properties but not the third.

On the other hand, AND-NOT networks satisfy all
three properties. The first property is satisfied because the
sign of a regulation is given by the presence or absence of
the NOT operator. The third property follows from the
fact that if the positive and negative edges toi are given
by P andN, resp., then the function for nodei is uniquely
given by fi =

∧
j∈Px j ∧

∧
j∈N¬x j . The second property is

given by the fact that any finite dynamical system can be
expressed as an AND-NOT network. More precisely,
Theorem1 guarantees that steady states are preserved if
we rewrite a general finite dynamical system as an
AND-NOT network.

3 Results

In this section we show why AND-NOT networks are a
good framework for modeling biological systems.

3.1 AND-NOT networks are general enough for
modeling

One issue that can potentially arise when only using
certain classes of networks is that one can have difficulty
in modeling certain processes. For example, the family of
AND networks does not allow modeling negative
interactions. Another example is that the family of linear
networks, does not allow modeling signed interactions. In
order for a family of networks to be useful for modeling,
is has to allow modeling any type of interaction.

Here we show that the family of AND-NOT networks
is general enough for modeling. More precisely, we show
that for any finite dynamical system, there exists an AND-
NOT network (possibly with more nodes) such that they
share key dynamical properties.

Theorem 1. Let h = (h1, . . . ,hn) : S → S be a finite
dynamical system, where S= X1 × ·· · ×Xn and all Xi ’s
are finite. Then, there exists an AND-NOT network
g : {0,1}m → {0,1}m such that there is a bijection
between the steady states of h and g. Furthermore, g and
the bijection between steady states is given
algorithmically. We say that g is an AND-NOT
representation of h.

Proof. A simple proof uses the facts that any finite
dynamical system can be written as a Boolean network
[31], and that any Boolean function has a conjunctive
normal form.

In [31], the authors proved algorithmically that for
any finite dynamical systemh, there exists a Boolean
network f (possibly with more nodes) such thath and f
have the same number of steady states. Furthermore, the
bijection of steady states is also given algorithmically.
Therefore, we only need to show that there exists and

AND-NOT network g, such that there is a bijection
between the steady states off andg.

We proceed by induction. First, consider the
conjunctive normal form offn: fn = w1 ∧w2 ∧ ·· · ∧wr ,
wherew j is of the formw j(x) = s1x1 ∨ s2x2 ∨ ·· · ∨ suxu
with si ∈ {id,¬} (id =identity function). Notice that¬w j
is an AND-NOT function. Then, define the BN
k = (k1, . . . ,kn+r) : {0,1}n+r → {0,1}n+r in variables
(x1, . . . ,xn,y1, . . . ,yr) by ki(x,y) = fi(x) for
i = 1, . . . ,n − 1, kn(x,y) = ¬y1 ∧ ¬y2 ∧ ·· · ∧ ¬yr and
ki(x,y) = ¬wi(x) for i = n+1, . . . ,n+ r.

We now check that the function
φ(x) = (x,¬w1(x), . . . ,¬wr(x)) gives a one-to-one
correspondence between steady states off and k.
Suppose thatf (x) = x, then
k(φ(x)) = k( f1(x), . . . , fn−1(x),w1(x) ∧ w2(x) ∧ . . . ∧
wr(x),w1(x), . . . ,wr(x))
= k( f1(x), . . . , fn−1(x), fn(x),w1(x), . . . ,wr(x)) =
(x,¬w1(x), . . . ,¬wr(x)) = φ(x); that is, φ(x) is a steady
statek. Now, suppose thatk(x,y) = (x,y) and notice that
in this caseyi = ki(x,y) = ¬wi(x); then (x,y) = φ(x).
Also, f (x) = ( f1(x), · · · , fn−1(x), fn(x))
= (k1(x,y), . . . ,kn−1(x,y),w1(x) ∧ w2(x) ∧ ·· · ∧ wr(x))
= (x1, . . . ,xn−1,¬y1 ∧ ¬y2 ∧ ·· · ∧ ¬yr)
= (x1, . . . ,xn−1,kn(x,y)) = (x1, . . . ,xn−1,xn) = x. That is,
x is a steady state off . Therefore,k = (k1, . . . ,kn+r) is a
BN wherekn, . . . ,kn+r are AND-NOT functions and such
that there is a one-to-one correspondence between the
steady states off andk. By induction, it follows that there
is an AND-NOT networkg : {0,1}m → {0,1}m together
with a bijection between the steady states off andg.

Therefore, there is a bijection between the steady
states ofh and g. Furthermore,g and the bijection are
given algorithmically.

The transformation of finite dynamical systems to
Boolean networks has been discussed in [31]. So, in the
rest of the paper we will focus on Boolean networks and
AND-NOT networks.

Example 2. Consider the BNf : {0,1}5 →{0,1}5 given
by f1 = x2 ∨ ¬x4, f2 = x1 ∧ x3, f3 = (x2 ∨ ¬x4) ∧ x5,
f4 = x3∨x5, f5 = x3. The wiring diagram off is given in
Figure 2 (left). In order to transform this BN to an
AND-NOT network we introduce the variablex6 with
Boolean function f6 = ¬x2 ∧ x4 and f7 = ¬x3 ∧ ¬x5.
Variablesx6 andx7 will be used ing1 andg4. Notice that
sincex2∨¬x4 appears again inf3, we can simply reusex6
to keep the number of extra variables as small as possible.
Then the AND-NOT network isg : {0,1}7 → {0,1}7

given byg1 = ¬x6, g2 = x1∧x3, g3 = ¬x6∧x5, g4 = ¬x7,
g5 = x3, g6 = ¬x2 ∧ x4, g7 = ¬x3 ∧ ¬x5. The wiring
diagram ofg is shown in Figure2 (right).

An additional step in the transformation that can keep
the number of extra variables small is given by the
following proposition.
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1 4

2 3

5

1 4

2 3

6 57

Fig. 2: Wiring diagram of the BN networkf and the AND-NOT
networkg in Example2.

Proposition 1. Let f : {0,1}n → {0,1}n be a BN and
define g: {0,1}n → {0,1}n by g= Nk ◦ f ◦ Nk, where
Nk(x1, . . . ,xn) = (x1, . . . ,xk−1,¬xk,xk+1, . . . ,xn). Then f
and g are dynamically equivalent.

Proof. It is enough to notice thatNk is invertible with
inverseNk. Then,gr = Nk ◦ f r ◦Nk; that is, evaluatingf is
equivalent to evaluatingg.

If some functions of a BN are OR-NOT functions,
then we can use Proposition1 to transform the BN into a
BN in the same number of variables such that the
OR-NOT functions become AND-NOT functions. Also,
Proposition1 can be used to transform constant functions
fk = 0 into constant functionsfk = 1 (if fk = 0, then the
k-th coordinate function ofNk ◦ f ◦ Nk is the constant
function 1).

Example 3. Consider the BNf : {0,1}3 →{0,1}3 given
by f1 = x2, f2 = x1 ∨ ¬x3, f3 = x2 ∧ x3. The wiring
diagram of f is in Figure3 (left). Since f2 is an OR-NOT
function, we can transform it to a AND-NOT function
using Proposition1. Considerg = N2 ◦ f ◦N2, given by
g(x) = N2( f (x1,¬x2,x3)) = N2(¬x2,x1 ∨ ¬x3,¬x2 ∧ x3)
= (¬x2,¬(x1 ∨ ¬x3),¬x2 ∧ x3)
= (¬x2,¬x1∧x3,¬x2∧x3), with wiring diagram shown in
Figure3 (right). Then, f is dynamically equivalent to an
AND-NOT network. Notice that the effect of this
transformation on the wiring diagram is simple, we
simply change the signs of the edges around node 2.

2 3

1

2 3

1

Fig. 3: Wiring diagram of the BN networkf and the AND-NOT
networkg in Example3.

As mentioned in [31], an advantage of transforming
finite dynamical systems into Boolean networks is that it
can provide insight into the role of feedback loops by
disentangling them. In this sense, transforming finite
dynamical systems into AND-NOT networks can pass all

the information of the role of feedback loops to the wiring
diagram. In this case, the wiring diagram is not only a
rough representation of the network, but it encodes all the
information of the network; in this sense the wiring
diagram “becomes” the network. This has the potential to
reduce the problem of studying the structure of the state
space graph (which has 2n elements) to studying the
structure of the wiring diagram of the AND-NOT
representation (which hasm≥ n elements). This can help
in understanding the precise role of the network topology
in the network dynamics. A similar approach was used
successfully to study conjunctive and linear networks [5,
4].

3.2 The variable growth in AND-NOT
representation is small

For practical purposes it is important to obtain an estimate
of how much the AND-NOT representation can increase
the number of variables. For arbitrary Boolean networks,
the number of extra nodes can be exponential in the
number of nodes. However, Boolean models of biological
systems are not arbitrary and are actually very sparse with
very low in-degree (typically described by a power law
distribution [32,33]). We will now show that in practice
the number of variables introduced by the algorithm can
be small.

Table 1: Number of extra variables introduced by the AND-NOT
representation. The number of nodes off and its AND-NOT
representation,g, are denoted byn, m, respectively. The BNs
were taken from [34,35,36,37,38].

n m % increase
12 13 8%
12 15 20%
14 15 7%
20 24 20%
23 26 13%
28 28 0%
40 43 7.5%

In order to study this question, we have applied the
procedure to several published models in the literature
and studied the question using randomly generated
Boolean networks. The first study shows that the increase
in the number of variables for published models is modest
(Table1). The number of variables was increased by 14%
on average with a maximum value of 4 extra nodes. In
order to determine the number of extra nodes introduced
by our algorithm for more general BNs, we did a
statistical analysis. To mimic wiring diagrams coming
from biological systems, the edges followed a power law
distribution and we considered the maximum in-degree
less than or equal toK for K = 1, . . . ,10 (see Appendix A

c© 2013 NSP
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Table 2: Average number of extra variables introduced by the
AND-NOT representation for random BNs.

in-deg≤ K % increase
K = 1,2 0%
K = 3 5.2%
K = 4 10.8%
K = 5 16.2%
K = 6 20.8%
K = 7 24.8%
K = 8 28.6%
K = 9 32.3%
K = 10 36.1%

for details). The results of this second study are shown in
Table 2. For example, all networks where nodes have
in-degree bounded byK = 2 can be transformed to
AND-NOT networks without increasing the number of
nodes. For networks where nodes have in-degree bounded
by K = 4, our method increases the number of nodes by
10.8% on average (see Appendix A for details). It is
important to mention that in both tables, the growth in the
number of extra nodes is far less than exponential.

3.3 AND-NOT networks can be useful in
theoretical analysis

As mentioned in the Introduction, the specialized logic of
AND-NOT networks can be used to obtain better
theoretical results. Such results can arise directly (e.g.[5,
20]) or by applying results about general Boolean
networks to the family of AND-NOT networks. In this
section we show examples of the latter. First, we need the
following definitions.

Let C be a feedback loop of a graphG. We say thatC
is astrong feedback loop if there are no edges of the form
k→ i, k —• j in G\C such thati, j ∈C.

For example, consider the graphG in Figure 4. The
feedback loop{3,4} is not strong because of the edges
1 → 3, 1 —• 4; {5,6} and {1,2,4,3,5} are not strong
because of the edges 1→ 5, 1 —• 4. All other feedback
loops are strong.

1

2

3

4

5

6

G

Fig. 4: Graph with only one strong positive feedback loop.

Our first result in this section is an application of [39,
Theorem 3.2] to the family of AND-NOT networks (see
Appendix B for the proof).

Theorem 2. Let W be the wiring diagram of an AND-
NOT network, and suppose J intersects all strong positive
feedback loops of W. Then, the number of steady states is
at most2|J|.

Example 4. Consider the AND-NOT network with
wiring diagram given in Figure4. The only strong
positive feedback loops are{1,2} and {1,3,5}. Since
J = {1} intersects them, Theorem2 guarantees that there
are at most 2|J| = 2 steady states.

Intuitively, Theorem2 is telling us which positive
feedback loops contribute to the presence of steady states;
it says that they have to be strong. We also provide a
slight generalization of Theorem2. We need the
following definition.

A feedback loopC of a graphW is calledinconsistent
if there is a vertexkC such that there is a positive path of
the formkC → i1 → ·· · → ir → tC from kC to tC ∈C and a
negative path of the formkC → j1 →·· ·→ jr —• uC, from
kC to uC ∈C such thatkC → tC, kC —• uC are not edges in
C and|I j1|= . . .= |I jr |= 1. When such vertexkC does not
exist, we say thatC is consistent.

For example, consider the graphW in Figure5. The
positive feedback loop{3,4} is inconsistent because of the
paths 1→ 3 and 1→ 2 —• 4. The positive feedback loop
{5,6} is inconsistent because of the paths 1→ 3→ 5 and
1 —• 6. Also, the positive feedback loop{1,2,4,3,5} is
inconsistent because of the paths 1→ 3→ 5 and 1→ 2 —•
4. Then, the only consistent feedback loops are{1,2} and
{1,3,5}.

1

2

3

4

5

6

W

Fig. 5: Wiring diagram of the AND-NOT network in Example5.

We say that a setJ ⊆ {1, . . . ,n} dominatesa graphW
if J intersects all consistent positive feedback loops and
for each feedback loopC that is inconsistent and strong,J
intersectsC or J contains at least onekC. For example, the
set{1} dominates the graphW in Figure5.

With these definitions we have the following theorem
that gives an upper bound on the number of steady states
using topological features of the wiring diagram (see
Appendix B for the proof).
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Theorem 3. Let W be the wiring diagram of an
AND-NOT network, and suppose J dominates W. Then
the number of steady states is at most2|J|.

It is not difficult to see that the bound given by
Theorem2 is greater than or equal than the bound given
by Theorem 3. The next example shows that the
inequality is in some cases strict.

Example 5. Consider the BNf : {0,1}6 →{0,1}6 given
by
f1 = x2∧x5,
f2 = x1,
f3 = x1∧¬x4,
f4 = ¬x2∧¬x3,
f5 = x3∧¬x6,
f6 = ¬x1∧¬x5,

Its wiring diagram is shown in Figure5. It is easy to
see that{1,3,5} intersects all strong positive feedback
loops. Then, Theorem2 gives the upper bound 23 = 8. On
the other hand, since{1} dominates the wiring diagram,
Theorem3 gives the upper bound 2. That is, Theorem3
gave a better upper bound on the number of steady states.
Notice that in this case the actual number of steady states
is 2, namely, 000101 and 111010.

One might argue that having better results for
AND-NOT networks is not enough to justify their use.
After all, since we are considering a smaller family of
Boolean networks we should of course obtain stronger
results. However, the combination of Theorem1 and
results about AND-NOT networks automatically
generates theorems for all Boolean networks.
Furthermore, such combination can in some cases provide
stronger results. This deserves further explanation which
is illustrated in Figure6. Consider a theorem about
Boolean networks that gives us information about certain
dynamical properties, “Thm.”. On the other hand,
consider a similar theorem about AND-NOT networks,
“Thm.∗”. Then, given a Boolean networkf , we have two
choices, we can apply Thm. tof ; or, we can use Theorem
1 to find the AND-NOT representation off , then apply
Thm.∗, and then use Theorem1 to obtain information
about the original Boolean networkf . In Section3.4 we
use a published Boolean model to show that the latter can
give stronger results.

For example, combining Theorem1 and3 we obtain
the following theorem.

Theorem 4. Let f be any Boolean network and suppose
that J dominates the wiring diagram of its AND-NOT
representation. Then, f has at most2|J| steady states.

We now show that this theorem can in fact provide a
better upper bound for the number of steady states.

3.4 Application to Th-cell differentiation

We apply our results to the BN model proposed in [36]
for Th-cell differentiation. The model is a BN in 23

AND−NOT

Boolean Dyn. Prop. 

Dyn. Prop. 

Thm. 1 Thm. 1

Thm.

Thm.*

Fig. 6: Extension of theorems about AND-NOT network to all
Boolean networks.

variables, f : {0,1}23 → {0,1}23. Below is the list of
Boolean functions. The wiring diagram is shown in
Figure7.

x1 = GATA3 , f1 = (x1∨x21)∧¬x22;
x2 = IFN −β , f2 = 0;
x3 = IFN −βR , f3 = x2;
x4 = IFN − γ , f4 = (x14∨x16∨x20∨x22)∧¬x19;
x5 = IFN − γR , f5 = x4;
x6 = IL −10 , f6 = x1;
x7 = IL −10R , f7 = x6;
x8 = IL −12 , f8 = 0;
x9 = IL −12R , f9 = x8∧¬x21;
x10 = IL −18 , f10 = 0;
x11 = IL −18R , f11 = x10∧¬x21;
x12 = IL −4 , f12 = x1∧¬x18;
x13 = IL −4R , f13 = x12∧¬x17;
x14 = IRAK , f14 = x11;
x15 = JAK1 , f15 = x5∧¬x17;
x16 = NFAT , f16 = x23;
x17 = SOCS1 , f17 = x18∨x22;
x18 = STAT1 , f18 = x3∨x15;
x19 = STAT3 , f19 = x7;
x20 = STAT4 , f20 = x9∧¬x1;
x21 = STAT6 , f21 = x13;
x22 = T −bet , f22 = (x18∨x22)∧¬x1;
x23 = TCR , f23 = 0.
Using our algorithms we obtain the AND-NOT

network, g : {0,1}26 → {0,1}26, shown in Figure8. It
turns out that the set{1,22} dominates the wiring
diagram of g (see Appendix C for details). Then, by
Theorem4, the number of steady states off is at most
22 = 4. On the other hand, all previous results about
steady states (e.g. [8,19]) give 8 as the upper bound. That
is, using the AND-NOT representation can provide a
better upper bound, even for general Boolean networks.
The actual number of steady states of the model is 3 (see
[36] for details).

4 Discussion

The results presented in this paper, together with other
results in the literature, support that the family of
AND-NOT networks are general enough for modeling
and simple enough for theoretical analysis. Given any
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Fig. 7: Wiring diagram of the Th-cell differentiation model.

2

3

10

11

14

17

8

9

22

4

5 13

21

1

6

716

23

19

18

1520

12

24

25 26

Fig. 8: Wiring diagram of the AND-NOT representation of the
Th-cell differentiation model.

finite dynamical system, it is possible to create an
AND-NOT network such that they have similar
dynamical properties. This has two implications: First,
this means that using AND-NOT networks in modeling
does not pose any technical restriction on the type of
interactions one can model. Second, every result about
AND-NOT networks can be applied to general Boolean
networks, which can give better results (e.g. Theorem4).
One potential drawback for this framework is that the
AND-NOT representation can have more nodes.
However, for networks that arise from modeling
biological systems, this increase in the number of nodes is
modest (Section3.2).

Other advantages of using AND-NOT networks are
the following: First, all information about the network is

actually contained in the network’s wiring diagram.
Specifically, there is a one-to-one correspondence
between AND-NOT networks and graphs, so that the
network can be reconstructed unambiguously from the
wiring diagram. In [40] the authors followed a similar
approach to successfully study cascading effects. Second,
due to this correspondence, we can state all results about
AND-NOT networks using wiring diagrams only. This
means that questions about AND-NOT networks can be
reformulated as questions about graphs; then, one can use
tools from graph theory and combinatorics to study them
(e.g. antichains, posets, inclusion-exclusion principle,
independent sets [5,20]). This deserves further
investigation.

Finally, we point out that AND-NOT networks are
special cases of so-callednested canalyzingBoolean
networks. They are Boolean networks where each
Boolean function can be written in the form
h = yi1♦1(yi2♦2(yi3♦3(. . .))), wherei j ∈ {1, . . . ,n} (n is
the number of nodes),♦ j ∈ {∧,∨}, andyi j ∈ {xi j ,¬xi j}.
These were first introduced in [10,11] as good candidates
for models with “biologically meaningful” regulatory
rules, and have since been studied extensively. In [13] this
concept was generalized to multi-state models, and it was
shown there that the large majority of regulatory rules that
appear in published models of biological networks are of
this form. It was shown furthermore that nested
canalyzing networks have dynamic properties one would
expect to find in biological networks, such as short limit
cycles and a small number of attractors. Thus, the results
in the present paper imply that in order to study the steady
state behavior of general network models, one can focus
on the very restrictive class of nested canalyzing networks
[14], instantiated as AND-NOT networks and make use of
their very special properties.

Appendix A

We describe here the details of the study to determine
how many nodes are added by the construction of the
AND-NOT representation. To mimic wiring diagrams
coming from biological systems, the edges followed a
power law distribution. More precisely, givenK fixed and
a parameterγ, the probability for a node to havek ≤ K
nodes ispk = k−γ (up to a normalization factor). For
example, ifK = 4, the probabilities of having 1, 2, 3 and
4 nodes arep1 = c1−γ = c, p2 = c2−γ , p3 = c3−γ and
p4 = c4−γ , respectively, wherec = 1

1−γ+2−γ+3−γ+4−γ so
that p1 + p2 + p3 + p4 = 1. Also, to mimic biological
regulation, we restricted our analysis to Boolean
functions that admitted a sign assignment for the edges.
These Boolean functions are called unate, biologically
meaningful and regulatory functions [7,9,8].

Denote withek the average number of extra nodes
introduced by a Boolean function ink variables. Then, a
BN that follows the distribution mentioned above will
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have, on average,p1e1 + p2e2 + · · ·+ pKeK extra nodes.
Now, we need to estimateek.

Consider a Boolean function,h, that depends onk
variables. Fork = 1 there are 2 functions,h = x1 and
h= ¬x1 and we do not need to introduce any new nodes;
thene1 = 0. Fork = 2 there are 8 functions and they are
of the form h = s1x1 ∧ s2x2 or h = s1x1 ∨ s2x2, where
sixi = xi or sixi = ¬xi . For functions of the form
h = s1x1 ∧ s2x2 we do not introduce any new nodes, and
for functions of the formh = s1x1 ∨ s2x2 we can use
Proposition1 to transformh to an AND-NOT function, so
we do not introduce new nodes either. Thene2 = 0. For
k = 3, there are 72 functions. An exhaustive-search
analysis shows that of those 72 Boolean functions, 16
introduce 0 nodes, 48 introduce 1 node, and 8 introduce 3
nodes; then the average number of extra nodes in this case
is e3 = 16∗0+48∗1+8∗3

72 = 1. For k = 4, there are 1824
Boolean functions. An exhaustive-search analysis shows
that of those 1824 functions, 32 introduce 0 nodes, 320
introduce 1 node, 480 introduce 2 nodes, 960 introduce 3
nodes and 32 introduce 4 nodes; thus the average number
of extra nodes in this case is
e4 =

32∗0+320∗1+480∗2+960∗3+32∗4
1824 = 2.35. Fork = 5, there

are 220608 functions and an exhaustive-search analysis
shows thate5 = 4.03. Fork = 6 there are approximately
5 × 108 functions and an exhaustive-search analysis
would be unfeasible. However, we have the following
result.

Theorem A.1. The average number of extra nodes for
a unate function of k variables is at most C(k,⌊k/2⌋); that
is, ek ≤ C(k,⌊k/2⌋). Where C is the binomial coefficient
and⌊ ⌋ is the floor function.

Proof. Without loss of generality we assume the CNF of
the Boolean functionf has no negative signs. Letf =w1∧
. . .∧wr be the CNF, wherewi has the formwi = x1∨ . . .∨
xs. For eachi, defineSi = {l : xl appears inwi}.

Now, if there arei, j such thatSi ⊆ Sj , then we can
simplify wi ∧w j to wi (e.g.(x1∨x2)∧ (x1∨x2∨x3) = x1∨
x2). That is, we can simplify the CNF so thatSi * Sj for
all i 6= j.

Thus, S1, . . . ,Sr is a family of subsets of{1, . . . ,k}
such that no one is contained in the other. Sperner’s
theorem [41] states thatr ≤C(k,⌊k/2⌋). This implies that
for any unate function ink variables, we need at most
≤ C(k,⌊k/2⌋) extra nodes to obtain the AND-NOT
representation. Therefore,ek ≤C(k,⌊k/2⌋).

It is important to mention that the exhaustive-search
analysis done fork = 3,4,5 suggests thatek is actually
much smaller thanC(k,⌊k/2⌋). In fact, we did a statistical
analysis for k = 6, . . . ,10 using a total of 5000000
Boolean functions chosen at random (1000000 for each
k). The analysis shows the following approximations:
e6 ≈ 5.32,e7 ≈ 7.04,e8 ≈ 9.32,e9 ≈ 12.24,e10 ≈ 15.96.

Table2 shows a summary of our analysis forγ = 2.5.
For example, ifK = 4, then the fractions of functions with
1, 2, 3 and 4 variables are on averagep1 = .786,
p2 = .139, p3 = .0504 and p4 = .0246, respectively.

Then, the average number of extra nodes is
100(p1e1+ p2e2+ p3e3+ p4e4) =
100(.786∗ 0 + .139∗ 0 + .0504∗ 1 + .0246∗ 2.35) ≈
10.8%.

Appendix B

Here we prove Theorem2 and3. As mentioned in Section
3.3, Theorem2 is an application of [39, Theorem 3.2] to
the family of AND-NOT networks. First we need the
following definition.

Let f : {0,1}n → {0,1}n be a Boolean network and
considerx ∈ {0,1}n. Then,W(x) = (V,E) is the graph
with verticesV = {1, . . . ,n} and the following edges:
( j, i,+) ∈ E if x j = 0 and fi(x) < fi(x+ej), or if x j = 1
and fi(x−ej)< fi(x);
( j, i,−) ∈ E if x j = 0 and fi(x) > fi(x+ej), or if x j = 1
and fi(x−ej)> fi(x);
where ej is the vector given by(ej)i = δi j (δ is the
Kronecker delta). Notice that if( j, i,+) or ( j, i,−) is an
edge inW(x), then changing thej-th coordinate of j
produces a change inf j . Notice that for AND-NOT
networks we have thatW(x) ⊆ W for all x; in fact, this is
true for more general networks.

Theorem B.1.[39] Let f be a Boolean network and
suppose a and b are steady states of f . Then, there there
exists x such that W(x) has a positive feedback loop with
vertices in the set{i : ai 6= bi}.

We now prove Theorem2.

Proof. Let φ : {0,1}n → {0,1}|J| defined byφ(x) = xJ.
We will show that if a 6= b are steady states ofg, then
φ(a) 6= φ(b). Considera 6= b steady states ofg; then, by
Theorem B.1., there existsx such thatW(x) has a positive
feedback loop,C, with vertices in the set{i : ai 6= bi}.

We claim thatC is a strong positive feedback loop of
W. By contradiction, suppose there isk ∈ {1, . . . ,n} and
i, j ∈C such thatk → i andk —• j are edges inW(x) but
not in C. Then,W(x) has edges of the form(l1, i,±) and
(l2, j,±) where l1, l2 6= k. On the other hand, since
(k, i,+),(k, j,−) ∈ C ⊆ W(x) ⊆ W, we have that
fi = xk∧ . . . and f j = ¬xk∧ . . .. We have two casesxk = 0
or xk = 1. In the casexk = 0 we obtain thatfi = 0 for all
values of x1, . . . ,xk−1,xk+1, . . . ,xn. In particular, W(x)
cannot have an edge of the form(l , i,±) with l 6= k; this is
a contradiction. In the casexk = 1 we obtain thatf j = 0
for all values of x1, . . . ,xk−1,xk+1, . . . ,xn. In particular,
W(x) cannot have an edge of the form(l , j,±) with l 6= k;
this is a contradiction as well. Therefore,C is strong.

SinceC is a strong positive feedback loop inW,C must
intersectJ. SinceC has all its vertices in the set{i : ai 6=
bi}, J intersects the set{i : ai 6= bi}. Thereforeφ(a) = aJ 6=
bJ = φ(b). It follows that the restriction ofφ to the set
of steady states is an injective function. Therefore,|{x :
f (x) = x}| ≤ |{0,1}|J||= 2|J|.

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 4, 1263-1274 (2013) /www.naturalspublishing.com/Journals.asp 1271

It is important to mention that Theorem2 was also
proven in [19] using different techniques.

We now prove Theorem3.

Proof. Let f : {0,1}n → {0,1}n be an AND-NOT
network with wiring diagramW. Let C be a positive
feedback loop that is strong and inconsistent. Then, there
is a vertexkC such that there is a positive path of the form
kC → i1 → ·· · → ir → tC from kC to tC ∈C and a negative
path of the formkC → j1 → ·· · → jr —• uC, from kC to
uC ∈ C such thatkC → tC, kC —• uC are not edges inC
and|I j1| = . . . = |I jr | = 1. LetG be the graph obtained by
adding toW all edges of the formkC → tC andkC —• uC
where C does not intersect J. Denote by
g : {0,1}n → {0,1}n the AND-NOT network associated
to Z. We claim that the steady states off and g are the
same. We prove this by induction on the number of extra
edges.

Suppose thatW andZ only differ in the edgek → t,
then, by definition we must also have a pathk → i1 →
. . .→ ir → t. Suppose thatg(x) = x, we need to show that
f j(x) = x j for all j. SinceW andZ only differ in the edge
k→ t we havef j = g j for j 6= t, gt = ft ∧xk and ft = xir ∧
. . .. Then, f j(x) = g j(x) = x j for j 6= t. It remains to show
that ft(x) = xt . Consider first the casext = 0, then,gt(x) =
0 andxi = 0 for somei ∈ I+t . If i 6= k, we have that the edge
i → t is in W and ft = xir ∧xi ∧ . . .; then, ft(x) = xir ∧0∧
. . .= 0= xt . If i = k, thenxk = 0 which implies thatxi1 = 0
(because of the edgek→ i1); similarly, we obtain thatxir =
0. Then, ft(x) = 0∧ . . .= 0= xt . That is, ft(x) = xt . Now
consider the casext = 1. Since 1= xt = gt(x) = ft(x)∧xk,
we haveft(x) = 1= xt . A similar argument shows that if
f (x) = x, theng(x) = x. The proof for whenW andZ only
differ in the edgek —• t is analogous. By induction we
obtain that f and the AND-NOT network obtained by a
completion ofW have the same steady states.

Now, we claim thatJ intersects all strong positive
feedback loops ofZ. Let C′ be a strong positive feedback
loop of Z. Then we have two cases:C′ is in W or it is not.
Consider the caseC′ ⊆ W. Then,C′ is a strong positive
feedback loop inW. If C′ is consistent inW, then it
intersectsJ. If C′ is inconsistent (and strong) inW, then it
also intersectsJ. Now consider the caseC′ *W. Then, at
least one edge ofC′ is of the formkC → tC or kC —• uC
for someC strong and inconsistent that does not intersect
J. Then,kC ∈ J andJ intersectsC. In any case we obtain
thatJ intersects all strong positive feedback loops ofZ.

Then, the number of steady states ofg, and hencef , is
at most 2|J|.

Appendix C

We first analyze the original BN using previous results. In
[36], the authors showed that the positive feedback loops
of the BN f : {0,1}23 → f : {0,1}23 are:

{4,5,15,18,12,13,21,11,14}

{4,5,15,18,12,13,21,9,20}
{4,5,15,18,12,13,21,1,6,7,19}
{4,5,15,18,12,13,21,1,20}
{4,5,15,18,12,13,21,1,22}
{4,5,15,18,17,13,21,11,14}
{4,5,15,18,17,13,21,9,20}
{4,5,15,18,17,13,21,1,6,7,19}
{4,5,15,18,17,13,21,1,20}
{4,5,15,18,17,13,21,1,22}
{4,5,15,18,22}
{4,5,15,18,22,17,13,21,11,14}
{4,5,15,18,22,17,13,21,9,20}
{4,5,15,18,22,17,13,21,1,6,7,19}
{4,5,15,18,22,17,13,21,1,20}
{4,5,15,18,22,1,12,13,21,11,14}
{4,5,15,18,22,1,12,13,21,9,20}
{4,5,15,18,22,1,6,7,19}
{4,5,15,18,22,1,20}
{12,13,21,1}
{13,21,1,22,17}
{22}
{22,1}
{1}
We will use the following two theorems (proven in [8,

19], respectively) that give upper bounds on the number of
steady states.

Theorem 5. Let W be the wiring diagram of a BN
network and suppose J is a set of vertices that intersects
all positive feedback loops in W. Then, the number of
steady states is at most2|J|.

Theorem 6. Let W be the wiring diagram of a BN
network and suppose J is a set of vertices that intersects
all functional positive feedback loops in W. Then, the
number of steady states is at most2|J|.

It is easy to see that all positive feedback loops
intersect the set{1,4,22}. Therefore, Theorem5 gives
the upper bound 23 = 8. Also, it is possible to show that
the functional positive feedback loops are
{4,5,15,18,12,13,21,11,14}, {22}, {22,1} and {1}
(e.g. using the GINsim software [42] ). Therefore,
Theorem6 gives the upper bound 8 as well.

We now analyze the AND-NOT network using our
results. The positive feedback loops of the AND-NOT
network in Figure8 are the following (new nodes are in
bold).

{24,4,5,15,18,12,13,21,11,14}
{24,4,5,15,18,12,13,21,9,20}
{24,4,5,15,18,12,13,21,26,1,6,7,19}
{24,4,5,15,18,12,13,21,26,1,20}
{24,4,5,15,18,12,13,21,26,1,22}
{24,4,5,15,18,17,13,21,11,14}
{24,4,5,15,18,17,13,21,9,20}
{24,4,5,15,18,17,13,21,26,1,6,7,19}
{24,4,5,15,18,17,13,21,26,1,20}
{24,4,5,15,18,17,13,21,26,1,22}
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{24,4,5,15,18,25,22}
{24,4,5,15,18,25,22,17,13,21,11,14}
{24,4,5,15,18,25,22,17,13,21,9,20}
{24,4,5,15,18,25,22,17,13,21,26,1,6,7,19}
{24,4,5,15,18,25,22,17,13,21,26,1,20}
{24,4,5,15,18,25,22,1,12,13,21,11,14}
{24,4,5,15,18,25,22,1,12,13,21,9,20}
{24,4,5,15,18,25,22,1,6,7,19}
{24,4,5,15,18,25,22,1,20}
{12,13,21,1}
{13,21,26,1,22,17}
{22,25}
{22,1}
{1,26}
Those feedback loops that contain 4 and 13 are

inconsistent because of the paths 1→ 12 → 13,
1 → 6 → 7 → 19 —• 4; they are also strong. All other
positive feedback loops are consistent and intersect
{1,22}. That is,{1,22} intersects all consistent positive
feedback loops, and for each positive feedback loopC
that is inconsistent and strong,J containskC = 1. Hence,
{1,22} dominates the wiring diagram ofg. Therefore,
Theorem4 gives the better upper bound 22 = 4 on the
number of steady states off .
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