
Appl. Math. Inf. Sci. 6, No. 1, 85-88 (2012) 85

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Solitons and Periodic Solutions to Nonlinear Partial
Differential Equations by the Sine-Cosine Method
Marwan T. Alquran

Department of Mathematics and Statistics, Jordan University of Science and Technology ,Irbid (22110) , Jordan

Received: Received March 7, 2011; Revised April 13, 2011; Accepted April 20, 2011
Published online: 1 January 2012

Abstract: In this paper, we construct new solitary solutions to nonlinear PDES by the Sine-Cosine method. Moreover, the periodic
solutions and bell-shaped solitons solutions to the Benjamin-Bona-Mahony and the Gardner equations are obtained. New solution to
the Cassama-Holm equation is also obtained. Finally, the solution of a two-component evolutionary system of a homogeneous Kdv
equations of order 2 has been investigated by the proposed method.
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1. Introduction

In this paper, we study the solutions of the nonlin-
ear Benjamin-Bona-Mahony equation, Gardner equation,
Cassama-Holm equation and the two-component evolu-
tionary system of a homogeneous KDV equations given,
respectively, by

ut = uxxt − ux − uux, (1)

ut = uxxx + 6uux, (2)

ut + 2kux − uxxt + 3uux − 2uxuxx − uuxxx = 0, (3)

ut = −3vxx , vt = uxx + 4u2 (4)

Large varieties of physical, chemical, and biological phe-
nomena are governed by nonlinear partial differential
equations. One of the most exciting advances of nonlinear
science and theoretical physics has been the development
of methods to look for exact solutions of nonlinear par-
tial differential equations. Exact solutions to nonlinear par-
tial differential equations play an important role in nonlin-
ear science, especially in nonlinear physical science since
they can provide much physical information and more in-
sight into the physical aspects of the problem and thus lead
to further applications. In the past decade, many signifi-
cant methods have been proposed for obtaining solutions
of nonlinear partial differential equations such as the Sinc-
Galerkin method [12,3], the finite difference method [2],

the Adomian decomposition method [11], the Differential
transform method [13], the extended tanh-function method
[7,9,10,8], the Exp-function method [1], the direct alge-
braic method, Hirota’s method, inverse scattering method,
Backlund transformation, the Wadati trace method, Hi-
rota bilinear forms, pseudo spectral method, the tanh-sech
method, the Riccati equation expansion method and so on.

The main aim of this paper is to apply the Sine-Cosine
function method with the help of symbolic computation to
obtain new soliton solutions of (1, 2, 3) and the nonlinear
system (4). By using Sine-Cosine function method, many
kinds of nonlinear partial differential equations arising in
mathematical physics have been solved successfully [4–6].

2. The Sine-Cosine Method

Since we restrict our attention to traveling waves, we use
the transformation u(x, t) = u(ζ), where the wave vari-
able ζ = x − ct, converts the the nonlinear PDE to an
equivalent ODE. The sine-cosine algorithm admits the use
of the ansatzes

u(x, t) = λ cosβ(µζ), |ζ| ≤ π

2µ
, (5)

u(x, t) = λ sinβ(µζ), |ζ| ≤ π

2µ
, (6)
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where λ, µ, c and β are parameters that will be determined.
Substituting (5) or ((6) into the reduced ODE gives a poly-
nomial equation of cosine or sine terms. Balancing the ex-
ponents of the trigonometric functions cosine or sine, col-
lecting all terms with same power in cosβ(µζ) or sinβ(µζ)
and set to zero their coefficients to get a system of al-
gebraic equations among the unknowns λ, µ and β. The
problem is now completely reduced to an algebraic one.
Having determined λ, µ, c and β by algebraic calculations
or by using computerized symbolic calculations, the solu-
tions proposed in (5) and in (6) follow immediately.

3. Applications

In this section we apply the proposed method to four phys-
ical models that admit solitary solutions.

3.1. Benjamin-Bona-Mahony (BBM) equation

Consider the BBM equation

ut = uxxt − ux − uux. (7)

Using the wave variable ζ = x − ct carries (7) into the
ODE

(1− c)u+
1

2
u2 + cu′′, (8)

obtained after integrating the ODE and setting the constant
of integration to zero. Substituting (5) into (8) gives
1

2
λ cosβ−2(µζ)(2c(β − 1)βµ2 − 2(cβ2µ2

+c− 1) cos2(µζ) + λ cosβ+2(µζ)) = 0

The equation is satisfied only if the following system of
algebraic equations hold

2 + β = 0 (9)
λ+ 2c(β − 1)βµ2 = 0

−2(cβ2µ2 + c− 1) = 0

which leads to

λ = − 12µ2

1 + 4µ2
, c =

1

1 + 4µ2
, (10)

where µ is any arbitrary constant. Therefore, the solution
of (7) is

u(x, t) = − 12µ2

1 + 4µ2
sec2(x− 1

1 + 4µ2
t) (11)

Now, if we use the ansatze (6) instead of (5), then we get
the same system (9) and therefore, the solution is

u(x, t) = − 12µ2

1 + 4µ2
csc2(x− 1

1 + 4µ2
t) (12)

Figures 3.1 and 3.2 shows the periodicity of the two ob-
tained solutions for the BBM equation.

Figure 1 Plot of the first obtained solution for the BBM equation
for µ = 1, Example 3.1

Figure 2 Plot of the Second obtained solution for the BBM
equation for µ = 1, Example 3.1

3.2. Gardner equation

Consider the Gardner equation

ut = uxxx + 6uux. (13)

Using the wave variable ζ = x − ct carries (13) into the
ODE

cu+ 3u2 + u′′ = 0, (14)

obtained after integrating the ODE and setting the constant
of integration to zero. Substituting (5) into (14) gives

λ cosβ−2(µζ)((β − 1)βµ2 + (c− β2µ2) = 0 (15)

cos2(µζ) + 3λ cosβ+2(µζ))
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The equation is satisfied only if the following system of
algebraic equations hold

2 + β = 0 (16)
3λ+ (β − 1)βµ2 = 0

c− β2µ2 = 0

which leads to

λ = −2µ2 , c = 4µ2, (17)

where µ is any arbitrary constant. Therefore, the solution
of (13) is

u(x, t) = −2µ2 sec2
(
µ(x− 4µ2t)

)
. (18)

Using (6) the solution is

u(x, t) = −2µ2 csc2
(
µ(x− 4µ2t)

)
. (19)

3.3. Cassama-Holm equation

Consider the Cassama-Holm equation

ut + 2kux − uxxt + 3uux − 2uxuxx − uuxxx = 0 (20)

Using the wave variable ζ = x − ct carries (20) into the
ODE

(2k − c)u+
3

2
u2 + cu′′ − 1

2
(u′2 − uu′′ = 0, (21)

obtained after integrating the ODE and setting the constant
of integration to zero. Substituting (5) into (14) gives

2c(β − 1)βµ2 − 2c(c− 2k + cβ2µ2)

cos2(µζ)− 2β(3β − 2)λµ2 cosβ(µζ) (22)

+3λ(1 + β2µ2) cosβ+2(µζ) = 0.

The equation is satisfied only if the following system of
algebraic equations hold

β = 2 (23)
−2c(c− 2k + cβ2µ2)− 2β(3β − 2)λµ2 = 0

3λ(1 + β2µ2) = 0

2c(β − 1)βµ2 = 0

which leads to

λ = −2k , c = 0, , µ =
i

2
, (24)

where k is the constant given in the origin equation. There-
fore, the solution of (20) is

u(x, t) = −2k cosh2(
x

2
) (25)

Using (6) the solution is

u(x, t) = 2k sinh2(
x

2
). (26)

respectively of the Cassama-Holm equation.

3.4. Two-component Kdv evolutionary system of
order 2

Consider the two-component evolutionary system of a ho-
mogeneous Kdv equations of order 2

ut = −3vxx (27)
vt = uxx + 4u2

Using the wave variable ζ = x − ct carries (27) into the
ODE

−cu′ = −3v′′ (28)
−cv′ = u′′2.

From (28) we have

u =
3

c
v′, (29)

and therefore,

c2u+ 12u2 + 3u′′ = 0 (30)

Substituting (5) into (30) gives

λ cosβ−2(µζ)(3(β − 1)βµ2 + (c2 − 3β2µ2) = 0 (31)

cos2(µζ) + 12λ cosβ+2(µζ)) = 0

The equation is satisfied only if the following system of
algebraic equations hold

β + 2 = 0 (32)
3(β − 1)βµ2 + 12λ = 0

c2 − 3β2µ2 = 0

which leads to

λ = −3µ2

2
, c = 2

√
3µ, (33)

where µ is any arbitrary constant. Therefore, the solution
of (27) is

u(x, t) = −3

2
µ2 sec2(µ(x− 2

√
3µt) (34)

v(x, t) = −
√
3µ2 tan(µ(x− 2

√
3µt)

Using (6) the solution is

u(x, t) = −3

2
µ2 csc2(µ(x− 2

√
3µt) (35)

v(x, t) =
√
3µ2 cot(µ(x− 2

√
3µt)

Figures 3.3 and 3.4 shows the periodicity of the solution
of the Kdv system.

4. Conclusion

The Sine-Cosine method has been successfully imple-
mented to establish new solitary wave solutions for vari-
ous type of nonlinear PDEs. Also, we apply the method to
solve a two-component evolutionary system of Kdv equa-
tions of order 2. The systems of algebraic equations in this
paper have been solved by using Mathematica 7.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



88 Marwan T. Alquran: Solitons and Periodic Solutions to Nonlinear PDEs...

Figure 3 Plot of u(x, t) for the Kdv system for µ = 1, Example
3.4

Figure 4 Plot of v(x, t) for the Kdv system for µ = 1, Example
3.4
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