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Abstract: n this paper, we introduce and consider a new class of equilibrium problems and variational inequalities which is called the
nonconvex equilibrium variational inequality. We suggest and analyze some iterative methods for solving the nonconvex equilibrium
variational inequalities using the auxiliary principle technique. We prove that the convergence of implicit method requires only mono-
tonicity. Some special cases are also considered. Our proof of convergence is very simple. Results proved in this paper may stimulate
further research in this dynamic field.
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Introduction

Variational inequalities theory, which was introduced
by Stampacchia [22], can be viewed as an important and
significant extension of the variational principles. This the-
ory combines the theory of extremal problems and mono-
tone operators under a unified viewpoint. Related to the
variational inequalities, we have the equilibrium problems,
which was introduced and studied by Blum and Oettli [1]
in 1994. It has been shown that the variational inequalities
and fixed point problems are special cases of the equilib-
rium problems. However, the variational inequalities and
equilibrium problems are quite two problems. Noor et al
18] have considered a general and unified class, which is
called the equilibrium variational inequality. They have
also discussed the numerical methods for solving such
type of equilibrium variational inequalities using the aux-
iliary principle technique.

We would like to mention that all the work carried out
in this direction assumed that the underlying set is a con-
vex set. In many practical situations, a choice set may not
be convex so that the existing results may not be applica-
ble. In recent years, Noor [10,12,13,14] and Bounkhel et
al [2] have considered variational inequality in the context
of uniformly prox-regular sets. Note that the prox-regular
sets are nonconvex sets, see [2,3,21].

In this paper, we introduce and consider a new class
of equilibrium variational inequalities on the prox-regular
sets, which is called the nonconvex equilibrium variational
inequality. This class is quite general and unifying one.
One can easily show that the several classes of equilibrium
problems and variational inequalities are special cases of
this new class. There are a substantial number of numeri-
cal methods including projection technique and its variant
forms, Wiener-Hopf equations, auxiliary principle and re-
solvent equations methods for solving variational inequal-
ities. However, it is known that projection, Wiener-Hopf
equations, proximal and resolvent equations techniques
cannot be extended and generalized to suggest and analyze
similar iterative methods for solving variational inequali-
ties. This fact has motivated to use the auxiliary principle
technique, which is mainly due to mainly due to Glowin-
ski, Lions and Tremolieres [4]. Noor et al[15,16] has used
this technique to develop some iterative schemes for solv-
ing various classes of variational inequalities. We point out
that this technique does not involve the projection of the
operator and is flexible. In this paper, we show that the
auxiliary principle technique can be used to suggest and
analyze a class of iterative methods for solving the non-
convex equilibrium variational inequalities. We also prove
that the convergence of this new implicit method requires
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only the monotonicity. Our method of proof is very sim-
ple. Results proved in this paper continue to hold for all
the special cases.
2. Preliminaries

Let H be a real Hilbert space whose inner product and
norm are denoted by ·, · and ∥.∥ respectively. Let K be
a nonempty and convex set in H . We, first of all, recall
the following well-known concepts from nonlinear con-
vex analysis and nonsmooth analysis [3,21]. Poliquin et
al. [21] and Clarke et al [3] have introduced and studied a
new class of nonconvex sets, which are called uniformly
prox-regular sets.
Definition 2.1. The proximal normal cone of K at u ∈ H
is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u+ αξ]},

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ∥u− u∗∥}.
Here dK(.) is the usual distance function to the subset K,
that is

dK(u) = inf
v∈K

∥v − u∥.

The proximal normal cone NP
K(u) has the following char-

acterization.
Lemma 2.1. Let K be a nonempty, closed and convex
subset in H. Then ζ ∈ NP

K(u), if and only if, there exists
a constant α > 0 such that

ζ, v − u ≤ α∥v − u∥2, ∀v ∈ K.

Definition 2.2. For a given r ∈ (0,∞], a subset Kr is said
to be normalized uniformly r-prox-regular if and only if
every nonzero proximal normal cone to Kr can be realized
by an r-ball, that is,∀u ∈ Kr and 0 ̸= ξ ∈ NP

Kr
(u), one

has

(ξ)/∥ξ∥, v − u ≤ (1/2r)∥v − u∥2, ∀v ∈ Kr.

It is clear that the class of normalized uniformly prox-
regular sets is sufficiently large to include the class of con-
vex sets, p-convex sets, C1,1submanifolds (possibly with
boundary) of H, the images under a C1,1 diffeomorphism
of convex sets and many other nonconvex sets; see [3,21].
It is well-known [2,3,21] that the union of two disjoint in-
tervals [a,b] and [c,d] is a prox-regular set with r = c−b

2 .
For other examples of prox-regular sets, see Noor [12,14].
Obviously, for r = ∞, the uniformly prox-regularity of
Kr is equivalent to the convexity of K. This class of uni-
formly prox-regular sets have played an important part in
many nonconvex applications such as optimization, dy-
namic systems and differential inclusions.

For the sake of simplicity, we take γ = 1
r . Then it is

clear that for r = ∞, we have γ = 0.

For given bifunction F (., .)H ×H =⇒ R and nonlin-
ear operator T, we consider the problem of finding u ∈ Kr

such that

F (u, v) + Tu, v − u+ γ∥v − u∥2 ≥ 0,

∀v ∈ Kr, which is called the nonconvex equilibrium vari-
ational inequality.

We note that, if Kr ≡ K, the convex set in H, then
problem (2.1) is equivalent to finding u ∈ K such that

F (u, v) + Tu, v − u ≥ 0,∀v ∈ K. (1)

Inequality of type (2.1) is called the equilibrium varia-
tional inequality, considered and studied by Noor et al
[18], Takahashi and Takahashi [23] and Yao et al [24].

For a suitable and appropriate choice of the bifunction
and the spaces, one can obtain several new classes of equi-
librium and variational inequalities in recent years, see [1-
24] and the references therein.
3. Main Results

In this section, we use the auxiliary principle technique
of Glowinski, Lions and Tremolieres [4] as developed by
Noor et al[15-17] to suggest and analyze a some iterative
methods for solving the nonconvex equilibrium variational
inequality (2.1). We would like to mention that this tech-
nique does not involve the concept of the projection and
the resolvent, which is the main advantage of this tech-
nique.

For a given u ∈ Kr satisfying (2.1), consider the prob-
lem of finding w ∈ Kr such that

ρF (w, v) + ρTw, v − w + w − u,

v − w + ργ∥v − w∥2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 and γ > 0 are constants. Inequality of type
(3.1) is called the auxiliary nonconvex equilibrium varia-
tional inequality. Note that if w = u, then w is a solution
of (2.1). This simple observation enables us to suggest the
following iterative method for solving the nonconvex equi-
librium variational inequalities (2.1).
Algorithm 3.1. For a given u0 ∈ Kr, compute the ap-
proximate solution un+1 by the iterative scheme

ρF (un+1, v) + ρTun+1, v − un+1

+un+1 − un, v − un+1 (2)

+ργ∥v − un+1∥2 ≥ 0,

∀v ∈ Kr.

Algorithm 3.1 is called the proximal point algorithm
for solving nonconvex equilibrium variational inequality
(2.1). In particular, if γ = 0, then the uniformly prox-
regular set Kr becomes the convex set K, and conse-
quently Algorithm 3.1 reduces to:

Algorithm 3.2. For a given u0 ∈ K, compute the ap-
proximate solution un+1 by the iterative scheme

ρF (un+1, v) + ρTun+1, v − un+1

+un+1 − un, v − un+1 ≥ 0, ∀v ∈ K,

which is known as the proximal point algorithm for solv-
ing equilibrium variational inequalities (2.2) and has been
studied extensively.
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For the convergence analysis of Algorithm 3.1, we re-
call the following concepts and results.
Definition 3.1. A bifunction F (., .) : H ×H → H is said
to be monotone, iff

F (u, v − u) + F (v, u− v) ≤ 0, ∀u, v ∈ H.

Definition 3.2. An operator T : H → H is said to be
monotone, iff

Tu− Tv, u− v ≥ 0, ∀u, v ∈ H.

We now consider the convergence criteria of Algo-
rithm 3.1. The analysis is in the spirit of Noor et al[15-19].

Theorem 3.1. Let the bifunction F (., .) : Kr×Kr −→ H
and the operator T : H −→ H be monotone. If un+1 is
the approximate solution obtained from Algorithm 3.1 and
u ∈ Kr is a solution of (2.1), then

(1− 4γρ)∥u− un+1∥2 ≤ ∥u− un∥2 − ∥un − un+1∥2.
Proof. Let u ∈ Kr be a solution of (2.1). Then

−F (v, u) + Tv, u− v + γ∥v − u∥2 ≥ 0,

∀v ∈ Kr,

since T and F (., .) are monotone operators.
Taking v = un+1 in (3.5), we have

−F (un+1, u) + Tun+1, u− un+1 + γ∥u− un+1∥2 ≥ 0.

Setting v = u in (3.2), and using (3.6), we have

un+1 − un, u− un+1

≥ ρF (un+1, u)− ρTun+1, un+1 − u)

−2ργ∥un+1 − u∥2 ≥ 0. (3)

From this, one can easily obtain

(1− 4ργ)∥u− un+1∥2

≤ ∥u− un∥2 − ∥un − un+1∥2,
the required result (3.3).
Theorem 3.2. Let H be a finite dimension subspace and
let un+1 be the approximate solution obtained from Algo-
rithm 3.1. If u ∈ Kr is a solution of (2.1) and ρ < 1

4γ ,

then limn−→∞ un = u.

Proof. Let u ∈ Kr be a solution of (2.1). Then it follows
from (3.4) that the sequence {un} is bounded and
∞∑

n=0

∥un − un+1∥2 ≤ ∥u0 − u∥2,

which implies that

lim
n−→∞

∥un − un+1∥ = 0.

Let û be a cluster point of the sequence {un} and let
the subsequence {uj} of the sequence {un} converge to
û ∈ Kr. replacing un by unj in (3.2) and taking the limit
nj −→ ∞ and using (3.8), we have

F (û, v) + û, v − û

+γ∥v − û∥2 ≥ 0, ∀ v ∈ Kr,

which implies that û solves the nonconvex equilibrium
variational inequality (2.1) and

∥un − un+1∥2 ≤ ∥û− un∥2.

Thus it follows from the above inequality that the sequence
{un} has exactly one cluster point û and limn−→∞ un =
û. the required result.

We note that for r = ∞, the r-prox-regular set K be-
comes a convex set and the nonconvex equilibrium varia-
tional inequality (2.1) collapses to the equilibrium varia-
tional inequality (2.2). Thus our results include the previ-
ous known results as special cases.

It is well-known that to implement the proximal point
methods, one has to calculate the approximate solution
implicitly, which is itself a difficult problem. To over-
come this drawback, we suggest another iterative method,
the convergence of which requires only partially relaxed
strongly monotonicity, which is a weaker condition that
cocoercivity.

For a given u ∈ Kr satisfying (2.1), consider the prob-
lem of finding w ∈ Kr such that

ρF (u, v) + ρTu, v − w + w − u,

v − w + γ∥v − w∥2 ≥ 0, ∀ v ∈ Kr,

which is also called the auxiliary variational inequality.
Note that problems (3.1) and (3.10) are quite different. If
w = u, then clearly w is a solution of the nonconvex equi-
librium variational inequality (2.1). This fact enables us
to suggest and analyze the following iterative method for
solving the nonconvex equilibrium variational inequality
(2.1).
Algorithm 3.3. For a given u0 ∈ Kr, compute the ap-
proximate solution un+1 by the iterative scheme

ρF (un, v) + ρTun, v − un+1 + un+1 − un,

v − un+1 + γ∥v − un+1∥2 ≥ 0, ∀v ∈ Kr.

Note that for r = ∞, the uniformly prox-regular set Kr

becomes a convex set K and Algorithm 3.3 reduces to:

Algorithm 3.4. For a given u0 ∈ K, calculate the approx-
imate solution un+1 by the iterative scheme

ρF (un, v) + ρTun, v − un+1

+un+1 − un, v − un+1 ≥ 0, ∀v ∈ K,

which is known as the projection iterative method for solv-
ing equilibrium variational inequalities (2.2).

For appropriate and suitable choice of the operators
and the spaces, one can suggest and analyze several itera-
tive methods for solving the nonconvex bifunction equilib-
rium variational inequalities. This shows that Algorithms
suggested in this paper are more general and unifying one.
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Using essentially the technique of Theorem 3.1 and The-
orem 3.2, one can consider the convergence analysis of
Algorithm 3.3.

Conclusion and Future outlook. In this paper, we have
introduced and consider the nonconvex equilibrium vari-
ational inequalities. We have used the auxiliary principle
technique to suggest and analyze some iterative methods
for solving theses problems. It is worth mentioning that
this technique does not involve the projection or the re-
solvent operator technique. This is the main advantage of
this method. The comparison of this technique with other
methods is an interesting problem for future research. One
can easily prove the similar results for the multivalued(set-
valued) nonconvex equilibrium variational inequalities us-
ing the ideas and techniques of this paper. Using the tech-
nique of Noor [9], one suggest and analyze three-step iter-
ative methods for solving the nonconvex equilibrium vari-
ational inequalities, which is another aspect of future re-
search. We hope that the interested readers are encouraged
to find the applications of the nonconvex equilibrium prob-
lems in different areas of pure and applied sciences.
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