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THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE
HOMOTOPY ANALYSIS METHOD

M. GHOREISHI1, A.I.B.MD. ISMAIL1, A. RASHID2

Abstract. In this paper, the Homotopy Analysis Method (HAM) is presented for obtaining

the approximate solution of new coupled modified Korteweg-de Vries (MKdV) system. The

approximate analytical solution is obtained by using this method in the form of a convergent

power series with components that are easily computable. For the problems considered, only a

few terms are required to obtain an approximate solution that is accurate and efficient.
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1. Introduction

By considering 4 × 4 matrix spectral problem with three potentials Wu et al. [14] derived a
new hierarchy of nonlinear evolution equations. Two new coupled modified Koreweg-de Vries
(MKdV) equations are included in this hierarchy. These equations are governed by the following
partial differential equations:





ut = 1
2uxxx − 3u2ux + 3

2(vz)xx + 3(uvz)x,

vt = −vxxx − 3(vux)x − 3v2zx + 6uvux + 3u2vx,

zt = −zxxx − 3(zux)x − 3z2vx + 6uzux + 3u2zx,

(1)

and

{
ut = 1

2uxxx − 3u2ux + 3
2(v)xx + 3(uv)x − 3λux,

vt = −vxxx − 3vvx − 3uxvx + 3u2vx + 3λvx.
(2)

In general, analytical solutions of (1) and (2) cannot be obtained because the systems are very
complicated. Therefore the HAM is proposed for solving (1) and (2), which is an approximate
analytical method.

Fan [7] used an extended tanh method with symbolic computation and found the soliton
solutions, triangular periodic solutions and rational solutions for new coupled MKdV system
(1). The Riccati equation and symbolic computation have been also used by Fan [8] to find
two kinds of the soliton solution for the coupled MKdV system (2). Fan’s [8] approach was to
take advantage of a Riccati equation involving a parameter and use its solutions to replace the
tanh-function in the tanh-function method. The Adomian Decomposition Method (ADM) and
Variational Iteration Method (VIM) have been used by Inc and Cavlak [9] to obtain approximate
analytical solutions for the new coupled MKdV system (1). Raslan [13] developed the ADM to
approximately solve the coupled MKdV system (2).
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The basic aim of this study is to obtain the approximate analytical solution for the coupled
system (1) and (2) using HAM. Approximate analytical schemes such as ADM, VIM, Homotopy
Perturbation Method (HPM) and HAM have been widely used to solve operator equations.
These schemes generate an infinite series solution and do not have the problem of rounding
error. The solution obtained by using these methods show their applicability, accuracy and
efficiency in solving many nonlinear problems in physics, engineering and various branches of
mathematics [12].

The HAM was developed by Liao [10] who utilized the idea of homotopy in topology. Since
then numerous authors have used HAM to solve various differential equations but as far as we
are aware systems (1) and (2) have not been solved by HAM. HAM has an advantage over
perturbation methods that it does not depend on small or large parameters. Compared with
other analytical methods such as ADM, VIM, HAM allows for fine-tuning of convergence region
and rate of convergence by allowing an auxiliary parameter ~ to vary [1, 6].

This paper is organized as follows: In section 2, we present a description of the HAM, which
has been described by others, in particular [2, 3, 5]. In section 3, we employ the HAM for solving
two examples of the new coupled MKdV systems (1) and (2) and compare the approximate
solution obtained with the exact solution. Finally, in section 4, we give the conclusions of the
study.

2. A description of the HAM

To apply the HAM, the new coupled MKdV system (1) is considered. The following defor-
mation equation was constructed by Liao [10]

(1− p)Lu[φ(x, t; p)− u0(x, t)] = p~H1(x, t)N1[φ(x, t; p)], (3)

(1− p)Lv[ϕ(x, t; p)− v0(x, t)] = p~H2(x, t)N2[ϕ(x, t; p)], (4)

(1− p)Lz[ψ(x, t; p)− z0(x, t)] = p~H3(x, t)N3[ψ(x, t; p)], (5)

where N1, N2 and N3 are three nonlinear operators, x and t denote the independent variables,
H1(x, t), H2(x, t) and H3(x, t) are auxiliary function, p ∈ [0, 1] is the embedding parameter,
~ 6= 0 is an auxiliary parameter, u0(x, t), v0(x, t) and z0(x, t) are initial guesses of u(x, t), v(x, t)
and z(x, t), respectively. The functions φ(x, t; p), ϕ(x, t; p) and ψ(x, t; p) are known functions
and Lu, Lv and Lz are auxiliary operators that are defined as follows

Lu[u(x, t)] =
∂u

∂t
, Lv[v(x, t)] =

∂v

∂t
, Lz[z(x, t)] =

∂z

∂t
,

which satisfies
Lu[c1(x)] = 0, Lv[c2(x)] = 0, Lz[c3(x)] = 0,

where c1(x), c2(x) and c3(x) are integral constants. When p = 0 and p = 1, we get

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t),

ϕ(x, t; 0) = v0(x, t), ϕ(x, t; 1) = v(x, t),

ψ(x, t; 0) = z0(x, t), ψ(x, t; 1) = z(x, t).

Hence as p increase from 0 to 1, the solution of coupled MKdV system (1) will vary from
the initial guesses u0(x, t), v0(x, t) and z0(x, t) to the exact solution u(x, t), v(x, t) and z(x, t).
Expanding φ(x, t; p), ϕ(x, t; p) and ψ(x, t; p) as a Taylor series with respect to p, gives

φ(x, t; p) = φ(x, t; 0) +
∞∑

m=1

pm

m!
∂mφ(x, t; p)

∂pm
|p=0,
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ϕ(x, t; p) = ϕ(x, t; 0) +
∞∑

m=1

pm

m!
∂mϕ(x, t; p)

∂pm
|p=0,

ψ(x, t; p) = ψ(x, t; 0) +
∞∑

m=1

pm

m!
∂mψ(x, t; p)

∂pm
|p=0.

Thus

φ(x, t; p) = u0(x, t) +
∞∑

m=1

um(x, t)pm, (6)

ϕ(x, t; p) = v0(x, t) +
∞∑

m=1

vm(x, t)pm, (7)

ψ(x, t; p) = z0(x, t) +
∞∑

m=1

zm(x, t)pm, (8)

where

um(x, t) =
1
m!

∂mφ(x, t; p)
∂pm

|p=0, (9)

vm(x, t) =
1
m!

∂mϕ(x, t; p)
∂pm

|p=0, (10)

zm(x, t) =
1
m!

∂mψ(x, t; p)
∂pm

|p=0. (11)

According to [4], the suitable choice of the initial condition u0(x, t), v0(x, t) and z0(x, t), the
auxiliary linear parameter Lu, Lv and Lz, the non-zero auxiliary parameter ~ and the auxiliary
function H1(x, t), H2(x, t) and H3(x, t) will guarantee that

(1) The solution φ(x, t; p), ϕ(x, t; p) ψ(x, t; p) of the zero-order deformation equation (3)-(5)
exists for all p ∈ [0, 1].

(2) The deformation derivative
∂mφ(x, t; p)

∂pm
|p=0,

∂mϕ(x, t; p)
∂pm

|p=0 and
∂mψ(x, t; p)

∂pm
|p=0 exists

for m = 1, 2, . . . .
(3) The power series (6)-(8) converges at p = 1.

If p = 1

φ(x, t; 1) = u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t), (12)

ϕ(x, t; 1) = v(x, t) = v0(x, t) +
∞∑

m=1

vm(x, t), (13)

ψ(x, t; 1) = z(x, t) = z0(x, t) +
∞∑

m=1

zm(x, t), (14)

which must be one of the solutions of new coupled MKdV system (1). According to the definition
(9)-(11), the governing equations can be deduced from the (zero-order deformation) equations
(3)-(5). For further analysis, the vectors

~un(x, t) = {u0(x, t), u1(x, t), . . . , un(x, t)},
~vn(x, t) = {v0(x, t), v1(x, t), . . . , vn(x, t)},
~zn(x, t) = {z0(x, t), z1(x, t), . . . , zn(x, t)},
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are defined. Differentiating equations (3)-(5) m-times with respect to the parameter p and then
dividing by m! and setting p = 0, gives the linear equations [10]

Lu[um(x, t)− χmum−1(x, t)] = ~R1m(~um−1), (15)

Lv[vm(x, t)− χmvm−1(x, t)] = ~R2m(~vm−1), (16)

Lz[zm(x, t)− χmzm−1(x, t)] = ~R3m(~zm−1), (17)

with the initial conditions

um(x, 0) = 0,

vm(x, 0) = 0,

zm(x, 0) = 0,

where

R1m(um−1) =
1

(m− 1)!
× ∂m−1N1(φ(x, t; p))

∂pm−1
, (18)

R2m(vm−1) =
1

(m− 1)!
× ∂m−1N2(ϕ(x, t; p))

∂pm−1
, (19)

R3m(zm−1) =
1

(m− 1)!
× ∂m−1N3(ψ(x, t; p))

∂pm−1
, (20)

and we have

χm =

{
0, m ≤ 1,

1, m > 1.

Now, the solution of the m-order deformation equations (15)-(17) for m ≥ 1 becomes

um(x, t) = χmum−1(x, t) + ~
∫ t

0
H1(x, t)R1m(~um−1)dt, (21)

vm(x, t) = χmvm−1(x, t) + ~
∫ t

0
H2(x, t)R2m(~vm−1)dt, (22)

zm(x, t) = χmzm−1(x, t) + ~
∫ t

0
H3(x, t)R3m(~zm−1)dt. (23)

The detailed analysis of the convergence of the HAM is discussed by Liao in [11]. We note
that the HAM only utilities the initial and makes no use of the boundary conditions.

3. Numerical solutions

In this section, the HAM will be demonstrated on examples of new coupled MKdV. For our
numerical computation, let the expression

ψm(x, t) =
m−1∑

k=0

uk(x, t), (24)

denote the m-term HAM approximation to u(x, t). We compare the approximate analytical
solution is obtained using HAM for our new coupled MKdV with the exact solution. We define
Em(x, t) to be the absolute error between the exact solution and m-term approximate HAM
solution ψm(x, t) as follows

Em(x, t) = |u(x, t)− ψm(x, t)|. (25)
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Example 3.1. For the first example, we present the new coupled MKdV equations with analytical
solution to show the efficiency of HAM, which has been described in the section 2. We consider
the system (1) with initial conditions as follows [7, 9]

u(x, 0) = 1 +
1
2

tanhx,

v(x, 0) =
1
2
− 1

4
tanhx,

z(x, 0) = 2− tanhx.

It can be verified that the exact solutions of this example are

u(x, t) = 1 +
1
2

tanh
(

x− 11
2

t

)
,

v(x, t) =
1
2
− 1

4
tanh

(
x− 11

2
t

)
,

z(x, t) = 2− tanh
(

x− 11
2

t

)
.

We start with the following zeroth-components

u0(x, t) = 1 +
1
2

tanhx, (26)

v0(x, t) =
1
2
− 1

4
tanhx, (27)

z0(x, t) = 2− tanhx. (28)

According to section 2, we can define the operators N1, N2 and N3 as

N1[φ] = φt − 1
2
φxxx + 3φ2φx − 3

2
(ϕψ)xx − 3(φϕψ)x, (29)

N2[ϕ] = ϕt + ϕxxx + 3(ϕφx)x + 3ϕ2ψx − 6φϕφx − 3φ2ϕx, (30)

N3[ψ] = ψt + ψxxx + 3(ψφx)x + 3ψ2ϕx − 6φψφx − 3φ2ψx, (31)

where φ = φ(x, t; p), ϕ = ϕ(x, t; p) and ψ = ψ(x, t; p). Now, we can obtain the zeroth-
deformation equation (15)-(17) as

R1m(~um−1) = (um−1)t − 1
2
(um−1)xxx + 3

m−1∑

i=0

(
ui

m−1−i∑

k=0

uk(um−1−i−k)x

)
−

−3
2

(
m−1∑

i=0

vizm−1−i

)

xx

−
(

m−1∑

i=0

ui

m−1−i∑

k=0

(vkzm−1−i−k)

)

x

,

(32)

R2m(~vm−1) = (vm−1)t + (vm−1)xxx+3

(
m−1∑

i=0

vi(um−1−i)x

)

x

+

+3
m−1∑

i=0

(
vi

m−1−i∑

k=0

vk(zm−1−i−k)x

)
−6

m−1∑

i=0

(
ui

m−1−i∑

k=0

vk(um−1−i−k)x

)
−

−3
m−1∑

i=0

(
ui

m−1−i∑

k=0

uk(vm−1−i−k)x

)
,

(33)
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and

R3m(~zm−1) = (zm−1)t + (zm−1)xxx+3

(
m−1∑

i=0

zi(um−1−i)x

)

x

+

+3
m−1∑

i=0

(
zi

m−1−i∑

k=0

zk(vm−1−i−k)x

)
−6

m−1∑

i=0

(
ui

m−1−i∑

k=0

zk(um−1−i−k)x

)
−

−3
m−1∑

i=0

(
ui

m−1−i∑

k=0

uk(zm−1−i−k)x

)
.

(34)

We start with the initial conditions (26)-(28). By means of the (21)-(23), we can obtain directly
the other components of the HAM solution in the series form of (12)-(14). Thus, we have

u1(x, t) = ~t(−3(
1
2

sech2x(2− tanhx)(
1
2
− tanhx

4
)− 1

4
sech2x(2− tanhx)(1 +

tanhx

2
)−

−sech2x(
1
2
− tanhx

4
)(1 +

tanhx

2
)) +

3
2

sech2x(1 +
tanhx

2
)− 3

2
(
sech4x

2
+ . . .

v1(x, t) = ~t(−3 sech2x(
1
2
− tanhx

4
)2 − 3 sech2x(

1
2
− tanhx

4
)(1 +

tanhx

2
) +

3
4

sech2x×

×(1 +
tanhx

2
)2 + 4(−1

8
sech4x− sech2x(

1
2
− tanhx

4
) tanhx) +

1
4
(2 sech4x− 4 sech2x . . .

and

z1(x, t) = ~t(2 sech4x− 3
4

sech2x(2− tanhx)2 − 3 sech2x(2− tanhx)(1 +
tanhx

2
) + 3 sech2x×

×(1 +
tanhx

2
)2 − 4 sech2x tanh2 x + 3(−1

2
sech4x− sec h2x(2− tanhx) tanhx.

and so on. Thus u(x, t) and v(x, t) can be written as follows

u(x, t) =
∞∑

n=0

un(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + . . . ,

v(x, t) =
∞∑

n=0

vn(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . .

Table 1, 2 and 3 show the absolute error between solution obtained using HAM with five terms
and the exact solution for u(x, t), v(x, t) and z(x, t), respectively, at ~ = −0.72. The errors are
very small in these tables. The results show that the homotopy analysis method is very useful
to obtain explicit approximate analytical solutions. A very good approximation with the actual
solution of the equations were achieved by using five terms only. We have ascertained that the
overall errors can be made smaller by adding new terms of the HAM series (12)-(14).

Table 1: Absolute error E5 for variables x and t at ~ = −0.72 for u(x, t).
t/x -15 -10 10 15

0.1 0. 1.53949×10−12 1.98090×10−10 8.77076×10−15

0.2 9.54792×10−15 2.12719×10−10 3.17572×10−9 1.43996×10−13

0.3 3.65263×10−14 8.06111×10−10 2.15028×10−8 9.76219×10−13

0.4 5.76206×10−14 1.26782×10−10 9.99208×10−8 4.53626×10−12

0.5 6.43929×10−15 1.40508×10−10 3.81990×10−7 1.73420×10−11
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Table 2: Absolute error E5 for variables x and t at ~ = −0.72 for v(x, t).
t/x -15 -10 10 15

0.1 0. 1.67374×10−12 3.17747×10−10 1.44329×10−14

0.2 4.55191×10−15 1.00864×10−10 5.46088×10−10 2.47580×10−14

0.3 1.90840×10−14 4.39246×10−10 5.37478×10−9 2.43972×10−13

0.4 3.98570×10−14 8.78399×10−10 4.02239×10−8 1.82621×10−12

0.5 3.99680×10−14 8.80336×10−10 1.76823×10−7 8.02775×10−12

Table 3: Absolute error E5 for variables x and t at ~ = −0.72 for z(x, t).
t/x -15 -10 10 15

0.1 0. 5.33562×10−12 8.07505×10−10 3.66374×10−14

0.2 5.77816×10−15 1.38055×10−10 8.88212×10−9 4.03233×10−13

0.3 1.33227×10−14 2.99971×10−10 5.08123×10−8 2.30660×10−12

0.4 4.30767×10−14 9.36929×10−10 2.17691×10−7 9.88321×10−12

0.5 1.62537×10−13 3.58345×10−9 7.98407×10−7 3.62477×10−11

0.0 0.1 0.2 0.3 0.4 0.5
0

1.´10-14

2.´10-14

3.´10-14

4.´10-14

5.´10-14

t

E
5

Absolute error u for Ñ=-0.72 at x=-15

0.0 0.1 0.2 0.3 0.4 0.5
0

1.´10-14

2.´10-14

3.´10-14

4.´10-14

t

E
5

Absolute error v for Ñ=-0.72 at x=-15

Figure 1. The absolute error between HAM solution and the exact solution for ~ = −0.72 at x = −15.

0.0 0.1 0.2 0.3 0.4 0.5
0

5.´10-14

1.´10-13

1.5´10-13

t

E
5

Absolute error u for Ñ=-0.72 at x=-15

Figure 2. The absolute error between HAM solution and the exact solution for ~ = −0.72 at x = −15.

In figure 1 and 2, the absolute error between solution obtained using HAM with five terms and
the exact solution have been plotted for u(x, t), v(x, t) and z(x, t) for case of ~ = −0.72 at
x = −15. Similarly, we show this error in figure 3 and 4 at x = 15. In figure 5 and 6, we have
shown the ~-curve for ut(0, 0), vt(0, 0) and zt(0, 0). As we know, the auxiliary parameter ~ can
be employed to adjust the convergence region of the homotopy analysis solution [11]. According
to these ~-curve, it is easy to discover the valid region of ~ which corresponds to the line segment
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nearly parallel to the horizontal axis. From figures 5 and 6, it is clear that the HAM series is
convergent when −1.4 < ~ < −0.6.

0.0 0.1 0.2 0.3 0.4 0.5
0

2.´10-12

4.´10-12

6.´10-12

8.´10-12

1.´10-11

t

E
5

Absolute error u for Ñ=-0.72 at x=15

0.0 0.1 0.2 0.3 0.4 0.5
0

1.´10-12

2.´10-12

3.´10-12

4.´10-12

t

E
5

Absolute error u for Ñ=-0.72 at x=15

Figure 3. The absolute error between HAM solution and the exact solution for ~ = −0.72 at x = 15.

0.0 0.1 0.2 0.3 0.4 0.5
0

5.´10-12

1.´10-11

1.5´10-11

2.´10-11

t

E
5

Absolute error u for Ñ=-0.72 at x=15

Figure 4. The absolute error between HAM solution and the exact solution for ~ = −0.72 at x = 15.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0

5

10

15

20

Ñ

u t
H0

,0
L

Ñ-curve for utH0,0L

Figure 5. The ~-curve for ut(0, 0) given by the 5-order HAM approximation solution when H1(x, t) = 1.
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-12

-10

-8

-6

-4

-2

0

Ñ

v t
H0

,0
L

Ñ-curve for vtH0,0L

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-12

-10

-8

-6

-4

-2

0

Ñ

z t
H0

,0
L

Ñ-curve for ztH0,0L

Figure 6. The ~-curve for vt(0, 0) and zt(0, 0) given by the 5-order HAM approximation solution when

H2(x, t) = H3(x, t) = 1.

Example 3.2. Consider the coupled MKdV equation (2) with the initial conditions [8, 13]

u(x, 0) = k tanh(kx),

v(x, 0) =
1
2
(4k2 + λ)− 2k2 tanh2(kx).

It can be verified that the exact solutions of this system are

u(x, t) = k tanh
(

kx− k

2
(2k2 + 3λ)t

)
,

v(x, t) =
1
2
(4k2 + λ)− 2k2 tanh2

(
kx− k

2
(2k2 + 3λ)t

)
.

We start with the initial conditions

u0(x, t) = k tanh(kx), (35)

v0(x, t) =
1
2
(4k2 + λ)− 2k2 tanh2(kx). (36)

According to section 2, we can define the operators N1 and N2 as

N1[φ] = φt − 1
2
φxxx + 3φ2φx − 3

2
(ϕ)xx − 3(φϕ)x + 3λφx (37)

N2[ϕ] = ϕt + ϕxxx + 3ϕϕx + 3φxϕx − 3φ2ϕx − 3λϕx, (38)

where φ = φ(x, t; p) and ϕ = ϕ(x, t; p). Now, we can obtain the zeroth-order deformation
equation (15) and (16) that are

R1m(~um−1) = (um−1)t − 1
2
(um−1)xxx + 3

m−1∑

i=0

(
ui

m−1−i∑

k=0

uk(um−1−i−k)x

)
−

−3
2
(vm−1)xx − 3

(
m−1∑

i=0

(uivm−1−i)

)

x

+ 3λ(um−1)x,

(39)
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and

R2m(~vm−1) = (vm−1)t + (vm−1)xxx+3

(
m−1∑

i=0

vi(vm−1−i)x

)
+ 3

(
m−1∑

i=0

(ui)x(vm−1−i)x

)
−

−3
m−1∑

i=0

ui

(
m−1−i∑

k=0

uk(vm−1−i−k)x

)
− 3λ(vm−1)x.

(40)

We start with the initial conditions (35) and (36). By means of the (21) and (22), we can
easily obtain directly the other component of the HAM solution in the series form of (12) and
(13). Thus, we have

u1(x, t) = ~t[3λk2 sec h2(kx) + 3k4 sec h2(kx) tanh2(kx) + 3k2(2k2 sec h4(kx)− 4k2 sech2(kx)×

× tanh2(kx)− k

2
(−2k3 sech4(kx) + 4k3 sech2(kx) tanh2(kx))− 3(−4k2 sech2(kx)×

× tanh2(kx) + k2 sech2(kx)(
1
2
(λ + 4k2)− 2k2 tanh2(kx))))].

v1(x, t) = ~t[12λk3 sec h2(kx) tanh(kx)− 12k5 sec h4(kx) tanh(kx) + 12k5 sech2(kx) tanh3(kx)−

−12 sech2(kx) tanh(kx)(
1
2
(4k2 + λ)− 2k2 tanh2(kx))− 2k2(−16k3 sec h4(kx)×

× tanh(kx) + 8k3 sech2(kx) tanh3(kx))]

and so on. Thus u(x, t) and v(x, t) can be written as follows

u(x, t) =
∞∑

n=0

un(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + . . . ,

v(x, t) =
∞∑

n=0

vn(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . . .

Table 4 and 5 show the absolute error between solution obtained using HAM with four terms
and the exact solution for u(x, t) and v(x, t), respectively, at ~ = −1, k = 0.1 and λ = 0.1. The
errors are very small in these tables. The results show that the homotopy analysis method is
very useful to obtain explicit approximate analytical solutions. A very good approximation with
the actual solution of the equations was achieved by using four terms only. We have ascertained
that the overall errors can be made smaller by adding new terms of the HAM series (12) and
(13).

Table 4: Absolute error E4 for variables x and t at ~ = −1, for u(x, t).
x/t 0.1 0.2 0.3 0.4

-100 1.24447×10−19 1.13618×10−17 5.58676×10−18 1.01850×10−17

-40 6.46940×10−13 2.59019×10−12 5.83872×10−12 1.04084×10−11

-10 4.83626×10−8 1.93467×10−7 4.35339×10−7 7.74002×10−7

10 4.83541×10−8 1.93399×10−7 4.35109×10−7 7.73457×10−7

40 6.47442×10−13 2.59443×10−12 5.85271×10−12 1.04417×10−11

100 2.51949×10−18 6.81357×10−18 6.13444×10−19 7.00450×10−18
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Figure 7. The absolute error E4 for ~ = −1, k = 0.1, λ = 0.1 at x = −100.
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Figure 8. The absolute error E4 for ~ = −1, k = 0.1, λ = 0.1 at x = 0.
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Figure 9. The ~-curve for ut(0, 0) and vt(0.5, t) given by the 4th-order HAM approximation solution when

H1(x, t) = H2(x, t) = 1.
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Table 5: Absolute error E4 for variables x and t at ~ = −1, for v(x, t).
x/t 0.1 0.2 0.3 0.4

-100 9.89160×10−13 1.97793×10−12 2.96632×10−12 3.95434×10−12

-40 1.60774×10−7 3.21486×10−7 4.82137×10−7 6.42728×10−7

-10 3.83856×10−5 7.67786×10−5 1.15179×10−4 1.53586×10−4

10 3.83784×10−5 7.67495×10−5 1.15113×10−4 1.53470×10−4

40 1.60838×10−7 3.21742×10−7 4.82713×10−7 6.43752×10−7

100 9.89547×10−13 1.97951×10−12 2.96988×10−12 3.96067×10−12

In figures 7 and 8, we have displayed the absolute error between solution obtained using HAM
with four terms and the exact solution for ~ = −1, k = 0.1, λ = 0.5 at x = −100 and x = 0,
respectively. The ~-curves have been plotted in figure 9 for ut(0, 0) and vt(0.5, t). As we have
expressed, it is easy to check that the HAM solution is convergent to the exact solutions when
−1.4 < ~ < −0.6.

4. Conclusion

In this paper, we have illustrated how HAM can be used for the new coupled modification
of KdV system. The method was tested on two examples. The HAM solution contains the
auxiliary parameter ~ 6= 0 provides a method to adjust and control the convergence region of
the infinite series for large value of t. The obtained results show that the HAM is a very accurate
and effective technique for the solution of the new MKdV system.
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