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THE COMPLEMENTARY GROUP OF PROPER MOTIONS OF THE
MINKOWSKI METRIC

N.N. POPOV1

Abstract. It is shown that the Poincare group which is a semidirect product of the group of

translations and the Lorentz group, is not a single phisicaly important group of proper motions

of Minkowski metric. The complementary group of proper motions of the metric in a class of

noninertial reference system has been found.
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1. Introduction

The whole group of all proper transformations of Minkowski pseudo-Euclidean space R4
1,3,

which leaves the metric invariant, in other words the whole group of proper motions of pseudo-
Euclidean space, is a semidirect product T 4oSO(1, 3) of the four-dimensional group of transla-
tions T 4 and the proper pseudo-orthogonal group SO(1, 3). At present we identify the pseudo-
orthogonal group SO(1, 3) with the Lorentz group of proper linear pseudo-orthogonal transfor-
mations

dx0 = dx′0chψ + dx′ishψ, (1)

dxi = dx′0shψ + dx′ichψ,

where (x′0, x′1, x′2, x′3), (x0, x1, x2, x3) are pseudo-Euclidean coordinates of a point before and
after the transformation, i = 1, 2, 3.

In terms of special relativity theory the Lorentz transformation provides the transition from
one inertial reference system (x0, x1, x2, x3) to another one (x′0, x′1, x′2, x′3) which moves at
speed v along axis xi, and it retains the differential quadratic form dx02 − dx12 − dx22 − dx32

.

Hence the Lorentz transformation may be rewritten in the following form:

dx0 =
dx′0 +

v

c
dx′i

√
1−

(v

c

)2
, dxi =

dx′i +
v

c
dx′0

√
1−

(v

c

)2
, (2)

where chψ =
1√

1−
(v

c

)2
, c is a certain constant which special relativity theory interprets as

the light speed.
The semidirect product of the group of translations and the Lorentz group represents the

Poincare group. Hence the Poincare group consists of a linear group of proper motions of
Minkowski metric in the class of all inertial reference systems. One can extend the proper
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motion group of the Minkowski metric, if we consider not only linear transformations but also
nonlinear ones preserving the Minkowski metric.

Let us define SO(1, 3) as a general group of all proper pseudo-orthogonal transformations in
R4

1,3, linear and nonlinear ones, preserving the differential quadratic form dx02 − dx12 − dx22 −
− dx32

.

It would be wrong to say that the Lorentz group coincides with the group of all proper pseudo-
orthogonal transformations SO(1, 3), or to identify the Poincare group with the T 4 o SO(1, 3)
group. In fact, the Lorentz group is a subgroup of SO(1, 3). Moreover, the SO(1, 3) group
contains another phisicaly important proper motions group of Minkowski metric in a class of
noninertial frames of reference, which is surprising enough. Construction of this group provides
the subject of this report.

Taking into account the wide interest in the Minkowski spaces of large dimension in, for
instance, theories of strings, superstrings, supergravity etc., we consider it advisable to observe
the problem for Minkowski spaces RN+1

1,N with arbitrary dimension of N.

2. Construction of a complementary group of proper pseudo-orthogonal

transformations in R3
1,2

We will start with the simple case of three-dimensional pseudo-Euclidean space, in which in
addition to Lorentz group, there exists another group of proper motions of Minkowski metric.

Any proper rotation in a three-dimensional pseudo-Euclidean space R3
1,2, i.e. any proper

orthogonal or pseudo-orthogonal transformation which preserves the coordinates origin, can be
decomposed into three rotations in planes {x1x2}, {x0x1}, {x0x2}, and one rotation in the
space R3

1,2 = {x0x1x2} itself, which cannot be reduced to the previous ones. The first rotation
modifies the space coordinates only and corresponds to the space rotations. The second and
third rotations act in pseudo-Euclidean planes and correspond to the proper pseudo-orthogonal
rotations or, which is the same, the Lorentz transformations of the form (1) or (2). Now we will
observe in detail the extra rotation in the R3

1,2.

The desired transformation should leave invariant the differential quadratic form

dx02 − dx12 − dx22
, (3)

or the form equivalent to it, in the polar coordinate system

dx02 − dr2 − r2dϕ2, (4)

where x1 = r cosϕ, x2 = r sinϕ.

Let (x0, r, ϕ) be coordinates of a point s in the three-dimensional pseudo-Euclidean subspace
{x0x1x2}. We require that the transformations from the desired group G leave unchanged the
radial coordinate r of the point s. A subset in {x0x1x2} which consists of all point of Gs type,
forms an orbit of element s with respect to the group G and is denoted Gr(s). If s1 and s2 are
two points from {x0x1x2} which have the same parameter r, then Gr(s1) = Gr(s2), i.e. orbits
of two different points are only defined by the radial coordinate r of these points. Hence we
will use symbol Gr to denote an orbit. If r1 6= r2, then Gr1 ∩ Gr2 ⊂ ®, which means that the
orbits of two different points either coincide, or do not intersect. A Pseudo-Euclidean subspace
{x0x1x2} is a union of pairwise not intersecting orbits Gr : {x0x1x2} = ∪0<r<∞Gr.

Let fr be the homomorphism of a group G into group Gr effective in orbit Gr : fr(G) = Gr.

According to the definition of effectiveness of a group G in an orbit Gr, we have Gs = Grs,

when s ∈ Gr.
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Now we directly construct the group Gr. Let the differentials of coordinates x0, ϕ of a point
s(x0, r, ϕ) be subject to linear transformation aω : (dx0, dϕ) → (dx′0, dϕ′) of the form:

dx0 =
dx′0 +

r2ω

c
dϕ′

√
1− (

rω

c
)2

, (5)

dϕ =
dϕ′ +

ω

c
dx′0

√
1−

(rω

c

)2
,

where ω is the angular velocity of a circle of radius r in a plane {x1x2} relative to the origin of
coordinates, |ω| < c

r
.

It is easy to see that the transformations (5) leaves invariant the differential quadratic form
(4) and is the element of the group Gr. Obviously, the element a0 corresponds to unit I of the
group Gr. The element a−ω is identified as an element inverse to aω ∈ Gr, i.e. (aω)−1 = a−ω. If
aω1 , aω2 ∈ Gr, then their group product may be determined as

aω1 · aω2 = a ω1+ω2

1+( r
c )2ω1ω2

.

If |ω1|, |ω2| < c

r
, it immediately follows from the group multiplication that

| ω1 + ω2

1 +
(

r
c

)2
ω1ω2

| < c

r
.

The group Gr can formally be supplemented by adding two elements a− c
r

and a c
r
.

The replenished group will be stationary relative to the associated elements a− c
r

and a c
r
.

Indeed, for any aω, |ω| ≤ c

r
we have aω · a± c

r
= a± c

r
.

In terms of special relativity theory it means that the linear velocity of a circular motion
cannot exceed the light speed c and that the light speed is identical in all steadily rotating
noninertial reference systems.

If we introduce the variable y = rϕ, the transformations (5) may be rewritten in the following
form:

dx0 =
dx′0 + v

cdy′√
1− (v

c )2
, dy =

dy′ + v
cdx′0√

1− (v
c )2

, (6)

where v = rω.

If we compare the Lorentz transformations (2) with the transformations (6), it is not hard
to observe their formal structural similarity, written in different reference systems. However,
there is much difference between them. The Lorentz transformations describes the transition
between inertial reference systems which move uniformly and straight relative to each other, yet
the transformations (6) describes the transition between noninertial systems rotating uniformly
in circles with different angular velocities. This difference becomes clear when we go over from
the polar coordinate system to the pseudo-Euclidean one, a considerably nonlinear character of
the transformations emerges. Indeed, if we go over to the pseudo-Euclidean coordinate system
x0, x1, x2, then the transformations (6) assumes the form

dx0 =
1√

1− (v
c )2

dx′0 − ω

c

x′2√
1− (v

c )2
dx′1 +

ω

c

x′1√
1− (v

c )2
dx′2,
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dx1 = −v

c

sinϕ√
1− (v

c )2
dx′0 +

ω

v
Adx′1 +

ω

v
Bdx′2, (7)

dx2 =
v

c

cosϕ√
1− (v

c )2
dx′0 +

ω

v
Cdx′1 +

ω

v
Ddx′2,

where ϕ =
arccos x′1√

x′12+x′22
+ ω

c x′0

√
1− (

v
c

)2
, A = x′1 cosϕ + x′2 sin ϕ√

1−( v
c )

2
, B = x′2 cosϕ− x′1 sin ϕ√

1−( v
c )

2
,

C = x′1 sinϕ− x′2 cos ϕ√
1−( v

c )
2
, D = x′2 sinϕ + x′1 cos ϕ√

1−( v
c )

2
.

The whole group of all proper pseudo-orthogonal transformations SO(1, 2) in a space R3
1,2 is

thus generated by elements from the Lorentz group (2) and by transformations of form (7) from
the group Gr in the pseudo-Euclidean coordinate system.

3. The complementary group of proper pseudo-orthogonal transformations in

R2n+1
1,2n

In the previous paragraph we have reviewed a simple case of odd-dimensional Minkowski
space R2n+1

1,2n with n = 1, in which the construction of additional motion group was favoured
by a lucky choice of coordinate system. The analogous construction may also be done in the
general case.

Any element A of the maximum subgroup SO(2n), constituent of SO(1, 2n) group, according
to the known result in linear algebra [1] is represented as a block-diagonal matrix

A =




¤ 0 0 0 0

0
. . . 0 0 0

0 0 ¤ 0 0

0 0 0
. . . 0

0 0 0 0 ¤




, (8)

where the kthdiagonal block has the form
(

cosϕk sinϕk

− sinϕk cosϕk

)
.

On the basis of (8) we will introduce a biharmonic coordinate system [2] r, ϕ1, . . . , ϕn, θ1, . . . , θn−1,

which divides all Cartesian coordinates x1, . . . , x2n from Euclidean subspace R2n into pairs(
zk, yk

)
, where zk = x2k−1, yk = x2k, k = 1, . . . , n, the x0 coordinate remains unchanged.

Suppose that

z1 = r cosϕ1 sin θ1 . . . sin θn−2 sin θn−1,

y1 = r sinϕ1 sin θ1 . . . sin θn−2 sin θn−1,

.............................

zk = r cosϕk sin θ1 . . . sin θn−k cos θn−k+1, (9)

yk = r sinϕk sin θ1 . . . sin θn−k cos θn−k+1,

.............................

zn = r cosϕn cos θ1,

yn = r sinϕn cos θ1,

where k = 2, . . . , n.



N.N. POPOV: THE COMPLEMENTARY GROUP OF PROPER MOTIONS... 107

The differential quadratic form

dx02 − dx12 − . . .− dx2n2
= dx02 − dz12 − dy12 − . . .− dzn2 − dyn2

,

which remains invariant by the Lorentz group of transformations, taking the following form in
biharmonic coordinate system

dx02 − dr2 − r2
1dϕ2

1 − . . .− r2
ndϕ2

n−

−r2
(
dθ2

1 + sin2 θ1

(
dθ2

2 + sin2 θ2

(
. . . + sin2 θn−2dθ2

n−1

))
. . .

)
, (10)

where r1 = r sin θ1 . . . sin θn−1, . . . , rk = r sin θ1 . . . sin θn−k cos θn−k+1, k = 2, . . . , n, i.e. the
following condition is fulfilled

r2
1 + . . . + r2

n = r2. (11)

Let r1, . . . , rn be fixed, then the differential quadratic form (10) remains invariant relative to n

one-parameter subgroups of proper pseudo-orthogonal transformations, where the kth subgroup
consists of the following transformations

dx0 =
dx′0 + r2

kω
c dϕ′k√

1− (
rkω
c

)2
, dϕk =

dϕ′k + ω
c dx′0√

1− (
rkω
c

)2
. (12)

Obviously, the required invariability for parameters r1, . . . , rn by pseudo-orthogonal transfor-
mations (12) is equivalent to the requirement of constancy for θ1, . . . , θn−1, which provides the
invariance for the differential form

r2
(
dθ2

1 + sin2 θ1

(
. . . + sin2 θn−2dθ2

n−1

)
. . .

)
.

The invariance of the quadratic form dx02 − r2
1dϕ2

1 − . . . − r2
ndϕ2

n is due to the very type
of transformations (12). Hence the group of all proper pseudo-orthogonal transformations Gr,

which leaves the radial parameter r unchanged, is generated by all possible pseudo-orthogonal
transformations of form (12) from n subgroups Gr1 , . . . , Grn which correspond to fixed arbitrary
sets r1, . . . , rn, satisfying the condition (11).

The expansional group of proper pseudo-orthogonal transformations in R2n+1
1,2n is thus gene-

rated by the Lorentz group and group Gr.

4. The complementary group of the proper pseudo-orthogonal transformations

in R
2(n+1)
1,2n+1

In the case of even-dimensional Minkowski space, any element A of the maximum orthogonal
subgroup SO(2n + 1) from group SO(1, 2n + 1) may be represented in a block-diagonal form

A =




¤ 0 0 0
0 . . . 0 0
0 0 ¤ 0
0 0 0 1


 , (13)

where the kth diagonal block has the same form as in the relation (8).
Dividing the Cartesian coordinates x1, . . . , x2n, as in the previous case, into pairs (zk, yk),

where x2k−1 = zk, x2k = yk, k = 1, . . . , n, and assuming x2n+1 = zn+1, we will introduce the
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biharmonic coordinate system r, ϕ1, . . . , ϕn, θ1, . . . , θn so that

z1 = r cosϕ1 sin θ1 . . . sin θn,

y1 = r sinϕ1 sin θ1 . . . sin θn, (14)

....................

zk = r cosϕk sin θ1 . . . sin θn−k+1 cos θn−k+2,

yk = r sinϕk sin θ1 . . . sin θn−k+1 cos θn−k+2,

......................

zn = r cosϕn sin θ1 cos θ2,

yn = r sinϕn sin θ1 cos θ2,

zn+1 = r cos θ1.

The differential quadratic form

dx02 − dx12 − . . .− dx2n+12
= dx02 − dz12 − dy12 − . . .− dzn2 − dyn2 − dzn+12

is invariant relative to the Lorentz group of transformations and in the biharmonic coordinate
system (14) it assumes the form

dx02 − dr2 − r2
1dϕ2

1 − . . .− rndϕ2
n − r2

(
dθ2

1 + sin2 θ1

(
dθ2

2 + sin2 θ2

(
. . . + sin2 θn−1dθ2

n

))
. . .

)
,

where r1 = r sin θ1 . . . sin θn, . . . , rk = r sin θ1 sin θn−k+1 cos θn−k+2, k = 2, . . . , n, i.e. the follo-
wing condition is fulfilled

r2
1 + . . . + r2

n = r2 sin2 θ1. (15)

The form remains invariant relative to any pseudo-orthogonal transformations of the form (12)
and is identical with the form (10) with the only difference that parameters r1, . . . , rn satisfy
the condition (15) and not (12) as in the case of the odd-dimensional spaces.

These results be summed up as the following statement:

Theorem 4.1. The subgroup of proper pseudo-orthogonal transformations from SO(1, N) of
Minkowski space RN+1

1,N is generated by various transformations from the Lorentz group of the
form

dx0 =
dx′0 + v

cdx′i√
1− (v

c )2
, dxi =

dx′i + v
cdx′0√

1− (v
c )2

, i = 1, . . . , N,

relative to the pseudo-Euclidean coordinate system x0, . . . , xN , and by various transformations
relative to the biharmonic coordinate system x0, r, ϕ1, . . . , ϕ[N

2
], θ1, . . . , θ[N

2
] from group Gr of the

form

dx0 =
dx′0 + r2

kω
c dϕ′k√

1− ( rkω
c )2

, dϕk =
dϕ′k + ω

c dx′0√
1− ( rkω

c )2
, k = 1, . . . , [

N

2
],

with fixed r1, . . . , r[N
2

], r, satisfying the following condition r2
1 + . . . + r2

[N
2

]
= r2 if N is even and

r2
1 + . . . + r2

[N
2

]
= r2 sin2 θ1 if N is odd.
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5. The Maxwell equations invariance relative to the motion group Gr

We will show that the Maxwell equations

∂Fij

∂xk
+

∂Fki

∂xj
+

∂Fjk

∂xi
= 0, (16)

∂F ij

∂xj
= J i, i, j = 0, 1, ..., 3 (17)

appear invariant relative to the complementary transformation group Gr in the four-dimentional
Minkowski space R4

1,3, where

F ij = Fij for i, j = 1, 2, 3 (18)

F oj = −Foj for j = 1, 2, 3.

That is, we want to show that an arbitrary transformation of coordinates x0, x1, x2, x3 from the
group Gr of kind (7) in new coordinates x′0, x′1, x′2, x′3, leaves invariant the Maxwell equations

(16), (17) relative to transformed tensors Fi′j′ = ∂xi

∂xi′
∂xj

∂xj′ Fij , F i′j′ = ∂xi′

∂xi
∂xj′

∂xj F ij , and that the
condition (18) is fulfilled.

In fact, having in mind that the Minkowski metric remains invariant during the pseudo-
orthogonal transformations of kind (7), the correlation (18) remain unchanged for the trans-
formed tensors F i′j′ and Fi′j′ .

Equation (16) remains invariant after any continuously differentiable nondegenerate transfor-
mation of coordinates, which is following from the structure of this equation, which represents
the Bianchi identity. Further, counting that ∂

∂xj is transformed as a vector during any pseudo-

orthogonal coordinate transformations, of kind (7) in particular, we are having ∂
∂xj = ∂xm′

∂xj
∂

∂xm′ .

Then the left side of the Eq (17) can be represented in the following way:

∂F ij

∂xj
=

∂xm′

∂xj

∂

∂xm′
∂xi

∂xk′
∂xj

∂xl′ F
k′l′ =

∂xi

∂xk′
∂F k′l′

∂xl′

and the equation (17) assumes the following form in the new coordinates:

∂F k′l′

∂xl′ = Jk′ , where Jk′ =
∂xk′

∂xi
J i.

Thus, we consider the Eq (17) invariance to be proven during the pseudo-orthogonal thanfor-
mations of kind (7).

Using the previos constraction we come to a general conclusion that the Maxwell equations are
invariant relative to all proper motions of Minkowski metric. Strictly speaking, this conclusion
immediately follows from the proof of Maxwell equations invariance relative to the group Gr,

generalized to the whole group of metric proper motions.
Various combinations of Lorentz transformations, and transformations from the group Gr

lead to a rather wide set of possible motions of non-inertial reference systems, relative to which
Maxwell equations retain their form. Such motions are represented by the uniform cycloidal
motion, or a motion in a helical line along a coordinate axis, or better a uniform spiral motion
on a torus. Thus, every proper transformation from the group SO(1, 3) has a corresponding
continuous motion of a coordinate system, relative to which Maxwell equations retain their
form. For example, relativistic motion in the spiral line at constant speed V along X3 axis and



110 TWMS JOUR. PURE APPL. MATH., V.3, N.1, 2012

at constant speed v in plane {x1, x2} in a circle of radius r, is corresponding to the pseudo-
orthogonal coordinate transformation from the proper motions group of Minkowski metric




dx0

dr

dϕ

dx3


 =




ξη 0
vr

c
ξη

V

c
ξ

0 1 0 0
v

cr
η 0 η 0

V

c
ξη 0

V vr

c2
ξη ξ







dx′0

dr′

dϕ′

dx′3


 ,

where ξ = 1√√√√1−
(

V

c

)2
, η = 1√

1−
(v

c

)2
.

This explains why the Maxwell equations are invariant relative to this thanformation.

6. Discussion and conclusions

The existence of the extra group of proper motions of the Minkowski metric in the class of
noninertial reference frames gives us a new fundamental group of Minkowski space symmetry.
It occures a question if this fact can lead us, in the case of four-dimensional Minkowski space, to
a revision of the fundamentals of special relativity theory. Should we require invariance for all
physical theories in respect to the new symmetry group? The fact that the light speed and the
Maxwell electrodynamic equations, as it was shown above, result invariant relative to various
uniformly rotating non-inertial reference systems makes us feel that such requirement may be
justified. On the other hand, the fact that we can distinguish, among reference systems uniformly
rotating around a common center, a reference system in a state of complete rest relative to this
center, contradicts the very spirit of special relativity theory.

References

[1] Dubrovin, B.A., Novikov, S.P., Fomenko, A.T., (1979), Modern Geometry, Moscow, Nauka (in Russian).

[2] Barut, A., Raczka, R., (1977), Theory of Group Representations and Applications, PVN, Warsaw.

[3] Pauli, W., (1983), Theory of Relativity, Moscow, Nauka, Fizmatliteratura (in Russian).

Nicolay Popov was born in 1947 in Moscow, Rus-

sia. He graduated from Moscow Institute of Physics

and Technology in 1972, and received his Ph.D.

(Probability Theory) in 1977. He is a Senior re-

searcher of Complex Systems Department in Com-

puting Centre of Russian Academy of Sciences. He is

authored and co-authored 63 papers including three

monographs in ”Nauka” Publishers (in Russia). His

current research interests are in the areas of mathe-

matical physics, gravitation field theory and quantum

probability.


