
TWMS Jour. Pure Appl. Math., V.3, N.1, 2012, pp.75-91

BOUNDARY VALUE PROBLEMS FOR PSEUDOHYPERBOLIC
EQUATIONS WITH A VARIABLE TIME DIRECTION∗

S.V. POTAPOVA1

Abstract. In this paper we study the solvability of boundary value problems for pseudo-

hyperbolic equations with a discontinuous coefficient at the highest time derivative and forward-

backward time sgn xutt − uxxt + c(x, t)u = f(x, t). We establish the existence and uniqueness

theorems.
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1. Introduction

This paper is an investigation of the solvability of boundary value problems for the one-
dimensional linear pseudohyperbolic equation with variable time direction. The equations with
variable time direction arise in many applied problems. For example, such equation arises
in describing the electrons diffusion process (in a plate), in hydrodynamics (the study of fluid
motion with an alternating viscosity) and many other physical processes. The first work devoted
to parabolic equations with changing time direction was the work of M. Gevrey [1]. The most
intensive exploring of such kind equations began in 1960-70. S.A. Tersenov in several studies
investigated a contact parabolic equation with changing time direction

sgnxut = uxx, (x, t) ∈ (−1, 1)× (0, T ),

and a number of other model equations, which are reduced to a system of singular integral
equations with the help of potential theory [6]. In these papers necessary and sufficient con-
ditions for solvability in spaces H

p,p/2
x t , p > 2 were obtained. In this case, the orthogonality

conditions have been written explicitly and the number of necessary conditions of orthogonality
is finite. But in the multidimensional case, the number of orthogonality conditions (of integral
character) is infinite. First time this fact was noted by S.G. Pyatkov [5].

Further, boundary value problems for parabolic equations with changing time direction are
considered in works of S.V. Popov and his students [3, 4]. They have discharged necessary and
sufficient conditions for solvability in Holder spaces in the same way as S.A. Tersenov. The
fulfilment of these conditions will increase the smoothness of solutions if the smoothness of data
problem is increased. Moreover, for higher-order equations the smoothness of solution depends
on the sewing conditions, namely, one can establish dependence between the index of Holder
spaces and the coefficients of sewing conditions.
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In work of A.I. Kozhanov [2] by the regularization method and the method of continuation
parameter the existence of regular solutions of the first boundary value problem for Sobolev’s
type equations of one class - namely, for pseudohyperbolic equations with variable directions
and continuous coefficient is proved. In this paper, using the same method we prove the regular
solvability of the boundary value problem for pseudohyperbolic equations with variable time
direction and discontinuous coefficients. Note that the regularization method and the method
of continuation parameter gives a new approach in researching the boundary value problems for
evolution equations with variable direction of time.

2. Problem statement

Let Q be a rectangle (−1, 1) × (0, T ), 0 < T < +∞, c(x, t) and f(x, t), (x, t) ∈ Q— given
functions, α and β — given real numbers. Denote

Q+ = {(x, t) : (x, t) ∈ Q, x > 0}, Q− = {(x, t) : (x, t) ∈ Q, x < 0}, Q1 = Q+ ∪Q−.

Boundary value problem I: find a solution u(x, t), (x, t) ∈ Q1 of equation

sgnx utt − uxxt + c(x, t)u = f(x, t) (1)

satisfying the boundary conditions

u(−1, t) = u(1, t) = 0, 0 < t < T, (2)

u(x, 0) = ut(x, 0) = 0, 0 < x < 1, (3)

u(x, T ) = ut(x, T ) = 0, −1 < x < 0, (4)

and the sewing conditions
u(+0, t) = αu(−0, t), 0 < t < T, (5)

βux(+0, t) = ux(−0, t), 0 < t < T. (6)

Boundary value problem II: find a solution u(x, t), (x, t) ∈ Q1 of equation (1) satisfying
the conditions (2), (5), (6) and

u(x, T ) = ut(x, 0) = 0, 0 < x < 1, (7)

u(x, 0) = ut(x, T ) = 0, −1 < x < 0. (8)

Boundary value problem III: find a solution u(x, t), (x, t) ∈ Q1 of equation (1) satisfying
the conditions (2), (5), (6) and

u(x, 0) = u(x, T ) = 0, −1 < x < 1. (9)

Let c1(x, t), c2(x, t), f1(x, t) and f2(x, t) be given functions where (x, t) ∈ Q+. Further, we
consider tasks associated with boundary value problems I – III.

Boundary value problem I ′: find a solutions u(x, t) and v(x, t), (x, t) ∈ Q+ of equations

utt − uxxt + c1(x, t)u = f1(x, t) (10)

−vtt − vxxt + c2(x, t)v = f2(x, t) (11)

satisfying the boundary conditions

u(1, t) = 0, v(1, t) = 0, 0 < t < T, (12)

u(x, 0) = ut(x, 0) = 0, 0 < x < 1, (13)

v(x, T ) = vt(x, T ) = 0, 0 < x < 1, (14)
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and the sewing conditions

u(0, t) = αv(0, t), vx(0, t) = −βux(0, t), 0 < t < T. (15)

Boundary value problem II ′: find a solutions u(x, t) and v(x, t), (x, t) ∈ Q+ of equa-
tions (10) and (11) respectively, satisfying the boundary conditions (12), the sewing condi-
tions (15), conditions (7) and

v(x, 0) = vt(x, T ) = 0, 0 < x < 1. (16)

Boundary value problem III ′: find a solutions u(x, t) and v(x, t), (x, t) ∈ Q+ of equa-
tions (10) and (11) respectively, satisfying the boundary conditions (12), the sewing condi-
tions (15) and

u(x, 0) = u(x, T ) = 0, 0 < x < 1, (17)

v(x, 0) = v(x, T ) = 0, 0 < x < 1. (18)

Using solutions of boundary value problems I ′ – III ′, solutions of boundary value problems
I — III will be constructed.

3. Solvability of boundary value problem I ′

Let V +
0 be a linear space

V +
0 = {v(x, t) : v(x, t) ∈ L2(Q+), vtt(x, t) ∈ L2(Q+), vxxt(x, t) ∈ L2(Q+)}.

Let’s put the following norm in this space

‖v‖V +
0

=




∫

Q+

(v2 + v2
tt + v2

xxt) dx dt




1
2

,

it is obvious that the space V +
0 with such norm is a Banach space.

Theorem 3.1. Let the following conditions

αβ > 0; (19)

c1(x, t) = c11(x, t) + c12(x, t), c2(x, t) = c21(x, t) + c22(x, t),

c11(x, t) ∈ C1(Q+), c21(x, t) ∈ C1(Q+),

c12(x, t) ∈ C(Q+), c22(x, t) ∈ C(Q+),

c11(x, T ) ≥ 0, c21(x, 0) ≤ 0 at x ∈ [0, 1],

c11t(x, t) ≤ 0, c21t(x, t) ≤ 0 at (x, t) ∈ Q+,

T 2 max
Q+

c2
12(x, t) < 1, T 2 max

Q+
c2
22(x, t) < 1 (20)

hold. Then the boundary value problem I ′ can not have more than one solution
(u(x, t), v(x, t)) such that u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .
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Proof. Let (u(x, t), v(x, t)) be a solution of boundary value problem I ′ such that u(x, t) ∈ V +
0 ,

v(x, t) ∈ V +
0 . We multiply the equation (10) by a function ut(x, t), the equation (11) by γvt(x, t),

where γ = α
β , then we integrate the received equalities over the rectangle Q+ and add the results.

Using the representation of functions c1(x, t), c2(x, t) and integrating by parts, we obtain the
following equality ∫

Q+

[u2
xt + γv2

xt −
1
2
c11tu

2 − γ

2
c21tv

2] dx dt+

+
1
2

1∫

0

[u2
t (x, T ) + γv2

t (x, 0) + c11(x, T )u2(x, T )− γc21(x, 0)v2(x, 0)] dx+

+

T∫

0

uxt(0, t)ut(0, t) dt + γ

T∫

0

vxt(0, t)vt(0, t) dt =

=
∫

Q+

[f1ut + γf2vt − c12uut − γc22vvt] dx dt.

Note that, by (19), the number γ is positive. Further, the sewing conditions (15) give the
equality

T∫

0

uxt(0, t)ut(0, t) dt + γ

T∫

0

vxt(0, t)vt(0, t) dt = 0.

Taking into account condition (20), elementary inequalities
∫

Q+

u2 dx dt ≤ T 2

∫

Q+

u2
t dx dt,

∫

Q+

u2
t dx dt ≤ T 2

∫

Q+

u2
xt dx dt,

and Young’s inequality, we easily obtain the next estimate

∫

Q+

[u2
xt + v2

xt] dx dt +

1∫

0

[u2
t (x, T ) + v2

t (x, 0)] dx ≤ C0

∫

Q+

[f2
1 + f2

2 ] dx dt (21)

with constant C0, defined by numbers α, β, T and functions c12(x, t), c22(x, t). According to
this estimate and the conditions (12) — (14), functions u(x, t) and v(x, t) are identically equal
to zero at Q+ if the f1(x, t) ≡ f2(x, t) ≡ 0. Thus it means that the solution (u(x, t), v(x, t)) of
boundary value problem I ′ is unique.

¤

Now we investigate the solvability of boundary value problem I ′.

Theorem 3.2. Let the conditions (19) and (20) hold. Let, besides, the following conditions

ci(x, t) ∈ C1(Q+), ci(0, t) = 0 at t ∈ [0, T ]; fi(x, t) ∈ L2(Q+),

fix(x, t) ∈ L2(Q+), fi(0, t) = fi(1, t) = 0 at t ∈ [0, T ], i = 1, 2 (22)

hold. Then the boundary value problem I ′ has solution (u(x, t), v(x, t)) such that
u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .
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Proof. We use the regularization method and the method of parameter continuation.
Let ε0 be positive number which value will be specified below, ε is a number from the interval

(0, ε0). Now, we consider the boundary value problem: find a solutions u(x, t) and v(x, t),
(x, t) ∈ Q1 of equations

−εuxxtt + utt − uxxt + c1(x, t)u = f1(x, t), (10ε)

εvxxtt − vtt − vxxt + c2(x, t)v = f2(x, t) (11ε)

satisfying the conditions (12) — (15). Let’s establish its solvability.
Let V1 be a linear space

V1 = {v(x, t) : v(x, t) ∈ V +
0 , vxtt(x, t) ∈ L2(Q+), vxxtt(x, t) ∈ L2(Q+)},

with norm

‖v‖V1 = ‖v‖V +
0

+ ‖vxtt‖L2(Q+) + ‖vxxtt‖L2(Q+).

We show that the boundary value problem (10ε), (11ε), (12) — (15) is solvable in the space
V1 for any functions f1(x, t), f2(x, t) such that f1(x, t) ∈ L2(Q+), f2(x, t) ∈ L2(Q+) when ε is
fixed. We use the method of parameter continuation.

Let λ be a number from interval [0,1]. We consider the family of boundary value problems: find
a solutions u(x, t) and v(x, t), (x, t) ∈ Q+ of equations (10ε) and (11ε) respectively, satisfying
the conditions (12) — (14) and

u(0, t) = λαv(0, t), vx(0, t) = −λβux(0, t), 0 < t < T. (15λ)

Denote by Λ the set of integers λ in the interval [0,1] for which the boundary value problem (10ε),
(11ε), (12) — (14), (15λ) has solution from V1 when ε is fixed. If it turns out that the set Λ is
not empty, open and closed, then it will coincide with the whole interval [0,1] (see [7]).

Boundary value problem (10ε), (11ε), (12) — (14), (150) is solvable in space V1 (see [8]). It
follows that the number 0 belongs to Λ and thus the set Λ is not empty.

To proof the the openness and closure of the set Λ it is enough to show for fixed ε that there
is a uniform, with respect to λ, a priori estimate

‖u‖V1 + ‖v‖V1 ≤ N(‖f1‖L2(Q+) + ‖f2‖L2(Q+)) (23)

for all solutions u(x, t), v(x, t) of boundary value problem (10ε), (11ε), (12) — (14), (15λ) such
that u(x, t) ∈ V1, v(x, t) ∈ V1.

Let’s show that the required estimate actually takes place.
We multiply the equation (10ε) by a function ut(x, t), equation (11ε) by γvt(x, t), where

γ = α
β . Let’s integrate the received equalities over the rectangle and add the results. Repeating

the calculations by which we obtained the estimate (21), we find that for solutions u(x, t), v(x, t)
of boundary value problem (10ε), (11ε), (12) — (14), (15λ) the inequality

∫

Q

(u2
t + v2

t + u2
xt + v2

xt) dx dt ≤ N1





ε2

∫

Q+

[u2
xxtt + v2

xxtt] dx dt +
∫

Q+

[f2
1 + f2

2 ] dx dt





, (24)

is carried out, where the number N1 is defined by numbers α, β, T and functions c12(x, t),
c22(x, t).

Further, we multiply the equation (10ε) by a function −uxxtt, equation (11ε) — γvxxtt, γ = α
β ,

and integrate the received equalities over the rectangle Q+ and add the results. Integrating by
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parts and using the conditions (12)–(14), (15λ) and c1(0, t) = c2(0, t) = 0 we obtain the following
equality

∫

Q+

[εu2
xxtt + γεv2

xxtt + u2
xtt + γv2

xtt] dx dt +
1
2

1∫

0

u2
xxt(x, T ) dx +

γ

2

1∫

0

v2
xxt(x, 0) dx =

= −
∫

Q+

f1uxxtt dx dt + γ

∫

Q+

f2vxxtt dx dt−
∫

Q+

c1uxuxtt dx dt−
∫

Q+

c1xuuxtt dx dt+

+γ

∫

Q+

c2vxvxtt dx dt + γ

∫

Q+

c2xvvxtt dx dt. (25)

We estimate the first two terms on the right side of (25) with the help of the Young’s inequality
∣∣∣∣∣∣∣
−

∫

Q+

f1uxxtt dx dt + γ

∫

Q+

f2vxxtt dx dt

∣∣∣∣∣∣∣
≤ ε

2

∫

Q+

u2
xxtt dx dt +

γε

2

∫

Q+

v2
xxtt dx dt+

+
1
2ε

∫

Q+

f2
1 dx dt +

γ

2ε

∫

Q+

f2
2 dx dt. (26)

We estimate the remaining terms on the right side of (25) again using the Young’s inequality,
then the received integrals – with the help of the elementary integral inequalities given above,
and the inequality (24). We obtain the following estimate

∣∣∣∣∣∣∣
−

∫

Q+

c1uxuxtt dx dt−
∫

Q+

c1xuuxtt dx dt + γ

∫

Q+

c2vxvxtt dx dt+

+γ

∫

Q+

c2xvvxtt dx dt

∣∣∣∣∣∣∣
≤ 1

2

∫

Q+

u2
xtt dx dt +

γ

2

∫

Q+

v2
xtt dx dt+

+N2





ε2

∫

Q+

[u2
xxtt + v2

xxtt] dx dt +
∫

Q+

[f2
1 + f2

2 ] dx dt





, (27)

where constant N2 is defined by numbers α, β, T and functions c1(x, t), c2(x, t).
Let the number ε0 be such that the inequality 2N2ε < 1 holds for ε < ε0. Then a consequence

of equality (25) and inequalities (26) and (27) will be an a priory estimate of solutions of the
boundary value problem (10ε), (11ε), (12) — (14), (15λ):

ε

∫

Q+

[u2
xxtt + v2

xxtt] dx dt +
∫

Q+

[u2
xtt + v2

xtt] dx dt ≤ N3

∫

Q+

[f2
1 + f2

2 ] dx dt, (28)

where constant N3 is defined by numbers α, β, T , ε and functions c1(x, t), c2(x, t).
According to the estimate (28) and the inequality (24) the required estimate (23) is obviously

true.
Let’s show that the given estimate is followed by the openness and closure of set Λ.
Define the functions w(x, t) and z(x, t):

w(x, t) = u(x, t)− λα(1− x)v(0, t), z(x, t) = v(x, t) + λβ(x− 1)ux(0, t).
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The functions u(x, t) and v(x, t) are uniquely computed through the functions w(x, t) and z(x, t):

u(x, t) = w(x, t) +
λ2αβ(1− x)

1 + λ2αβ
wx(0, t) +

λα(1− x)
1 + λ2αβ

z(0, t),

v(x, t) = z(x, t)− λβ(x− 1)
1 + λ2αβ

wx(0, t) +
λ2αβ(x− 1)

1 + λ2αβ
z(0, t);

besides, it is obvious that next equalities

w(0, t) = 0, zx(0, t) = 0, t ∈ (0, T ) (29)

are carried out. Further, the equations (10ε) and (11ε) will be transformed to the following
equations for functions w(x, t) and z(x, t):

−εwxxtt + wtt − wxxt + c1(x, t)w = f1(x, t)− λ2αβ(1− x)
1 + λ2αβ

wxtt(0, t)−

−λα(1− x)
1 + λ2αβ

ztt(0, t)− λ2αβ(1− x)c1(x, t)
1 + λ2αβ

wx(0, t)− λα(1− x)c1(x, t)
1 + λ2αβ

z(0, t), (10′ε)

εzxxtt − ztt − zxxt + c2(x, t)z = f2(x, t) +
λβ(x− 1)
1 + λ2αβ

wxtt(0, t)−

−λ2αβ(x− 1)
1 + λ2αβ

ztt(0, t) +
λβ(x− 1)c2(x, t)

1 + λ2αβ
wx(0, t)− λ2αβ(x− 1)c2(x, t)

1 + λ2αβ
z(0, t). (11′ε)

Equations (10′ε), (11′ε) together with conditions (29), (12)–(14) give a boundary value problem
for functions w(x, t) and z(x, t), which is equivalent to a problem (10ε), (11ε), (12)- (14), (15λ)
because of one-to-one correspondence between functions u(x, t), v(x, t) and w(x, t), z(x, t). For
solutions w(x, t), z(x, t) of this problem the estimate (23) will remain. According to this estimate
and continuity with respect to parameter λ of the family problems (10′ε), (11′ε), (12)– (14), (29)
the openness and closure of set Λ follows (see [7]). It is worthy of note that at first we establish
the openness and closure of set Λ for family of problems (10′ε), (11′ε), (12)–(14), (29) and then
the openness and closure of set Λ for problems (10ε), (11ε), (12)–(14), (15λ)) follows by itself.

So, at fixed ε from the interval (0, ε0), the set Λ isn’t empty, open and closed, and, thereby,
coincides with whole interval [0,1]. Hence, a boundary value problem (10ε), (11ε), (12)–(15) at
fixed ε is solvable in space V1 for any functions f1(x, t) and f2(x, t) such that f1(x, t) ∈ L2(Q+),
f2(x, t) ∈ L2(Q+). We will show that for the family of solutions {uε(x, t), vε(x, t)} of this problem
an a priory estimate takes place. This estimate is both uniform with respect to parameter ε and
with its help it will be possible to organize the passage to the limit.

First of all we will notice that for the family {uε(x, t), vε(x, t)} inequality (24) takes place.
Further, for the first two terms on the right side of equality (25) we will execute integration by
parts with respect to variable x.

Applying an Young’s inequality, using condition (22) and inequality (27), we receive a follow-
ing inequality

ε

∫

Q+

[u2
εxxtt + v2

εxxtt] dx dt +
∫

Q+

[u2
εxtt + v2

εxtt] dx dt ≤

≤ N4





ε2

∫

Q+

[u2
εxxtt + v2

εxxtt] dx dt +
∫

Q+

[f2
1 + f2

1x + f2
2 + f2

2x] dx dt





, (30)



82 TWMS JOUR. PURE APPL. MATH., V.3, N.1, 2012

where number N4 is defined by numbers α, β, T and functions c1(x, t), c2(x, t). Reducing
number ε0 so, that inequalities 2N2ε < 1, 2N4ε < 1 hold together for ε < ε0, and according to
inequalities (24) and (30), we will receive an a priory estimate

ε

∫

Q+

[u2
εxxtt + v2

εxxtt] dx dt +
∫

Q+

[u2
εxtt + v2

εxtt] dx dt + ‖uε‖2
V +
0

+ ‖vε‖2
V +
0
≤

≤ N0

(
‖f1‖2

L2(Q+) + ‖f2‖2
L2(Q+) + ‖f1x‖2

L2(Q+) + ‖f2x‖2
L2(Q+)

)
, (31)

where the constant N0 is defined by numbers α, β, T and functions c1(x, t), c2(x, t).
According to the estimate (31) and properties of reflexivity of the space L2 it follows that

there exist such sequence {εn} and functions u(x, t), v(x, t) that εn → 0, uεn(x, t) → u(x, t),
vεn(x, t) → v(x, t) weakly in space W 2

2 (Q+), uεnxxt(x, t) → uxxt(x, t), vεnxxt(x, t) → vxxt(x, t),
εnuεnxxtt(x, t) → 0, εnvεnxxtt(x, t) → 0 weakly in space L2(Q+), uεn(0, t) → u(0, t), vεn(0, t) →
v(0, t) weakly in space W 2

2 ([0, T ]), uεnx(0, t) → ux(0, t), vεnx(0, t) → vx(0, t) weakly in space
W 1

2 ([0, T ]) when n → ∞. It is obvious that limiting functions u(x, t) and v(x, t) will belong to
space V +

0 , equations (10) and (11), boundary conditions (12)–(15) will be carried out for them.
In other words, functions u(x, t) and v(x, t) will give the solution of a boundary value problem
I ′ from a required class. ¤

4. Solvability of boundary value problem II ′

Let us first discuss the uniqueness of solutions.

Theorem 4.1. Let the following conditions

αβ > 0, (32)

c1(x, t) ∈ C1(Q+), c2(x, t) ∈ C1(Q+), c1(x, t) ≤ 0, c2(x, t) ≥ 0,

T max
Q+

|c1x(x, t)| < 1, T max
Q+

|c2x(x, t)| < 1, (33)

c1(0, t) + c2(0, t) = 0 at t ∈ [0, T ] (34)

hold. Then the boundary value problem II ′ cannot have more than one solution
{u(x, t), v(x, t)} such that u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .

Proof. Let f1(x, t) ≡ 0, f2(x, t) ≡ 0, and let {u(x, t), v(x, t)} be solutions of the boundary value
problem II ′ with the functions f1(x, t), f2(x, t).

We multiply the equation (10) by function uxx(x, t), equation (11) by γvxx(x, t), γ = α
β and

integrate the received equalities over the rectangle Q+ then sum up the results. Integrating
by parts and using the conditions (7), (12), (16), (15) and also (32), (33), we obtain the next
inequality

∫

Q+

[u2
xt + v2

xt] dx dt +

1∫

0

[u2
xx(x, 0) + v2

xx(x, T )] dx ≤ 0.

This inequality gives u(x, t) ≡ 0, v(x, t) ≡ 0 when (x, t) ∈ Q+.
¤

Theorem 4.2. Let the following conditions

αβ < 0, (35)

c1(x, t) = c11(x, t) + c12(x, t), c2(x, t) = c21(x, t) + c22(x, t),

cij(x, t) ∈ C(Q+), i, j = 1, 2, c11(x, t) ≤ 0, c21(x, t) ≥ 0,
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T 2 max
Q+

|c12(x, t)| < 1, T 2 max
Q+

|c22(x, t)| < 1 (36)

hold. Then the boundary value problem II ′ can not have more than one solution
{u(x, t), v(x, t)} such that u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .

Proof. We multiply the equation (10) by a function −u(x, t), equation (11) — γv(x, t), γ = −α
β

and integrate the received equalities over the rectangle Q+ than sum up the results. Let
f1(x, t) ≡ 0, f2(x, t) ≡ 0 then integrating by parts and using the conditions (7), (12), (16), (15)
and also (35), (36) we obtain the next inequality

∫

Q+

[u2
t + v2

t ] dx dt +

1∫

0

[u2
x(x, 0) + v2

x(x, T )] dx ≤ 0.

From this inequality the uniqueness is carried out.
¤

Let’s consider the solvability of boundary value problem II ′.

Theorem 4.3. Let the following conditions (32) and (33) hold, and the following conditions

ci(0, t) = 0 at t ∈ [0, T ] i = 1, 2; (37)

fi(x, t) ∈ L2(Q+), fix(x, t) ∈ L2(Q+), i = 1, 2;

fi(0, t) = fi(1, t) = 0 at t ∈ [0, T ], i = 1, 2 (38)

also hold. Then the boundary value problem II ′ has solution (u(x, t), v(x, t)) such that
u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .

Proof. Let’s use the regularization method and the method of parameter continuation again.
Let ε be a positive number. Now, we consider the boundary value problem: find a solutions

u(x, t) and v(x, t), (x, t) ∈ Q+ of equations (10ε) and (11ε) respectively, satisfying the conditions
(7), (12), (15), (16). Let ε be fixed. Then let’s show that the boundary value problem (10ε),
(11ε), (7), (12), (15), (16) is solvable in space V1 for any functions f1(x, t), f2(x, t) such that
f1(x, t) ∈ L2(Q+), f2(x, t) ∈ L2(Q+). We use the method of parameter continuation again.

Let λ be a number from the interval [0, 1]. Let’s investigate the family of boundary value
problems: find a solutions u(x, t) and v(x, t), (x, t) ∈ Q+ of equations (10ε) and (11ε) respec-
tively, satisfying conditions (7), (12), (15λ) and (16). Note that, the boundary value problem
(10ε), (11ε), (7), (12), (150), (16) has a solution in V1 for any functions f1(x, t), f2(x, t) such
that f1(x, t) ∈ L2(Q+) and f2(x, t) ∈ L2(Q+) when ε is fixed. Therefore, to establish the solv-
ability in space V1 of all boundary value problems (7), (12), (15λ), (16) it is enough to prove the
estimate (23).

We multiply the equation (10ε) by a function uxx(x, t), equation (11ε) — −γvxx(x, t) where
γ = α

β and integrate the received equalities over the rectangle Q+ and sum up the results.
Integrating by parts, using conditions (7), (12), (15λ), (16), (32) — (34) and Young’s inequality,
we obtain the following inequality

ε

∫

Q+

[u2
xxt + v2

xxt] dx dt +
∫

Q+

[u2
xt + v2

xt] dx dt +

1∫

0

[u2
xx(x, 0) + v2

xx(x, T )] dx ≤

≤ δ1

∫

Q+

[u2
xx + v2

xx] dx dt + C(δ1)
∫

Q+

[f2
1 + f2

2 ] dx dt, (39)
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where δ1 is an arbitrary positive number, and the number C(δ1) is defined by functions c1(x, t),
c2(x, t) and number T .

Further, we multiply equation (10ε) by a function (−uxxtt), equation (11ε) — by a function
γvxxtt, γ = α

β and integrate the received equalities over the rectangle Q+ and sum up the results.
Integrating by parts and using the conditions (7), (12), (15λ), (16), (32) — (34), elementary
integral inequalities, the Young’s inequality and the estimate (39), we obtain the following
inequality

∫

Q+

[u2
xxtt + v2

xxtt + u2
xtt + v2

xtt] dx dt ≤ δ2

∫

Q+

[u2
xx + v2

xx] dx dt + K(δ2)
∫

Q+

[f2
1 + f2

2 ] dx dt, (40)

where δ2 is an arbitrary positive number, and the number K(δ2) is defined by functions c1(x, t),
c2(x, t), and numbers T , ε.

From inequalities (39), (40) with the help of elementary integral inequalities and choosing
number δ2 as a small it is not difficult to deduce the desired estimate (23).

So, for the solutions of boundary value problems (10ε), (11ε), (7), (12), (15λ), (16) there is
a uniform with respect to λ estimate (23). According to this estimate and the solvability in
space V1 of boundary value problem (10ε), (11ε), (12), (150), (16), the possibility of applying
the theorem about the method of parameter continuation [7] follows (for more details see the
proof of theorem 2).

Let {u(x, t), v(x, t)} be a solution of boundary value problem (10ε), (11ε), (7), (12), (15), (16).
Now, we multiply the equation (10ε) by a function uxx(x, t) and the equation (11ε) by

(−γvxx(x, t)). Integrating by parts and using conditions (7), (12), (15), (16), (32) — (34),
(37), (38), applying the Young’s inequality we received the next estimate

ε

∫

Q+

[u2
xxt + v2

xxt] dx dt +
∫

Q+

[u2
xt + v2

xt] dx dt ≤ M1

∫

Q+

[f2
1x + f2

2x] dx dt, (41)

where the number M1 is defined by functions c1(x, t) and c2(x, t), and constant T .
Further, we multiply equation (10ε) by a function −uxxtt, equation (11ε) by γvxxtt, where

γ = α
β and integrate the received equalities over the rectangle Q+ and sum up the results.

Integrating by parts and using the conditions (7), (12), (15λ), (16), (37), (38), the Young’s
inequality and the estimate (41) we obtain a uniform with respect to ε estimate

ε

∫

Q+

[u2
xxtt + v2

xxtt] dx dt +
∫

Q+

[u2
xtt + v2

xtt] dx dt ≤ M2

∫

Q+

[f2
1x + f2

2x] dx dt, (42)

where the constant M2 is defined by functions c1(x, t), c2(x, t), and number T .
According to estimates (41), (42) and equations (10ε), (11ε), the third uniform, with respect

to ε, estimate ∫

Q+

[u2
xxt + v2

xxt] dx dt ≤ M3

∫

Q+

[f2
1 + f2

2 + f2
1x + f2

2x] dx dt, (43)

holds, where constant M3 is defined by functions c1(x, t), c2(x, t), and number T .
To organize the passage to the limit it is enough to have estimates (41) — (43) (see the

proof of theorem 2), limiting functions u(x, t) and v(x, t) will give a solution of boundary value
problem II ′.

¤
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Let W+
0 , W+

1 be a linear spaces

W+
0 = {w(x, t) : wxxtt ∈ L2(Q+), wxxxt(x, t) ∈ L2(Q+)},

W1 = {w(x, t) : w(x, t) ∈ W+
0 , wxxxxtt(x, t) ∈ L2(Q+).}

Let these spaces be equipped with the norm

‖w‖W+
0

= ‖wxxtt‖L2(Q+) + ‖wxxxt‖L2(Q+),

‖w‖W1 = ‖w‖W+
0

+ ‖wxxxxtt‖L2(Q+).

Theorem 4.4. Let the conditions (35) and

c1(x, t) ≤ 0, c2(x, t) ≥ 0, c1t(x, 0) ≥ 0, c2t(x, T ) ≥ 0, c1tt(x, t) ≥ 0,

c2tt(x, t) ≤ 0, T 4 max
Q

c2
1x(x, t) < 1, T 4 max

Q
c2
2x(x, t) < 1; (44)

ci(0, t) = cix(0, t) = 0, fi(0, t) = fix(0, t) = fi(1, t) = 0, at t ∈ [0, T ]; (45)

fi(x, t) ∈ L2(Q+), fixx(x, t) ∈ L2(Q+), i = 1, 2 (46)

hold. Then the boundary value problem II’ has a solution (u(x, t), v(x, t)) such that u(x, t) ∈ W+
0 ,

v(x, t) ∈ W+
0 .

Proof. We use the regularization method and the method of parameter continuation again.
Let ε0 be a positive number which value will be specified below, ε is a number from the interval

(0, ε0). We consider the boundary value problem: find a solutions u(x, t), v(x, t), (x, t) ∈ Q+ of
equations

εuxxxxtt + utt − uxxt + c1u = f1, (10′′ε)

−εvxxxxtt − vtt − vxxt + c2v = f2, (11′′ε)

satisfying conditions (7), (12), (15), (16) and

uxx(1, t) = vxx(1, t) = 0, 0 < t < T, (47)

uxx(0, t) = −αvxx(0, t), vxxx(0, t) = βuxxx(0, t). (48)

Let’s establish its solvability.
We show that the boundary value problem (10′′ε), (11′′ε), (7), (11), (14), (15), (47), (48)

is solvable in the space W1 for any functions f1(x, t), f2(x, t) such that f1(x, t) ∈ L2(Q+),
f2(x, t) ∈ L2(Q+) when ε is fixed.

Let λ be a positive number from [0, 1]. We consider the family of boundary value problems:
find a solutions u(x, t), v(x, t), (x, t) ∈ Q+ of equations (10′′ε), (11′′ε) respectively, satisfying
conditions (7), (12), (16), (47), (15λ) and

uxx(0, t) = −λαvxx(0, t), vxxx(0, t) = λβuxxx(0, t), 0 < t < T. (48λ)

The boundary value problem (10′′ε), (11′′ε), (7), (12), (16), (47), (150), (480) has solution
from W1, when functions f1(x, t), f2(x, t) belong to L2(Q+) and ε is fixed. Let’s show there is
a uniform with respect to λ estimate

‖u‖W1 + ‖v‖W1 ≤ N(‖f1‖L2(Q+) + ‖f2‖L2(Q+)). (49)

We multiply the equation (10′′ε) by a function ut(x, t), equation (11′′ε) by −γvt(x, t), where
γ = −α

β . Let’s integrate the received equalities over the rectangle Q+ and sum up the results.
Repeating the calculations by which we obtained the estimate (21), we find out that for solutions



86 TWMS JOUR. PURE APPL. MATH., V.3, N.1, 2012

u(x, t), v(x, t) of boundary value problem (10′′ε), (11′′ε), (7), (12), (16), (47), (15λ), (48λ) the
inequality

∫

Q+

(u2
t + v2

t ) dx dt +

1∫

0

(
u2

x(x, 0) + v2
x(x, T )

)
dx ≤

≤ N1





ε2

∫

Q+

[u2
xxxxtt + v2

xxxxtt] dx dt +
∫

Q+

[f2
1 + f2

2 ] dx dt





, (50)

is carried out, where the number N1 is defined by numbers α, β, T .
Further, we multiply equation (10′′ε) by a function uxxxxtt, equation (11′′ε) by −γvxxxxtt, where

γ = −α
β .

Let the ε0 be such that the inequality 2N2ε < 1 is carried out when ε < ε0. The number N2

is defined by numbers α, β, T and functions c1(x, t), c2(x, t).
We integrate the received equalities over the rectangle Q+ and sum up the results. Integrating

by parts and using the conditions (7), (12),(16), (47), (15λ), (48λ), (44) we obtain the following
inequality

ε

∫

Q+

(
u2

xxxxtt + v2
xxxxtt

)
dx dt +

∫

Q+

(
u2

xxtt + v2
xxtt

)
dx dt+

+

1∫

0

[
u2

xxxt(x, T ) + v2
xxxt(x, 0)

]
dx dt ≤ N3

∫

Q+

(
f2
1 + f2

2

)
dx dt, (51)

where the number N3 is defined by functions c1(x, t), c2(x, t) and numbers α, β, T , ε.
According to inequalities (50), (51) and using an elementary inequalities it is easy to deduce

the required estimate (49).
So, for a solution of the boundary value problem (10′′ε), (11′′ε), (7), (12), (16), (47), (15λ),

(47λ) there is a uniform with respect to λ estimate (49). From this estimate and solvability
in the space W1 of boundary value problem (10′′ε), (11′′ε), (7), (12), (16), (47), (150), (480) the
possibility of applying the theorem about the method of parameter continuation [7] follows (see
the proof of theorem 2).

Let {u(x, t), v(x, t)} be solution of boundary value problem (10′′), (11′′ε), (7), (12), (15), (16),
(47), (48).

We multiply the equation (10′′ε) by a function −uxxxxtt(x, t), equation (11′′ε) by γvxxxxtt, where
γ = −α

β . Integrating by parts and using the conditions (7), (12), (15), (16), (47), (48), (35),
(44)—(46), applying the Young’s inequality and using the estimate (50) we received the second
uniform, with respect to ε, estimate

M(ε)
∫

Q+

[u2
xxxxtt + v2

xxxxtt] dx dt+

+
∫

Q+

[u2
xxtt + v2

xxtt] dx dt ≤ M1

∫

Q+

[f2
1xx + f2

2xx] dx dt, (52)

where the number M(ε) is infinitesimal when ε → 0, and the number M1 is defined by functions
c1(x, t), c2(x, t) and constant T .
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According to estimates (50), (52) and equations (10′′ε), (11′′ε) the third uniform, with respect
to ε, estimate ∫

Q+

[u2
t + v2

t ] dx dt ≤ M3

∫

Q+

[f2
1 + f2

2 + f2
1xx + f2

2xx] dx dt (53)

follows, where the constant M3 is defined by functions c1(x, t), c2(x, t), and number T .
To organize the passage to the limit it is enough to have estimates (50), (52), (53) (see the

proof of theorem 2); the limiting functions u(x, t), v(x, t) will give the solution of boundary value
problem II ′ from desired class. ¤

5. Solvability of boundary value problem III ′

Theorem 5.1. Let conditions (35) and

c1(x, t) ∈ C1(Q+), c2(x, t) ∈ C1(Q+), c1(x, t) ≤ 0, c2(x, t) ≥ 0 (54)

hold. Then the boundary value problem III ′ cannot have more than one solution
{u(x, t), v(x, t)} such that u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .

Proof. Let f1(x, t) ≡ 0, f2(x, t) ≡ 0, and let the {u(x, t), v(x, t)} be a solution of boundary value
problem III ′ with such functions f1(x, t), f2(x, t).

We multiply the equation (10) by a function −u(x, t), equation (11) by γv(x, t), γ = −α
β >

0, then we integrate the received equalities over the rectangle Q+ and sum up the results.
Integrating by parts and using the conditions (12), (15), (17), (18) and also (35), (54) we obtain
the following inequality ∫

Q+

[u2
t + v2

t ] dx dt ≤ 0.

This inequality gives u(x, t) ≡ 0, v(x, t) ≡ 0 when (x, t) ∈ Q+.
¤

Let’s investigate the solvability of boundary value problem III ′. Let W2 be linear space

W2 = {w(x, t) : w(x, t) ∈ V +
0 , wxxxxtt(x, t) ∈ L2(Q+)}.

Let these space be equipped with the norm

‖w‖W2 = ‖w‖V +
0

+ ‖wxxxxtt‖L2(Q+).

Theorem 5.2. Let conditions (35) and

c1(x, t) ≤ 0, c2(x, t) ≥ 0, c1t(x, 0) ≥ 0, c2t(x, T ) ≥ 0,

c1xx(x, t) ≥ 0, c2xx(x, t) ≤ 0, T 4 max
Q

c2
1(x, t) < 1, T 4 max

Q
c2
2(x, t) < 1; (55)

c1(0, t) + c2(0, t) = 0, cix(0, t) = cix(1, t) = 0,

fi(0, t) = fix(0, t) = fi(1, t) = 0, t ∈ [0, T ]; (56)

fi(x, t) ∈ L2(Q+), fixx(x, t) ∈ L2(Q+), i = 1, 2 (57)

hold. Then the boundary value problem III ′ has a solution (u(x, t), v(x, t)) such that
u(x, t) ∈ V +

0 , v(x, t) ∈ V +
0 .
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Proof. We use the regularization method and the method of parameter continuation again.
Let’s consider the boundary value problem: find a solution u(x, t), v(x, t), (x, t) ∈ Q+ of

equations 10′′ε , (11′′ε), satisfying conditions (12), (15), (17), (18), (47), (48).
We show that the boundary value problem (10′′ε), (11′′ε), (7), (11), (14), (15), (47), (48)

is solvable in the space W2 for any functions f1(x, t), f2(x, t) such that f1(x, t) ∈ L2(Q+),
f2(x, t) ∈ L2(Q+) when ε is fixed.

Let λ be a positive number from interval [0, 1]. We consider the family of boundary value
problems: find a solutions u(x, t), v(x, t), (x, t) ∈ Q+ of equations (10′′ε), (11′′ε) respectively,
satisfying conditions (12), (15), (17), (18), (47), (48), (15λ), (48λ).

Note that, the boundary value problem (10′′ε), (11′′ε), (12), (15), (17), (18), (47), (48), (150),
(480) has a solution in W2, when functions f1(x, t), f2(x, t) belong to L2(Q+) and ε is fixed.
Let’s show that there is a uniform, with respect to λ, estimate (49).

We multiply the equation (10′′ε) by a function−u(x, t), equation (11′′ε) by γv(x, t), γ = −α
β > 0.

Let’s integrate the received equalities over the rectangle and sum up the results. Using conditions
(55), (15λ), elementary and Young’s inequalities we obtain the following inequality

∫

Q+

(u2
t + v2

t ) dx dt ≤ N1





ε2

∫

Q+

[u2
xxxxt + v2

xxxxt] dx dt +
∫

Q+

[f2
1 + f2

2 ] dx dt





, (58)

where the number N1 is defined by numbers α, β, T .
Further, we multiply equation (10′′ε) by a function (−uxxxx(x, t)), equation (11′′ε) by γvxxxx(x, t),

γ = −α
β and integrate the received equalities over the rectangle Q+ and sum up the results.

Integrating by parts and using the conditions ((12), (17), (18), (15λ), (48λ), (47) we obtain the
following equality

∫

Q+

[εu2
xxxxt + γεv2

xxxxt + u2
xxt + γv2

xxt] dx dt = −
∫

Q+

f1uxxxx dx dt+

+γ

∫

Q+

f2vxxxx dx dt +
∫

Q+

c1uuxxxx dx dt− γ

∫

Q+

c2vvxxxx dx dt. (59)

The terms of the right side of (59) are estimated using the Young inequality, then the received
integrals — with the help of elementary integral inequalities and the inequality (58).

When (55) we obtain the following estimate

ε

∫

Q+

(
u2

xxxxt + v2
xxxxt

)
dx dt +

∫

Q+

(
u2

xxt + v2
xxt

)
dx dt ≤ N2

∫

Q+

(
f2
1 + f2

2

)
dx dt, (60)

where the number N2 is defined by functions c1(x, t), c2(x, t) and numbers α, β, T , ε.
According to (58) and (60) with the help of elementary inequalities it is not difficult to deduce

a desired estimate (49).
So, for a solution of boundary value problem (10′′ε), (11′′ε), ((12), (15), (17), (18), (47), (48),

(15λ), (48λ) there is a uniform with respect to λ estimate (49). From this estimate and the
solvability in W2 of boundary value problem (10′′ε), (11′′ε), (12), (15), (17), (18), (47), (48),
(150), (480) the possibility of applying the theorem about the method of parameter continuation
[7] follows (see the proof of theorem 2). Therefore, the boundary value problem (10′′ε), (11′′ε),
(12), (15), (17), (18), (47), (48) has a solution in W2, when functions f1(x, t), f2(x, t) belong to
L2(Q+) and ε is fixed.



S.V. POTAPOVA: BOUNDARY VALUE PROBLEMS FOR PSEUDOHYPERBOLIC EQUATIONS ... 89

Let ε0 be positive number which value will be specified below, ε is a number from the interval
(0, ε0).

Let’s show that for the family of solutions {uε(x, t), vε(x, t)} of boundary value problem (10′′ε),
(11′′ε), (12), (15), (17), (18), (47), (48) an a priory estimate takes place. This estimate is both
uniform, with respect to parameter ε, and with its help it will be possible to organize the passage
to the limit.

Note that for the family {uε(x, t), vε(x, t)} an inequality (58) takes place.
Further, in terms of the right side of equality (59) we integrate by parts two times, and at

performance (55), (56) we will receive∫

Q+

[εu2
εxxxxt + γεv2

εxxxxt + u2
εxxt + γv2

εxxt − c1(x, t)u2
εxx + γc2(x, t)v2

εxx+

+c1xx(x, t)u2
εx − γc2xx(x, t)v2

εx] dx dt = −
∫

Q+

f1xxuεxx dx dt + γ

∫

Q+

f2xxvεxx dx dt+

+
∫

Q+

c1xxuεuεxx dx dt− γ

∫

Q+

c2xxvεvεxx dx dt. (61)

The first two terms on the right side of (61) can be estimated with the help of Young’s
inequality and elementary inequalities. To estimate the remaining terms we use the inequality
(58).

Let the ε0 be such that the inequality 2N3ε < 1 is carried out when ε < ε0. The number N3 is
defined by numbers α, β, T and functions c1(x, t), c2(x, t). Then we obtain an a priory estimate
for the solution of boundary value problem (10′′ε), (11′′ε), (12), (15), (17),(18), (47), (48):

M(ε)
∫

Q+

[u2
εxxxxt + v2

εxxxxt] dx dt +
∫

Q+

[u2
εxxt + v2

εxxt] dx dt ≤ M1

∫

Q+

[f2
1xx + f2

2xx] dx dt, (62)

where the number M(ε) is infinitesimal at ε → 0, and the constant M1 is defined by functions
c1(x, t), c2(x, t) and number T .

To organize the passage to the limit it is enough to have estimates (58), (62) (see the proof of
theorem 2), limiting functions u(x, t) and v(x, t) will give a solution of boundary value problem
III ′ from a required class. ¤

6. Solvability of boundary value problems I–III

As mentioned above, the solvability of boundary value problems I—III is defined through the
solvability of boundary value problems I ′–III ′.

Let’s define spaces V −
0 and V0:

V −
0 = {v(x, t) : v(x, t) ∈ L2(Q−), vtt(x, t) ∈ L2(Q−),

vxxt(x, t) ∈ L2(Q−)}, V0 = {v(x, t) : v(x, t) ∈ V +
0 , v(x, t) ∈ V −

0 }.
Further, we denote by c1(x, t) and f1(x, t) the restriction of the function c(x, t) and f(x, t) to
rectangle Q+, by c2(x, t) and f2(x, t) — functions c(−x, t) and f(−x, t) to Q+ respectively.

Statement 6.1. Let u(x, t) and v(x, t) be solutions of equations (9), (10) such that u(x, t) ∈ V +
0 ,

v(x, t) ∈ V +
0 . Then the function u(x, t), which is defined by equality

u(x, t) =
{

u(x, t), (x, t) ∈ Q+,

v(−x, t), (x, t) ∈ Q−
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is a solution of equation (1) on the set Q1. And it belongs to space V0. Conversely, if the function
u(x, t) is a solution of equation (1) on the set Q1 and it is from space V0, then functions u(x, t)
and v(x, t) such that u(x, t) = u(x, t), v(x, t) = u(−x, t) when (x, t) ∈ Q+ are solutions of
equations (9) and (10) respectively.

This statement is obvious.
The given statement and theorems 1 – 8 allow easily to receive theorems of existence and

uniqueness of solutions of the boundary value problems I – III.

Theorem 6.1. Let conditions (19) and (20) hold for functions c1(x, t), c2(x, t) and numbers α,
β. Then the boundary value problem I cannot have more than one solution in space V0.

Theorem 6.2. Let conditions (19), (20) and (22) hold for functions c1(x, t), c2(x, t), f1(x, t),
f2(x, t) and numbers α, β. Then the boundary value problem I has a solution u(x, t) from in V0.

Theorem 6.3. Let conditions (32), (33) and (34) hold for functions c1(x, t), c2(x, t) and num-
bers α, β. Then the boundary value problem II cannot have more than one solution in space
V0.

Theorem 6.4. Let conditions (35) and (36) hold for functions c1(x, t), c2(x, t) and numbers α,
β. Then the boundary value problem II cannot have more than one solution in space V0.

Theorem 6.5. Let conditions (32), (33), (37) and (38) hold for functions c1(x, t), c2(x, t),
f1(x, t), f2(x, t) and numbers α, β. Then the boundary value problem II has solution u(x, t) in
space V0.

Theorem 6.6. Let conditions (35), (44), (45) and (46) hold for functions c1(x, t), c2(x, t),
f1(x, t), f2(x, t) and numbers α, β. Then the boundary value problem II has solution u(x, t) in
space W0. The space W0 is defined similarly to V0.

Theorem 6.7. Let conditions (35) and (54) hold for functions c1(x, t), c2(x, t) and numbers α,
β. Then the boundary value problem III cannot have more than one solution in space V0.

Theorem 6.8. Let conditions (35), (55), (56) and (57) hold for functions c1(x, t), c2(x, t),
f1(x, t), f2(x, t) and numbers α, β. Then the boundary value problem III has solution u(x, t)
in space V0.

7. Comments and additions

1. For problems I and II conditions (19) and (32) of theorems 6 — 8, 10 hold, for example,
when natural sewing conditions

u(−0, t) = u(+0, t), ux(−0, t) = ux(+0, t)

are given. But the condition (35) of theorem 9 holds when discontinuous sewing conditions

u(−0, t) = u(+0, t), ux(−0, t) = −ux(−0, t)

or
u(−0, t) = −u(+0, t), ux(−0, t) = ux(+0, t)

are given.
2. The equation (1), system of equations (10) and (11) can include the lowest terms, moreover

the system of equations (10) and (11) can be bound, for example

utt − uxxt + c1(x, t)u + b1(x, t)v = f1(x, t),
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−vtt − vxxt + c2(x, t)v + b2(x, t)u = f2(x, t).

The conditions on the lowest terms can be written out and the received results for related
system will also have independent significance.
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