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Abstract: The Fréchet distribution has several applications in different fields of study and is most commonly used for modeling
extreme events. In recent time, modifications of the Fréchet distribution have been proposed to improve its fit when usedfor modeling
lifetime data. In this paper, a new modification called the alpha power transformed Fréchet distribution is proposed and studied. The
parameters of the model are estimated using maximum-likelihood estimation and simulation studies are performed to investigate the
properties of the estimators for the parameters. Applications of the model are demonstrated using two-real data sets. Finally, bivariate
and multivariate extensions of the model are proposed usingcopulas.
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1 Introduction

Following the early works of Pearson on the development
of statistical distributions using system of differential
equations, barrage of methodologies have been proposed
for generating new statistical distributions [1]. Some of
the proposed techniques in literature includes: translation
[2] and quantile [3,4] methods. However, the methods of
differential equations [1,5], translation and quantile
techniques were developed prior to the 1980.
From the 1980 up, researchers shifted attention from
these early methods to methods of adding parameters to
existing distributions or combining existing distributions.
This new approach of generating statistical distributions
that were proposed since the 1980s includes:
beta-generated method [6], transformed-transformer
method [7], exponentiated transformed-transformer
method [8], exponentiated generalized
transformed-transformer method [9] and exponentiated
generalized method [10]. These methods have been
employed to modify existing distributions with the goal of
making them more flexible in modeling data with
different kinds of failure rates such as upside down
bathtub, bathtub and non-monotonically increasing or
decreasing failure rates among others.
Recently, the Fréchet distribution which was developed

for modeling extreme events such as one-day rainfall and
river discharge have been generalized to make it provide a
more reasonable parametric fit to data arising from all
fields of study [11] . Some of the modifications are:
beta-exponential Fréchet [12], transmuted Fréchet [13],
transmuted exponentiated Fréchet [14] and
Kumaraswamy Fréchet [15].
Thus, the goal of this study is to develop another
generalization of the Fréchet distribution called the Alpha
Power Transformed (APT) Fréchet (APFT) distribution
using the idea of [16]. For an arbitrary baseline
Cumulative Distribution Function (CDF), the CDF of the
APT family of distributions as:

FAPT(x) =

{

αF(x)−1
α−1 , if α > 0, α 6= 1, x ∈ R

F(x), if α > 0, α = 1, x ∈ R
, (1)

and the corresponding Probability Density Function (PDF)
as:

fAPT(x) =

{

logα
α−1 f (x)αF(x), if α > 0, α 6= 1, x ∈ R

f (x), if α > 0, α = 1, x ∈R
,

(2)

where, F(x) is an absolute continuous distribution
function with PDFf (x) [16].
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The rest of the paper is organized as follows: In section 2,
the CDF, PDF, survival and hazard rate functions are
defined. In section 3, a representation mixture of the
APTF model is given. In section 4, statistical properties
of the model are derived. In section 5, estimators for the
parameters of the model are developed using
maximum-likelihood estimation technique. In section 6,
Monte Carlo simulations are performed to investigate the
finite sample properties of the estimators. In section 7,
applications of the APTF distribution are demonstrated
using real-data sets. In section 8, bivariate and
multivariate extensions of the APTF distribution are
proposed using copulas. The concluding remarks of the
study are finally given in section 9.

2 APTF Distribution

SupposeX is a Fréchet random variable with parameters
a, b > 0. Then the CDF and PDF associated toX are
respectively given by:

F(x) = e−( a
x )

b
, x > 0, and f (x) = babx−b−1e−( a

x )
b
, x > 0.

(3)

Hence, a random variableX is said to have the APTF
distribution if its CDF is of the form:

FAPTF(x) =







αe−( a
x )

b
−1

α−1 , α > 0, α 6= 1, x > 0

e−( a
x )

b
, α > 0, x > 0

, (4)

whereα, b > 0 are shape parameters anda > 0 is a scale
parameter. The CDF in equation (4) is obtained by
substituting the CDF in equation (3) into (1). The
corresponding PDF of the APTF distribution is:

fAPTF(x) =
{

logα
α−1 babx−b−1e−( a

x )
bαe−( a

x )
b

, α 6= 1, x > 0

babx−b−1e−( a
x )

b
, α = 1, x > 0

. (5)

The APTF distribution houses a number of sub-models
such a Fréchet, Inverse Exponential (IE), APT Inverse
Exponential (APIE), Inverse Rayleigh (IR), APT Inverse
Rayleigh (APTIR), one-parameter Fréchet and
one-parameter APTF (OAPTF) distributions. Table1
displays the special cases of the APTF distribution. It is
important to note that where the values ofα are not stated
asα = 1 in Table 1, thenα 6= 1.
Figure 1 displays the shapes of the density function of the
APTF distribution for some selected parameter values. It
can be seen that the PDF is unimodal and right skewed
with different degrees of kurtosis.

The survival and the hazard rate functions of the APTF
distribution are respectively given by:

SAPTF(x) =







α
α−1

(

1−αe−( a
x )b−1

)

, α 6= 1, x > 0

1−e−( a
x )

b
, α = 1, x > 0

, (6)

and

hAPTF(x) =














logα
(

1−αe−( a
x )b −1

)babx−b−1e−( a
x )

b αe−( a
x )b−1, α 6= 1, x > 0

babx−b−1e−( a
x )b

1−e−( a
x )b

, α = 1, x > 0

.

(7)

Figure 2 shows the plot of the hazard rate function of the
APTF distribution for some selected parameter values. The
hazard rate function exhibit decreasing and upside down
bathtub failure rate for the selected parameters values.

3 Mixture Representation

The mixture representation of the density is very useful
when deriving the statistical properties of generalized
distributions. In this section, the mixture representation of
the APTF density function is derived. Employing the
series representation

αu =
∞

∑
i=0

(logα)i

i!
ui,

and α 6= 1, the density of the APTF distribution can be
written as:

fAPTF(x) =
babx−b−1

α −1

∞

∑
i=0

(logα)i+1

i!
e−(i+1)( a

x )
b
. (8)

4 Statistical Properties

It is imperative to derive the statistical properties when a
new distribution is developed. In this section, the
statistical properties of the APTF distribution are derived
for the case ofα 6= 1, since for the case ofα = 1 it is
simply the properties of the Fréchet distribution.

4.1 Quantile Function

The quantile function plays a useful role when simulating
random variates from a statistical distribution. The
quantile function of the APTF distribution, sayx = Q(p)
is given by:

Q(p) =

{

1
α

[

log

(

logα
log(1+ p(α −1))

)] 1
b

}−1

,

0< p < 1. (9)
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Table 1: Sub-models of APTF distribution

Sub-model α a b

Fréchet 1 a b

IE 1 a 1

APTIE α a 1

IR 1 a 2

APTIR α a 2

One parameter Fréchet 1 1 b

OAPTF α 1 b
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Fig. 1: Plot of the APTF distribution density function

The median is obtained by substitutingp = 0.5 into the
quantile function. Hence, the median is:

Q(0.5) =

{

1
α

[

log

(

logα
log(1+0.5(α −1))

)] 1
b
}−1

.

(10)

For several heavy tailed distributions, the classical
measures of skewness and kurtosis cannot be computed
due to nonexistence of higher moments. In such
situations, the quantile can be employed to estimate such
measures. The Bowley’s coefficient of skewness which is
based on quartiles can be used to estimate the coefficient

of skewness. It is defined as:

B =
Q(0.75)−2Q(0.5)+Q(0.25)

Q(0.75)−Q(0.25)
,

[17]. Similarly, the coefficient of kurtosis can be estimated
using the Moors’ coefficient of kurtosis which is defined
based on the octiles as:

M =
Q(0.875)−Q(0.625)−Q(0.375)+Q(0.125)

Q(0.75)−Q(0.25)
,

[18]. Figure 3 shows the Bowley’s coefficient of skewness
and Moors’ coefficient of kurtosis for some selected
parameter values. It can be seen that for smaller values of
α both measures increase whereas for larger values they
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Fig. 2: Plot of the hazard rate function of APTF distribution
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4.2 Moments

The moment of a random variable plays a useful role when
computing measures of central tendencies, dispersions and
shapes. Therth non-central moment of the APTF random
variable is:

µ
′

r =
∫ ∞

0
xrdFAPTF(x)

=
∫ ∞

0
xr babx−b−1

α −1

∞

∑
i=0

(logα)i+1

i!
e−(i+1)( a

x )
b
dx

=
bab

α −1

∞

∑
i=0

(logα)i+1

i!

∫ ∞

0
xr−b−1e−(i+1)( a

x )
b
dx

=
ar

α −1

∞

∑
i=0

(logα)i+1

(i+1)!
(i+1)

r
b Γ
(

1−
r
b

)

, r < b, (11)

for r = 1,2, . . ., whereΓ (·) is the gamma function. Table
2 displays the first six moments, Standard Deviations
(SD), Coefficient of Variation (CV), Coefficient of
Skewness (CS) and Coefficient of Kurtosis (CK). The
values for SD, CV, CS and CK are respectively given by:

SD =
√

µ ′

2− µ2,

CV =
σ
µ

=

√

µ ′

2

µ2 −1,

CS =
µ ′

3−3µµ ′

2+2µ3

(µ ′

2− µ2)
3
2

and

CK =
µ ′

4−4µµ ′

3+6µ2µ ′

2−3µ4

(µ ′

2− µ2)2
.

4.3 Moment-Generating Function

The moment-generating function of random variableX
that follows the APTF distribution, if it exist, is given by:

MX(t) = E(etX )

=
∞

∑
r=0

tr

r!
µ

′

r

=
∞

∑
r=0

tr

r!
ar

α −1

∞

∑
i=0

(logα)i+1

(i+1)!
(i+1)

r
b Γ
(

1−
r
b

)

, r < b.

(12)

4.4 Incomplete Moment

The incomplete moment has important applications in
different fields of study. The first incomplete moment is

used in estimation of the Bonferroni and Lorenz curves
which are useful in economics, reliability, demography,
medicine and insurance. Therth incomplete moment of
the APTF random variable is:

ϕr(t) =
∫ t

0
xrdFAPTF(x)

=
bab

α −1

∞

∑
i=0

(logα)i+1

i!

∫ t

0
xr−b−1e−(i+1)( a

x )
b
dx.

(13)

Using the complementary incomplete gamma function,
this yields:

ϕr(t) =

ar

α −1

∞

∑
i=0

(logα)i+1

(i+1)!
(i+1)

r
b Γ
(

1−
r
b
, (i+1)(

a
t
)b
)

,

(14)

r < b, where Γ (q, z) =
∫ ∞

z wq−1e−wdw is the
complementary incomplete gamma function.

4.5 Mean Residual Life and Mean Inactivity
Time

The Mean Residual Life (MRL) or the life expectancy at
age t is the expected additional life length for a unit,
which is alive at aget. The MRL has several important
applications in life insurance, maintenance and product
quality control, and also demography and economics are
among others. The MRL is given by:

mX(t) = E(X − t|X > t), t > 0.

It can therefore be expressed as:

mX(t) =
(µ −ϕ1(t))

S(t)
− t,

whereµ = µ ′

1, ϕ1(t) is the first incomplete moment and
S(t) is the survival function. Thus, the MRL of the APTF
distribution is:

mX (t) =
[

µ − a
α−1 ∑∞

i=0
(logα)i+1

(i+1)! (i+1)
1
b Γ
(

1− 1
b , (i+1)( a

t )
b
)

]

SAPTF(t)
−

t, b > 1. (15)

The Mean Inactivity Time (MIT) is the waiting time
elapsed since the failure of an item on condition that the
failure had occurred in(0, t). The MIT of the APTF
random variableX is defined fort > 0 as:

ψX(t) = E(t −X |X ≤ t).
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Table 2: First six moments, SD, CV, CS and CK

µ ′

r a = 0.5, b = 10.5, α = 0.5 a = 2.5, b = 10.5, α = 1.5

µ ′

1 0.5202 2.6994

µ ′

2 0.2749 7.4206

µ ′

3 0.1480 20.8427

µ ′

4 0.0815 60.0851

µ ′

5 0.0462 178.9574

µ ′

6 0.0274 556.4143

SD 0.0655 0.3658

CV 0.1259 0.1355

SK 1.8908 1.8168

CK 10.6600 9.8328

This can further be expressed as:

ψX(t) = t −
ϕ1(t)
F(t)

.

Substituting the first incomplete moment and the CDF of
the APTF random variable yields its MIT as:

ψX (t) = t−

α
(α −1)FAPTF(t)

∞

∑
i=0

(logα)i+1

(i+1)!
(i+1)

1
b Γ
(

1−
1
b
, (i+1)(

a
t
)b
)

.

4.6 Entropy

Entropy has been used in the engineering sciences and
information theory as measures of variation of
uncertainty. The Rényi entropy of a random variableX
having the APTF distribution is given as:

IR(δ ) =
1

1− δ
log

[

∫ ∞

0
f δ
APTF(x)dx

]

,δ > 0 andδ 6= 1.

From equation (5), we can write

f δ
APTF(x) =

(

logα
α −1

)δ
aδbbδ×

∞

∑
i=0

(δ logα)i

i!
x−δ (b+1)e−(δ+i)( a

x )
b
, (16)

using the approach employed to expand the density in
equation (8). Thus, the Rényi entropy is given by:

IR(δ ) =
1

1−δ
×

log

[

(

logα
α −1

)δ
aδ bbδ

∞

∑
i=0

(δ logα)i

i!

∫ ∞

0
x−δ (b+1)e−(δ+i)( a

x )
b
dx

]

=
1

1−δ
×

log

[

A
∞

∑
i=0

(δ logα)i

i!
(δ + i)(1+

1
b )(1−δ )Γ

(

δ +
(δ −1)

b

)

]

,

(17)

δ > 0, δ 6= 1, A =
(

logα
α−1

)δ
a1−δ bδ−1. The Rényi entropy

converges to the Shannon entropy asδ approaches 1. The
δ -entropy, sayH(δ ) of the APTF random variable is
defined by:

H(δ ) =
1

δ −1
log[1− Iδ(x)] ,

where

Iδ (x) =
∫ ∞

0
f δ
APTF(x)dx, δ > 0 andδ 6= 1.

Hence,

H(δ ) =
1

δ −1
×

log

[

1−B
∞

∑
i=0

(δ logα)i

i!
(δ + i)(1+

1
b )(1−δ )Γ

(

δ +
(δ −1)

b

)

]

,

B =
(

logα
α−1

)δ
a1−δ bδ−1,δ > 0, andδ 6= 1.
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4.7 Stochastic Ordering

Stochastic ordering is the commonest way of describing
ordering mechanism in lifetime distributions. Let
X1 ∼ APTF(a, b, α1) and X2 ∼ APT F(a, b, α2). The
random variableX2 is stochastically greater thanX1 in
the:

–stochastic order(X1 ≤st X2) if the associated CDFs
satisfy:FX1(x)≤ FX1(x) for all x.

–hazard rate order(X1 ≤hr X2) if the associated hazard
rate function satisfies:hX1(x)≤ hX1(x) for all x.

–likelihood ratio order (X1 ≤lr X2) if
fX1

(x)
fX2(x)

is a

decreasing function ofx.

Given the PDFs ofX1 andX2,

fX1(x)
fX2(x)

=

(

α2−1
α1−1

)(

logα1

logα2

)(

α1

α2

)e−( a
x )

b

. (18)

Taking the logarithm and differentiating the ratio of the
densities yield:

d
dx

log
fX1(x)
fX2(x)

= abbx−b−1e−( a
x )

b
log

(

α1

α2

)

< 0, (19)

if α1 < α2∀x > 0. Thus, forα1 < α2,X1 ≤lr X2 ∀x. It
follows from the implications of stochastic ordering that:

X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

4.8 Order Statistics

Let X1: n < X2: n < .. . < Xn : n represents order statistics
obtained from the APTF distribution. Then the PDF,
fp : n(x), of thepth order statisticXr : n is:

fp:n(x) =
1

B(p, n− p+1)
[F(x)]p−1 [1−F(x)]n−p f (x),

(20)

whereF(x) and f (x) are the CDF and PDF of the APTF
distribution respectively, andB(·, ·) is the beta function.
Substituting the PDF and the CDF of the APTF
distribution gives:

fp:n(x) =
n!abbx−b−1 logα

(α −1)n(p−1)!(n− p)!

(

1−αe−( a
x )

b
)n−p

×

(

αe−( a
x )

b

−1

)p−1

αe−( a
x )

b
+n−p. (21)

Hence, the PDFs of the smallest and the largest order
statistics are respectively given by:

fX(1)
(x) =

nabbx−b−1 logα
(α −1)n

(

1−αe−( a
x )

b
)n−1

×

αe−( a
x )

b
+n−1, (22)

and

fX(n)
(x) =

nabbx−b−1 logα
(α −1)n

(

αe−( a
x )

b

−1

)n−1

×

αe−( a
x )

b

. (23)

5 Parameter Estimation

In this section, the parameters of the APTF distribution
are estimated using the maximum-likelihood estimation
method. Given a random samplex1, x2, . . . , xn of size n
from the APTF distribution with parameter vector
ξ = (a, b, α)

′
, then the log-likelihood function is given

by:

ℓ= n log

(

abb logα
α −1

)

− (b+1)
n

∑
i=1

log(xi)−
n

∑
i=1

(

a
xi

)b

+

log(α)
n

∑
i=1

e
−( a

xi
)b
. (24)

Taking the partial derivatives of the log-likelihood function
with respect to the parameters yields the following score
functions:

∂ℓ
∂a

=
nb
a
−

n

∑
i=1

b( a
xi
)b−1

xi
− log(α)

n

∑
i=1

b( a
xi
)b−1e

−( a
xi
)b

xi
,

(25)

∂ℓ
∂b

=
na−b(α −1)

(

ab log(α)
α−1 + abb log(a) log(α)

α−1

)

b log(α)
−

n

∑
i=1

log(xi)−
n

∑
i=1

log(xi)−
n

∑
i=1

(

a
xi

)b

log

(

a
xi

)

−

log(α)
n

∑
i=1

(

a
xi

)b

e
−( a

xi
)b

log

(

a
xi

)

, (26)

∂ℓ
∂α

=
na−b(α −1)

(

abb
α(α−1) +

abb log(α)

(α−1)2

)

b log(α)
+

1
α

n

∑
i=1

e
−( a

xi
)b
. (27)
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The estimates of the unknown parameters can be obtained
by setting the score functions to zero and solving the
system of nonlinear equations numerically by means of
iterative techniques such as the Newton-Raphson
algorithm. For the purpose of interval estimation of the
model parameters, a 3× 3 observed information matrix,
J(ξ ) = {Jrs}(forr, s = a, b, α) is required. Under the
usual regularity condition, the multivariate normal
distribution,N3(0, J(ξ̂ )−1), can be employed to estimate
approximate confidence intervals for the model
parameters. Here,J(ξ̂ ) is the total observed information
matrix evaluated atξ̂ . Using this multivariate normal
approximation, the approximate 100(1−ρ)% confidence
intervals for the parameters can be determined.

6 Monte Carlo Simulation

In this section, Monte Carlo simulations are performed to
examine the finite sample properties of the maximum
likelihood estimators for the parameters of the APTF
distribution. The results of the simulation are obtained
from 2000 Monte Carlo replications. In each replication,
a random sample of sizen = 25, 50, 75 and 100 is
generated from the APTF distribution using its quantile
function. Table 3 presents the Average Estimate (AE),
Average Bias (AB), Root Mean Square Error (RMSE)
and Coverage Probability (CP) for the 95% confidence
interval for the parameters of APTF distribution. From
the results, it can be seen that the AE are close to the
actual values while the AB and the RMSEs exhibit
fluctuating pattern. That is for some parameters, AB and
RMSE show upward and downward movements as the
sample size increases. The CPs of the confidence intervals
are quite close to the nominal 0.95 in most cases. Thus,
the results indicate that the estimates for the parameters
are stable and their asymptotic properties can be
employed for constructing confidence intervals.

7 Applications

The applications of the APTF distribution are
demonstrated in this section using real data sets. The
performance of the APTF model is compared with that of
its sub-models and the Transmuted Fréchet (TFr)
distribution using the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) and−2ℓ
criterion. The smaller the values of the model selection
criteria the better the distribution. The
maximum-likelihood estimates for the parameters of the
fitted models are obtained by maximizing the
log-likelihood function. The PDF of the TFr distribution
is given by:

f (x) =abbx−b−1e−( a
x )

b
[

1+α −2αe−( a
x )

b
]

,

a > 0, b > 0, |α| ≤ 1, x > 0.

7.1 First Data Set

The data set is obtained from Smith and Naylor, and
consists of the strength of 1.5cm glass fibers measured at
the National Physical Laboratory, England [19]. The data
are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13,
1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48,
1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55,
1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62,
1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70,
1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84,
1.89, 2.00, 2.01, 2.24. Table 4 displays the
maximum-likelihood estimates for the parameters of the
fitted distributions with their corresponding standard
errors in parentheses and the model selection criteria. The
parameters of the fitted models are significant at the 5%
level of significance. Using the model selection criteria,
the APTF distribution provides a more reasonable
parametric fit to the data than its sub-models and the TFr
model.
To further compare the APTF distribution with its
sub-models, a Likelihood Ratio Test (LRT) is performed.
The LRT results shown in Table 5 reveal that the APTF
provides a more reasonable parameteric fit to the data
than its sub-models.
The estimated variance-covariance matrix for the
parameters of the APTF distribution for the data is:

J−1 =




1.7405×10−3 7.5932×10−3 −3.3796×10−7

7.5932×10−3 9.6884×10−2 −6.1003×10−6

−3.3796×10−7 −6.1003×10−6 4.0125×10−10



 .

Figure 4 shows the plot of the empirical and fitted densities
for the data.

7.2 Second Data Set

The data set is made up of failure time in hours of kevlar
49/epoxy strands with pressure at 90% and and was
already studied [20]. The data consists of 101
observations and the numbers are: 0.01, 0.01, 0.02, 0.02,
0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09,
0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,
0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,
0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,
0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10,
1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40,
1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58,
1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,
2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89. The
maximum-likelihood estimates for the parameters of the
fitted models with their standard errors in parentheses and
model selection criteria are given in Table 6. All the
parameters of the fitted models are significant at the 5%
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Table 3: Monte Carlo simulation results: AE, AB, RME and CP for APTF distribution
Parameter AE AB RMSE CP

n a b α â b̂ α̂ â b̂ α̂ â b̂ α̂ â b̂ α̂
25 0.3 0.2 0.3 0.3495 0.2203 0.5045 0.0495 0.0203 0.20450.3152 0.0464 0.35620.8590 0.9975 0.9580
50 0.3 0.2 0.3 0.3525 0.2137 0.4823 0.0525 0.0137 0.18230.3121 0.0340 0.34000.8780 0.9965 0.9650
75 0.3 0.2 0.3 0.3702 0.2100 0.4632 0.0702 0.0100 0.16320.3174 0.0287 0.33050.8715 0.9975 0.9755
100 0.3 0.2 0.3 0.3745 0.2073 0.4549 0.0745 0.0073 0.15490.3162 0.0257 0.31930.8805 0.9995 0.9765
25 2.5 0.5 1.5 2.1170 0.5156 1.7043 -0.3830 0.0156 0.20431.2819 0.0943 1.16560.8640 0.9950 0.8945
50 2.5 0.5 1.5 2.1042 0.5015 1.6600 -0.3958 0.0015 0.16001.2602 0.0709 1.15070.8505 0.9870 0.8825
75 2.5 0.5 1.5 2.0344 0.4979 1.7051 -0.4656 -0.0021 0.20511.2482 0.0626 1.14550.8220 0.9885 0.8805
100 2.5 0.5 1.5 2.0662 0.4908 1.6438 -0.4338 -0.0092 0.14381.2298 0.0579 1.11150.8045 0.9925 0.8690
25 3.5 3.2 2.5 2.7064 3.1802 2.2378 -0.7936 -0.0198 -0.26220.9018 0.6033 1.62630.5805 0.9775 0.7875
50 3.5 3.2 2.5 2.6871 3.1179 2.2858 -0.8129 -0.0821 -0.21420.9050 0.5074 1.59340.4585 0.9640 0.7860
75 3.5 3.2 2.5 2.6742 3.0966 2.3591 -0.8258 -0.1034 -0.14090.9140 0.4650 1.55970.3685 0.9550 0.7910
100 3.5 3.2 2.5 2.6754 3.0613 2.3288-0.08246 -0.1387 -0.17120.9131 0.4594 1.53490.3325 0.9405 0.7995
25 8.0 8.0 8.0 8.4371 7.7998 4.8474 0.4371 -0.2002 -3.15260.7395 1.4386 5.11780.9705 0.9745 0.6655
50 8.0 8.0 8.0 8.3613 7.7225 5.3863 0.3613 -0.2775 -2.61370.6480 1.2089 4.78610.9705 0.9620 0.7040
75 8.0 8.0 8.0 8.3117 7.7221 5.7483 0.3117 -0.2779 -2.25170.5944 1.0940 4.51380.9605 0.9545 0.7315
100 8.0 8.0 8.0 8.2848 7.6653 5.8425 0.2848 -0.3347 -2.15750.5641 1.0164 4.39400.9635 0.9465 0.7525

Table 4: Maximum-likelihood estimates and model selectioncriteria

Estimates of parameters Model selection criteria

Model â b̂ α̂ −2ℓ AIC BIC

APTF 0.8734 3.8900 300.9964 75.8685 81.8685 88.2979

(4.1720×10−2) (3.1126×10−1) (2.0031×10−5)

Fréchet 1.2644 2.8873 93.7066 97.7066 101.9929

(0.0589) (0.2344)

APTIE 0.2043 1000.4897 187.4785 191.4785 195.7648

(2.7663×10−2) (8.0745×10−7)

APTIR 0.5286 1000.4462 113.3644 117.3644 121.6507

(3.6926×10−2) (1.4656×10−6)

OAPTF 4.6591 5000.2430 116.3075 120.3075 124.5938

(2.3289×10−1) (6.0277×10−6)

TFr 1.0937 3.2217 -0.7745 86.3031 92.3031 98.7326

(0.0561) (0.2564) (0.1561)

Table 5: LRT Statistics

Models Hypotheses LRT statistics p−value

Fréchet H0 : α = 1vsH1 : H0 is false 17.8380 2.4050×10−5

APTIE H0 : b = 1vsH1 : H0 is false 111.6100 < 2.2000×10−16

APTIR H0 : b = 2vsH1 : H0 is false 37.4960 9.1600×10−10

OAPTF H0 : a = 1vsH1 : H0 is false 40.4390 2.0280×10−10

significance level. From the values of the model selection
criteria, it is obvious that the APTF distribution provides
a better fit than the other estimated models.

The LRT is performed to compare the performance of the
APTF model with its sub-models. From Table 7, the
APTF model provides a better fit to the data than its
sub-models.

The computed variance-covariance matrix for the
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Fig. 4: Plot of the empirical and fitted densities

Table 6: Maximum-likelihood estimates and model selectioncriteria

Estimates of parameters Model selection criteria

Model â b̂ α̂ −2ℓ AIC BIC

APTF 0.0491 0.7797 100.5303 249.3418 255.3418 263.1871

(9.7346×10−3) (5.6106×10−2) (4.1294×10−6)

Fréchet 0.2425 0.6132 264.8788 268.8788 274.1091

(0.0419) (0.0424)

APTIE 0.0654 100.5336 264.4213 268.4213 273.6515

(7.9847×10−3) (9.2054×10−7)

APTIR 0.0465 1437.101 615.0299 619.0299 624.2602

(2.6164×10−3) (2.2585×10−9)

OAPTF 0.4467 0.0638 262.5252 266.5252 271.7555

(0.0246) (0.0261)

TFr 0.1341 0.6752 -0.6664 257.7661 263.7661 271.6114

(0.0293) (0.0461) (0.1647)

parameters of the APTF model for the data set is:

J−1 =




9.4763×10−5 3.2333×10−4 3.1802×10−8

3.2333×10−4 3.1479×10−3 2.2272×10−7

3.1802×10−8 2.2272×10−7 1.7052×10−11



 .

The empirical and fitted densities plot for the data are
shown in Figure 5.
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Table 7: LRT Statistics

Models Hypotheses LRT statistics p−value

Fréchet H0 : α = 1vsH1 : H0 is false 15.5370 8.0900×10−5

APTIE H0 : b = 1vsH1 : H0 is false 15.0790 0.0001

APTIR H0 : b = 2vsH1 : H0 is false 365.6900 < 2.2000×10−16

OAPTF H0 : a = 1vsH1 : H0 is false 13.1840 0.0003
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Fig. 5: Plot of the empirical and fitted densities

8 Bivariate and Multivariate Extensions

This section presents some bivariate and multivariate
extensions of the APTF distribution using copulas. Let
(X1, X2) be a random pair, then a copulaC associated
with the pair is simply a joint distribution of the random
vector(FX1(x1), FX2(x2)). Given thatFX1(x1) andFX2(x2)
are marginal CDFs of the random variablesX1 and X2
respectively. According Sklar [21], if C is the copula
associated with(X1, X2), then the joint CDF of the pair

(X1, X2) is given by:

FX1X2(x1, x2) =C(FX1(x1), FX2(x2)).

Using this concept, the bivariate and multivariate
extensions of the APTF distribution are proposed.
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8.1 Ali-Mikhail-Haq Bivariate and Multivariate
APTF

SupposeX1 ∼ APTF(a1, b1, α1), X2 ∼ APTF(a2, b2, α2)
and the copula associated with the random pair(X1, X2)
belong to the Ali-Mikhail-Haq (AMH) family. Then,

C(u, v) =
uv

1−φ(1− u)(1− v)
, |φ |< 1.

The joint CDF of the AMH Bivariate APTF
(AMHBAPTF) distribution is given by:

FX1X2(x1, x2) =

FX1(x1)FX2(x2)
1−φ(1−FX1(x1))(1−FX2(x2))

=































(

αe
−(

a1
x1

)b1

1 −1

)(

αe
−(

a2
x2

)b2

2 −1

)

(α1−1)(α2−1)−φ
(

α1−e
−(

a1
x1

)b1
)(

α2−e
−(

a2
x2

)b2
) , αi 6= 1

e
−[( a1

x1
)b1+(

a2
x2

)b2]

1−φ
(

1−e
−(

a1
x1

)b1
)(

1−e
−(

a2
x2

)b2
) , αi = 1

, (28)

where,ai > 0, i = 1, 2, b1 > 0 andb2 > 0 are marginal
parameters. The parameterφ is the dependence
parameter. Thep− variate extension is:

FX1X2...Xp(x1, x2, . . .xp) =


















(1−φ)

[

∏p
i=1

(

(αi−1)(1−φ)

αe
−(

ai
xi

)bi

i

+φ

)

−φ

]−1

, αi 6= 1

(1−φ)
[

∏p
i=1

(

1−φ

e
−(

ai
xi

)bi
+φ
)

−φ
]−1

, αi = 1

,

where,ai > 0 andbi > 0 are marginal parameters.

8.2 Clayton Bivariate and Multivariate APTF

SupposeX1 ∼ APTF(a1, b1, α1), X2 ∼ APTF(a2, b2, α2)
and the copula associated with the random pair(X1, X2)
belong to the Clayton family. Then,

C(u, v) =
[

u−φ + v−φ −1
]
−1
φ , φ ≥ 0.

The joint CDF of the Clayton Bivariate APTF (CBAPTF)
distribution is given by:

FX1X2(x1, x2) =
[

(FX1(x1))
−φ +(FX2(x2))

−φ −1
]

−1
φ
=





























∑2
i=1

(

αe
−(

ai
xi

)bi

i −1
αi−1

)−φ

−1





−1
φ

, α1 6= 1, α2 6= 1

[

∑2
i=1

(

e−(
ai
xi
)bi
)−φ

−1

] −1
φ
, α1 = 1, α2 = 1

,

where, a1 > 0, a2 > 0, b1 > 0, b2 > 0 are marginal
parameters andφ is the dependence parameter. The

p−variate extension is given by:

FX1X2...Xp(x1, x2, . . . xp) =




























∑p
i=1

(

αe
−(

ai
xi

)bi

i −1
αi−1

)−φ

−1





−1
φ

, αi 6= 1,

[

∑p
i=1

(

e−(
ai
xi
)bi
)−φ

−1

]
−1
φ
, αi = 1

, (29)

where,ai > 0 andbi > 0 are marginal parameters.

9 Conclusion

In this study, a three-parameter model called APTF
distribution is proposed and its statistical properties are
derived. The estimators for the parameters of the
distribution are developed using maximum-likelihood
estimation and Monte Carlo simulation are performed to
assess the properties of the estimators. The applications of
the APTF distribution are demonstrated by using real-data
sets. The performance of the APFT distribution with
regards to providing good fit to the data sets is assessed
by comparing it with other models. The results reveal that
the APTF model provides a more reasonable parametric
fit to the data sets. Finally, bivariate and multivariate
extensions of the model are proposed using copulas.
Future extensions of this work requires using the APTF
distribution to model-censored data and also developed
regression model using the APTF distribution.
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