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Abstract: The Fréchet distribution has several applications ineddfit fields of study and is most commonly used for modeling
extreme events. In recent time, modifications of the Frédistribution have been proposed to improve its fit when deedodeling
lifetime data. In this paper, a new modification called thghal power transformed Fréchet distribution is proposetistindied. The
parameters of the model are estimated using maximum#igetl estimation and simulation studies are performed tesiiyate the
properties of the estimators for the parameters. Appbcatof the model are demonstrated using two-real data satdlyi-bivariate
and multivariate extensions of the model are proposed wsipglas.
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1 Introduction for modeling extreme events such as one-day rainfall and
river discharge have been generalized to make it provide a

Following the early works of Pearson on the developmentmore reasonable parametric fit to data arising from all

of statistical distributions using system of differential fields of study L1] . Some of the modifications are:

equations, barrage of methodologies have been proposdifta-exponential Fréchel], transmuted Fréchetl],

for generating new statistical distributions].] Some of  transmuted  exponentiated  Fréchet 14[ and

the proposed techniques in literature includes: tramsiati Kumaraswamy Fréchet [15].

[2] and quantile B,4] methods. However, the methods of Thus, the goal of this study is to develop another

differential equations 1,5], translation and quantile generalization of the Fréchet distribution called thel#€p

techniques were developed prior to the 1980. Power Transformed (APT) Fréchet (APFT) distribution

From the 1980 up, researchers shifted attention fromusing the idea of 6. For an arbitrary baseline

these early methods to methods of adding parameters teumulative Distribution Function (CDF), the CDF of the

existing distributions or combining existing distributia ~ APT family of distributions as:

This new approach of generating statistical distributions Foo_q

that were proposed since the 1980s includes: Fapr(X) = {aal_ Jfa>0,a#1,xeR )

beta-generated method6][ transformed-transformer F(x),ifa>0a=1xcR
method [], exponentiated transformed-transformer

method Bl exponentiated generalized and the corresponding Probability Density Function (PDF)
transformed-transformer metho®] [and exponentiated as:

generalized method1(]. These methods have been loga Foo i

employed to modify existing distributions with the goal of fapT(X) = {mf(x)a Jfa>0,0#1,xeR

making them more flexible in modeling data with f(x),ifa>0,a=1xeR ’
different kinds of failure rates such as upside down 2)
bathtub, bathtub and non-monotonically increasing or

decreasing failure rates among others. where, F(x) is an absolute continuous distribution

Recently, the Fréchet distribution which was developedfunction with PDFf (x) [16].
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The rest of the paper is organized as follows: In section 2, The survival and the hazard rate functions of the APTF
the CDF, PDF, survival and hazard rate functions aredistribution are respectively given by:
defined. In section 3, a representation mixture of the {

_a 1—aef<;)b*1) a#1,x>0
a1 , .

APTF model is given. In section 4, statistical properties B
of the model are derived. In section 5, estimators for the ~ *PTF) =
parameters of the model are developed using
maximume-likelihood estimation technique. In section 6, and
Monte Carlo simulations are performed to investigate the
finite sample properties of the estimators. In section 7,
applications of the APTF distribution are demonstrated Lgbbabxfbflef(%)bae’(
using real-data sets. In section 8, bivariate and 1-ge ¥

multivariate extensions of the APTF distribution are baPx b1 (3)° a—1x>0
proposed using copulas. The concluding remarks of the 1-e®° 77 7

study are finally given in section 9. (1)

Figure 2 shows the plot of the hazard rate function of the

APTF distribution for some selected parameter values. The
2 APTF Distribution hazard rate function exhibit decreasing and upside down

bathtub failure rate for the selected parameters values.

(6

1-e " a=1,x>0

hapTR(X) =

b
"l a£1,x>0

SupposeX is a Fréchet random variable with parameters
ab > O Thep the CDF and PDF associatedXoare 3 Mixture Representation
respectively given by:
The mixture representation of the density is very useful
F(x) = e x>0, andf (x) = babx Pte (3" x> 0. when deriving the statistical properties of generalized
(3) distributions. In this section, the mixture representatib
the APTF density function is derived. Employing the

Hence, a random variabl¥ is said to have the APTF Series representation

distribution if its CDF is of the form: “ (loga)
u |
T il ’
&
,(é‘)b . . . .
a® X 1 anda # 1, the density of the APTF distribution can be
FapTr(X) = ast a>0a7Lx>0 (4) writtenés: /
e & a>0,x>0
by—b-1 i+1
whered, b > 0 are shape parameters amgh O is a scale fAPTE(X) = ba®x (loga)™ e (H1)(3)° (8)

parameter. The CDF in equation (4) is obtained by a-1 £ i!
substituting the CDF in equation (3) into (1). The
corresponding PDF of the APTF distribution is:

4 Statistical Properties

fapTF(X) =
loga 1. (2)b (3P
9% paPx P ieb(x) a® " a#£1,x>0
baPx P-1e=(x)° a =1,x>0

It is imperative to derive the statistical properties when a

5) new distribution is developed. In this section, the
statistical properties of the APTF distribution are dedive
for the case ofo # 1, since for the case af = 1 it is

The APTF distribution houses a number of sub-modelsSlmply the properties of the Fréchet distribution.

such a Fréchet, Inverse Exponential (IE), APT Inverse
Exponential (APIE), Inverse Rayleigh (IR), APT Inverse
Rayleigh (APTIR), one-parameter Fréchet and
one-parameter APTF (OAPTF) distributions. Talle  thg guantile function plays a useful role when simulating
displays the special cases of the APTF distribution. It iS;gndom variates from a statistical distribution. The
important to note that Where the Va|ue3Dflre not Stated quant“e function of the APTF distribution, SaF Q( p)

4.1 Quantile Function

asa =1in Table 1, theror £ 1. is given by:
Figure 1 displays the shapes of the density function of the N
APTF distribution for some selected parameter values. It 1 loga 5)
can be seen that the PDF is unimodal and right skewed Qlp) = o { (m)} ’
with different degrees of kurtosis.
O<p<l 9)
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Table 1: Sub-models of APTF distribution

Sub-model o a b
Fréchet 1 a b
IE 1 a 1
APTIE a a 1
IR 1 a 2
APTIR a a 2
One parameter Fréchet 1 1 b
OAPTF a 1 b
g N
R —— a=4.05, b=0.7, alpha=0.1
A —— a=1.05, b=1.05, alpha=4.35
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Fig. 1: Plot of the APTF distribution density function

The median is obtained by substitutipg= 0.5 into the  of skewness. Itis defined as:
guantile function. Hence, the median is: . Q(0.75) — 2Q(0.5) + Q(0.25)
B Q(0.75) — Q(0.25)

-1

)

Q(0.5) = 1 {Iog ( loga )} b . [17]. Similarly, the coefficient of kurtosis can be estimated
a log(1+0.5(a — 1)) using the Moors’ coefficient of kurtosis which is defined
(10)  based on the octiles as:

Q(0.875) — Q(0.625) — Q(0.375) + Q(0.125)

For several heavy tailed distributions, the classical M= Q(0.75) — Q(0.25)
measures of skewness and kurtosis cannot be computed ' '
In such[18]. Figure 3 shows the Bowley’s coefficient of skewness

due to nonexistence of higher moments.
situations, the quantile can be employed to estimate sucand Moors’ coefficient of kurtosis for some selected

measures. The Bowley’s coefficient of skewness which isparameter values. It can be seen that for smaller values of
based on quartiles can be used to estimate the coefficierst both measures increase whereas for larger values they
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Fig. 2: Plot of the hazard rate function of APTF distribution
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Fig. 3: Plot of Bowley’s Skewness and Moors’ kurtosis
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4.2 Moments used in estimation of the Bonferroni and Lorenz curves
which are useful in economics, reliability, demography,

The moment of a random variable plays a useful role whermedicine and insurance. Th& incomplete moment of

computing measures of central tendencies, dispersions arttie APTF random variable is:

shapes. The! non-central moment of the APTF random

variable is:

t
) w© or(t) = / X dFapTF(X)
Y= /0 X dFapTr(X) 0

ba® 2 (loga)*! /tXr—b—l —(+1)(2)P g
0

_ /oo . babx—b—l 0 (|09.a)i+1e—(i+l)(§)bdx = a_1 2 0 e
0 a-1 £ i! (13)
b o i+1 0
= ba (loga) / X b1 (+D()°gx Using the complementary incomplete gamma function,
a-1£ i 0 this yields:
Ioga '+1 v r
= Dol (1—— b, (11
forr =1,2,..., wherel (-) is the gamma function. Table Ioga - (i+1)br (1_ L 1)(§)b)
2 displays the first six moments, Standard Deviations  a — 120 b’ t’ )’
(SD), Coefficient of Variation (CV), Coefficient of (14)

Skewness (CS) and Coefficient of Kurtosis (CK). The
values for SD, CV, CS and CK are respectively givenby: r < b, where I (q,2) = fz°°vvq‘1e‘de is the
complementary incomplete gamma function.

Hy — 12,
v O T 4.5 Mean Residual Life and Mean Inactivity
TR AT Time

cS— Mz — 3up, +2u° The Mean Residual Life (MRL) or the life expectancy at

(ué_‘ﬂ)% aget is the expected additional life length for a unit,

which is alive at age. The MRL has several important
and applications in life insurance, maintenance and product
, , gt A quality control, and also demography and economics are

CK — Ha— 4HHs+ 6171, — 3 among others. The MRL is given by:
(Hp — H2)? '

mx(t) =E(X—t|X>1),t>0.
It can therefore be expressed as:

_(H=¢1(t)

BECHE

The moment-generating function of random variakile /

that follows the APTF distribution, if it exist, is given by:  wherep = p;, ¢1(t) is the first incomplete moment and
S(t) is the survival function. Thus, the MRL of the APTF

4.3 Moment-Generating Function

Mx (t) = E(e%) distribution is:
00 tr ,
_ h my (t) =
" [u(—)%z%“‘(’-g"f;”(i+1>%r(1 B0+
r r i+1 ; a-12Z1= i+1)! B
—20:, a 120("’9“{ (+2fr (1-D).r<p Swere(D
a- (i+1)! w2 tb>1 (15)

The Mean Inactivity Time (MIT) is the waiting time
elapsed since the failure of an item on condition that the

4.4 Incompl ete Moment failure had occurred in0,t). The MIT of the APTF
random variabl& is defined foit > 0 as:

The incomplete moment has important applications in

different fields of study. The first incomplete moment is Ux(t) = E(t=X|X <t).
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Table 2: First six moments, SD, CV, CS and CK

Ly a=05b=105a=05 a=25b=105a=15

1y 0.5202 2.6994

Ly 0.2749 7.4206

Ls 0.1480 20.8427

Uy 0.0815 60.0851

s 0.0462 178.9574

g 0.0274 556.4143

Sh) 0.0655 0.3658

cv 0.1259 0.1355

X 1.8908 1.8168

CK 10.6600 9.8328

This can further be expressed as: using the approach employed to expand the density in
equation (8). Thus, the Rényi entropy is given by:
pr(t):t—%(tt)). IR(8) = 1

1-
Substituting the first incomplete moment and the CDF of log (L) a®b’ M/ x 00+ g=(0+)(5)" dx}
the APTF random variable yields its MIT as: : : 0

1

LI—'X(t) =t- - 1 5
a  (loga)*t . 1 1. a 5Ioga a+b-d (5-1)
(a —DFapTe(t) i; it Y r(1‘57('+1)(;)b)- log AZO r(5+ - )}

(17

5
5>00+#1A= <'§%‘i) al~9p%-1. The Rényi entropy

converges to the Shannon entropyeapproaches 1. The
d-entropy, sayH(d) of the APTF random variable is
Entropy has been used in the engineering sciences andefined by:
information theory as measures of variation of
uncertainty. The Rényi entropy of a random variakle H(3) = 1 log[1—15(X)]
having the APTF distribution is given as: 0-1 '

4.6 Entropy

where
Ir(3) = rlé log [ /0 fngF(x)dx] .6 >0and # L. . /w ik 5 0and 41
0
From equation (5), we can write Hence,
H(S) = —1 x
b loga \° 3bpd ot
fherel) = (ﬁ) o l0g [1 a3 (00 (Bloga) 5. jyaria-or r(s- (5;”)} 7

5Ioga ~8(b+1) g (8+i)(5)° (16)

;M

5
B= <'§%"’1) al=%p°~1 5 >0, ands # 1.
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4.7 Sochastic Ordering

bpyy—b—1 _ap\ N1
Stochastic ordering is the commonest way of describing fx<1) (x) :M (1_ o€ % ) y

ordering mechanism in lifetime distributions. Let (a—1)n
X1 ~ APTF(a,b,a;) and X; ~ APTF(a, b, a2). The (3P 1 22
random variableX, is stochastically greater thaxy in a ’ (22)
the: and
—stochastic ordefX; <g Xp) if the associated CDFs
satisfy:Fx, (x) < Fx, (x) for all x. . naPbx P loga [ . ap n-1
—hazard rate ordeX; <pr Xo) if the associated hazard fx(n) () — = <ae 0 1) %
rate function satisfiesix, (x) < hx, (x) for all x. (a—1)
_(a\b
—likelihood ratio order (X1 <|; Xp) if :il—gg is a a® & . (23)
2
decreasing function of.
Given the PDFs oK, andX;, 5 Parameter Estimation
~(§)P

fx, (X) a,—1\ /logar\ [ o1)\® In this section, the parameters of the APTF distribution
= ( ) < ) <—) . (18) are estimated using the maximum-likelihood estimation

P (X) a—1 loga a2 method. Given a random samptg, Xo, ..., Xy Of sizen
Taking the logarithm and differentiating the ratio of the Tom the APTF distribution with parameter vector
densities yield: ¢ =(a b, a), then the log-likelihood function is given

by:
f (2)
EIog () _ abpy-b-1g-(3) Iog( ><0 (19)
dx 7 fx,(X) abbloga n N /a\P
é:nlog( 1 )—(b+1)zllog(xi)—zl(—_) +
if a1 < ax¥x > 0. Thus, fora; < az Xy <;p Xo Vx. It a— = S\ X
follows from the implications of stochastic ordering that: N _(a)p
log(a) 3 & (24)
X1 <jp Xo = Xy <pr Xo = X1 <4 Xo. =

Taking the partial derivatives of the log-likelihood fuimet
with respect to the parameters yields the following score

4.8 Order Statistics functions:

Let X1.n < X2:n < ... < Xn: n represents order statistics

b-1o~(5%)°
obtained from the APTF distribution. Then the PDF, _é _ _b_ C b% og(a) C b(%) €
fp: n(x), of the p'" order statistick; . n is: a |Zi i; Xi ’
1 (25)
fon(X) = ——— [FX)]P 11— F(x)]" P f(x
X = ooy PO L FOI" P F, b b
(20) o na (a —1) (a log(a) | 2 b'c’%ff)l'og(a))
whereF (x) and f (x) are the CDF and PDF of the APTF ob blog(a)
distribution respectively, an8(-,-) is the beta function. a\® a
Substituting the PDF and the CDF of the APTF Zlog %) Zlog Z X log %)
distribution gives: !
n a
og(a) 3 (Xi) e log (Xﬁ) , (26)
n!abbx—b—1|oga _(ap n—-p i= | i
fp;n(x): 1_ae X X
(a=17"(p—1)(n—p)! N
_ —b al a’blog(a
<ae<§>b B 1) P lae*<§)b+nfp (1) ﬁ :na (a-1) (0'(0'—1) + (a—1)2 )
' da blog(a)
n a
Hence, the PDFs of the smallest and the largest order é e_(wb. (27)

statistics are respectively given by: i=
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The estimates of the unknown parameters can be obtained.1 First Data Set

by setting the score functions to zero and solving the

system of nonlinear equations numerically by means ofThe data set is obtained from Smith and Naylor, and
iterative techniques such as the Newton-Raphsortonsists of the strength of 1.5cm glass fibers measured at
algorithm. For the purpose of interval estimation of the the National Physical Laboratory, Englari®]. The data
model parameters, a>33 observed information matrix, are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13,
J(&) = {Js}(forr,s = a,b,a) is required. Under the 1.24, 1.25,1.27,1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48,
usual regularity cpndition, the multivariate normal 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55,
distribution,N3(0, J(§)~1), can be employed to estimate 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62,
approximate confiAdence intervals for the model1l.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70,
parameters. Herel(£) is the total observed information 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84,

matrix evaluated atf. Using this multivariate normal 1.89, 2.00, 2.01, 2.24. Table 4 displays the

approximation, the approximate 10~ p)% confidence maximume-likelihood estimates for the parameters of the
intervals forthé parameters can be determined fitted distributions with their corresponding standard

errors in parentheses and the model selection criteria. The

parameters of the fitted models are significant at the 5%
; ; level of significance. Using the model selection criteria,

6 Monte Carlo Simulation the APTF distribution provides a more reasonable

In this section, Monte Carlo simulations are performed toParametric fit to the data than its sub-models and the TFr

examine the finite sample properties of the maximummodel. o o

likelihood estimators for the parameters of the APTF T0 further compare the APTF distribution with its

distribution. The results of the simulation are obtainedSub-models, a Likelihood Ratio Test (LRT) is performed.

from 2000 Monte Carlo replications. In each replication, The LRT results shown in Table 5 reveal that the APTF

a random sample of size = 25,50,75 and 100 is provides a more reasonable parameteric fit to the data

generated from the APTF distribution using its quantile than its sub-models. _ _

function. Table 3 presents the Average Estimate (AE),The estimated variance-covariance matrix for the

Average Bias (AB), Root Mean Square Error (RMSE) Parameters of the APTF distribution for the data is:

and Coverage Probability (CP) for the 95% confidence

interval for the parameters of APTF distribution. From J = =

the results, it can be seen that the AE are close to the / 1 7405x 103 7.5932x 103 —3.3796x 107

actual yalues while the_ AB and the RMSEs exhibit 7.5932% 103 9.6884x 1072 —6.1003x 106

fluctuating pattern. That is for some parameters, AB and \ _3 3796« 10-7 —6.1003x 10-6 4.0125x 10-10

RMSE show upward and downward movements as the

sample size increases. The CPs of the confidence intervalSgyre 4 shows the plot of the empirical and fitted densities

are quite close to the nominald® in most cases. Thus, forthe data.

the results indicate that the estimates for the parameters

are stable and their asymptotic properties can be

employed for constructing confidence intervals.

Pioy d 7.2 Second Data Set

7 Applications The data set is made up of failure time in hours of kevlar
49/epoxy strands with pressure at 90% and and was
The applications of the APTF distribution are already studied 40]. The data consists of 101
demonstrated in this section using real data sets. Th@bservations and the numbers are: 0.01, 0.01, 0.02, 0.02,
performance of the APTF model is compared with that of0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09,
its sub-models and the Transmuted Fréchet (TFr)0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,
distribution using the Akaike Information Criterion 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
(AIC), Bayesian Information Criterion (BIC) and-2¢ 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68,
criterion. The smaller the values of the model selection0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85,
criteria the better the distribution. The 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10,
maximum-likelihood estimates for the parameters of thel.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40,
fitted models are obtained by maximizing the 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58,
log-likelihood function. The PDF of the TFr distribution 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17,

is given by: 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89. The
maximume-likelihood estimates for the parameters of the
f(x) =aPbx > le@° |14+ a - 2ae‘<3>b} : fitted models with their standard errors in parentheses and
model selection criteria are given in Table 6. All the
a>0,b>0,lal<1,x>0. parameters of the fitted models are significant at the 5%
(© 2019 NSP
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Table 3: Monte Carlo simulation results: AE, AB, RME and CP for APTF distribution
Parameter AE AB RMSE CP
nla b a a b a a b a a b a a b a
25|0.3 0.2 0.3 0.3495 0.2203 0.5045 0.0495 0.0203 0.20450.3152 0.0464 0.356P0.8590 0.9975 0.958D
50 |0.3 0.2 0.3 0.3525 0.2137 0.4823 0.0525 0.0137 0.18230.3121 0.0340 0.34000.8780 0.9965 0.9650
7510.3 0.2 0.30.3702 0.2100 0.4632 0.0702 0.0100 0.16320.3174 0.0287 0.33050.8715 0.9975 0.9755
100/ 0.3 0.2 0.3 0.3745 0.2073 0.4549 0.0745 0.0073 0.15490.3162 0.0257 0.31930.8805 0.9995 0.976b
25|25 05 1.52.1170 0.5156 1.7043-0.3830 0.0156 0.20431.2819 0.0943 1.16560.8640 0.9950 0.8945
50 |2.5 0.5 1.52.1042 0.5015 1.6600-0.3958 0.0015 0.16001.2602 0.0709 1.150[70.8505 0.9870 0.8825
75125 0.5 1.52.0344 0.4979 1.7051-0.4656 -0.0021 0.20511.2482 0.0626 1.14550.8220 0.9885 0.8805
100|125 0.5 1.52.0662 0.4908 1.6438-0.4338 -0.0092 0.14381.2298 0.0579 1.11150.8045 0.9925 0.8690
25|35 3.2 2527064 3.1802 2.2378-0.7936 -0.0198 -0.26220.9018 0.6033 1.626830.5805 0.9775 0.7875
50 |3.5 3.2 2.52.6871 3.1179 2.2858-0.8129 -0.0821 -0.214P0.9050 0.5074 1.59340.4585 0.9640 0.7860
75 13.5 3.2 2526742 3.0966 2.3591-0.8258 -0.1034 -0.14090.9140 0.4650 1.559/70.3685 0.9550 0.7910
100/ 3.5 3.2 2.52.6754 3.0613 2.3288-0.08246 -0.1387 -0.17120.9131 0.4594 1.534090.3325 0.9405 0.7996
25 |8.0 8.0 8.0 8.4371 7.7998 4.8474 0.4371 -0.2002 -3.15260.7395 1.4386 5.11780.9705 0.9745 0.6655
50 | 8.0 8.0 8.0 8.3613 7.7225 5.3863 0.3613 -0.2775 -2.613[70.6480 1.2089 4.786[{10.9705 0.9620 0.7040
7518.0 8.0 8.08.3117 7.7221 5.7483 0.3117 -0.2779 -2.251[70.5944 1.0940 4.51380.9605 0.9545 0.731p
100/ 8.0 8.0 8.0 8.2848 7.6653 5.8425 0.2848 -0.3347 -2.15750.5641 1.0164 4.394(00.9635 0.9465 0.752b
Table 4: Maximum-likelihood estimates and model selectiomriteria
Estimates of parameters Model selection criteria
Model a b a -2 AIC BIC
APTF 0.8734 3.8900 300.9964 75.8685 | 81.8685| 88.2979
(4.1720x 1072) | (3.1126x 10°1) | (2.0031x 107°)
Fréchet 1.2644 2.8873 93.7066 | 97.7066 | 101.9929
(0.0589) (0.2344)
APTIE 0.2043 1000.4897 | 187.4785| 191.4785| 195.7648
(2.7663x 107?) (8.0745x 10°7)
APTIR 0.5286 1000.4462 | 113.3644| 117.3644| 121.6507
(3.6926x 107?) (1.4656x 10°9)
OAPTF 4.6591 5000.2430 | 116.3075| 120.3075| 124.5938
(2.3289x 1071) | (6.0277x 10°%)
TFr 1.0937 3.2217 -0.7745 86.3031 | 92.3031| 98.7326
(0.0561) (0.2564) (0.1561)
Table 5: LRT Statistics
Models Hypotheses LRT statistics p—value
Fréchet | Ho:a = 1vsHj : Hgis false 17.8380 2.4050x 10°°
APTIE | Hg:b=1vsH;:Hgis false 111.6100 < 2.2000x 10~16
APTIR | Ho:b=2vsHj: Hgis false 37.4960 9.1600x 1010
OAPTF | Hg:a=1vsHj: Hpis false 40.4390 2.0280x 10710

significance level. From the values of the model selectionThe computed variance-covariance matrix for
criteria, it is obvious that the APTF distribution provides
a better fit than the other estimated models.

The LRT is performed to compare the performance of the
APTF model with its sub-models. From Table 7, the
APTF model provides a better fit to the data than its
sub-models.
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Fig. 4: Plot of the empirical and fitted densities
Table 6: Maximum-likelihood estimates and model selectiorriteria
Estimates of parameters Model selection criteria
Model a b a 2 AIC BIC
APTF 0.0491 0.7797 100.5303 249.3418| 255.3418| 263.1871
(9.7346x 10°3) | (5.6106% 10°2) | (4.1294x 10°6)
Fréchet 0.2425 0.6132 264.8788| 268.8788| 274.1091
(0.0419 (0.0424
APTIE 0.0654 100.5336 264.4213| 268.4213| 273.6515
(7.9847x 10°3) (9.2054x 10°7)
APTIR 0.0465 1437.101 615.0299| 619.0299| 624.2602
(2.6164x 10°3%) (2.2585% 10°9)
OAPTF 0.4467 0.0638 262.5252| 266.5252| 271.7555
(0.0246) (0.0261)
TFr 0.1341 0.6752 -0.6664 257.7661| 263.7661| 271.6114
(0.0293 (0.0461) (0.1647)

parameters of the APTF model for the data set is:

It=

9.4763x 107°3.2333x 1074 3.1802x 1078
3.2333x 1074 3.1479x 1073 2.2272x 10’
3.1802x 10°82.2272x 1077 1.7052x 10~ 11

The empirical and fitted densities plot for the data are
shown in Figure 5.
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Table 7: LRT Statistics

Models Hypotheses LRT statistics p—value
Fréchet | Ho:a = 1vsHj : Hgis false 15.5370 8.0900x 10°°
APTIE | Hp:b=1vsH;:Hgis false 15.0790 0.0001
APTIR | Hp:b=2vsH;:Hpis false 365.6900 < 2.2000x 10-16
OAPTF | Hp:a=1vsHj :Hgis false 13.1840 0.0003
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Fig. 5: Plot of the empirical and fitted densities

8 Bivariate and Multivariate Extensions

This section presents some bivariate and multivariate
extensions of the APTF distribution using copulas. Let
(X1, X2) be a random pair, then a copulaassociated
with the pair is simply a joint distribution of the random
vector (Fx, (1), Fx, (X2)). Given thatFy, (x1) andFx, (x2)

are marginal CDFs of the random variabl&s and X,
respectively. According Sklar2fl], if C is the copula
associated with{Xy, X2), then the joint CDF of the pair

(X1, X2) is given by:

Fraxo (X1, X2) = C(Fy (X1), B (%2))-

(@© 2019 NSP
Natural Sciences Publishing Cor.

Using this concept, the bivariate and multivariate
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8.1 Ali-Mikhail-Haq Bivariate and Multivariate
APTF

Suppose; ~ APTF (az, by, a1), Xo ~ APTF (ag, bo, az)
and the copula associated with the random 4ir, X2)
belong to the Ali-Mikhail-Haqg (AMH) family. Then,

uv

CUV = T wa V)

ol < 1.

The joint CDF of the AMH Bivariate APTF
(AMHBAPTEF) distribution is given by:

Fxoxo (X1, X2) =
P, (X1)Fx, (x2) _
1—(1—Fx, (1)) (1= Fx,(%2))

(&b (&2
(af R 1 R |
_(21)by _(32)b s i #1
(a1—1)(a-1)—@(a—e X a—e 2

el iz

aj =
aj \b: a b y Ul
1—(p<1—e7(ﬁ) 1) (1—e7(§) 2)

where,a > 0,i = 1,2, b; > 0 andb, > 0 are marginal
parameters. The parametep
parameter. The— variate extension is:

. (28)

1

Xp) =

1
(1-9) {ﬂf’_l (%”‘m“’) - <p> - w] Lo #1

— ()0
af 5

Fxoxo.. %, (X1; X2, - -«

-1
- ,ai=1
e

1-0) M2 (5t +0) -0

where,a; > 0 andb; > 0 are marginal parameters.

8.2 Clayton Bivariate and Multivariate APTF
SUppOSé(l ~ APTF(al, bl, al), Xo ~ APTF(az, bz, 02)

and the copula associated with the random 4ir, X2)
belong to the Clayton family. Then,

C(u,v)=[u?+v?-1] v ,0>0.

The joint CDF of the Clayton Bivariate APTF (CBAPTF)

distribution is given by:

1

FX1X2(X17 XZ) = [(Fxl(xl))7¢+ (FXZ(XZ))itp_ 1:| ’ B

(R -9
e 1
|:Zi2—l (a' a—1 ) -1
1
_ (&b @ 2
{Zi2:1<e (;‘L)b) —1} Cm=lap=1

where, a; > 0,ap > 0,b; > 0, b, > 0 are marginal

yar#FLap#1

parameters andp is the dependence parameter. The

is the dependence

p—variate extension is given by:

Xp) =

SEh -9
|:Zip—l<aiaill> —1] LG # L

;1 b)
2 (e ) ] e

where,a; > 0 andb; > 0 are marginal parameters.

Fxoxo.. %, (X1, X2, - .-

(29)

9 Conclusion

In this study, a three-parameter model called APTF
distribution is proposed and its statistical properties ar
derived. The estimators for the parameters of the
distribution are developed using maximum-likelihood
estimation and Monte Carlo simulation are performed to
assess the properties of the estimators. The applications o
the APTF distribution are demonstrated by using real-data
sets. The performance of the APFT distribution with
regards to providing good fit to the data sets is assessed
by comparing it with other models. The results reveal that
the APTF model provides a more reasonable parametric
fit to the data sets. Finally, bivariate and multivariate
extensions of the model are proposed using copulas.
Future extensions of this work requires using the APTF
distribution to model-censored data and also developed
regression model using the APTF distribution.

Acknowledgement

The first author thanks the African Union for supporting
his research at the Pan African University, Institute for
Basic Sciences, Technology and Innovation.

The authors are grateful to the anonymous referee for
careful checking of the details and for helpful comments
that improved this paper.

References

[1] K. Pearson, Contributions to mathematical theory of
evolution, 1l: Skew variation in homogeneous material,
Philosophical Transactions of the Royal Society of London
A, \Vol. 186, No. 1, pp. 343-414 (1895).

[2] N. L. Johnson, System of frequency curves generated by
method of translation, Biometrika, Vol.36, No. 1, pp. 14861
(1949).

[3] J. C. Hastings, F. Mosteller, J. W. Tukey and C. WindsaxyL
moments for small samples: a comparative study of order
statistic, The Annals of Statistics, Vol. 18, No. 3, pp. 4126
(1947).

[4] 3. W. Tukey, The practical relationship between the canm
transformations of percentages of counts and amounts,
Technical Report 36, Statistical Techniques Researchrou
Princeton University, Princeton, NJ, (1960).

(@© 2019 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.13, No. 1, 129-141 (2019)www.naturalspublishing.com/Journals.asp

£ 5D

[5]1. W. Burr, Cumulative frequency functions, Annals of
Mathematical Statistics, Vol. 13, No. 2, pp. 215-232 (1942)

[6]N. Eugene, C. Lee and F. Famoye, The beta-normal
distribution and its applications, Communications in
Statistics-Theory and Methods, Vol. 31, No. 4, pp. 497-512
(2002).

[7]1A. Alzaatreh, C. Lee and F. Famoye, A new method
for generating families of continuous distributions, Mty
Vol.71, No. 1, pp. 63-79 (2013).

[8] A. Alzaghal, F. Famoye and C. Lee, Exponentiated T-X
family of distributions with some applications, Interrmatal
Journal of Statistics and Probability, Vol. 2, No. 3, pp.4-
(2013).

[9] S. Nasiru, P. N. Mwita and O. Ngesa, Exponentiated
generalized Transformed-Transformer family of
distributions, Journal of Statistical and Econometric
Methods, Vol. 6, No. 4, pp. 1-17 (2017).

[10] G. M. Cordeiro, E. M. M. Ortega and C. C. D. da Cunha,
The exponentiated generalized class of distributiong;nddu
of Data Science, Vol. 11, No. 1, pp. 1-27 (2013).

[11] M. Fréchet, Sur la loi des erreurs d’observation, Btitl de
la Société Mathématique de Moscou, Vol. 33, pp. 5-8 (1924

[12] M. E. Mead, A. Z. Afify, G. G. Hamedani and |. Gosh,
The beta exponential Fréchet distribution with applimadi,

Suleman Nasiru
is a senior lecturer in
the Department of Statistics
at the University for
Development Studies. He has
interest in the development
of  Generalized Classes
of Distributions, Time Series
Analysis and Forecasting,
Development of Control

Charts and Extreme Value Analysis.

Peter N. Mwita s
the current holder of
the office of the Deputy
Vice Chancellor, heading
Research, Innovation
and Linkages division at the
Machakos University, Kenya.
He is a full Professor of
Statistics in the Department
of Mathematics and Statistics,

with over 20 years experiences in academic, research,

Austrian Journal of Statistics, Vol. 46, No. 1, pp. 41-63 publication and supervision of postgraduate students.

(2017).

[13] M. R. Mahmoud and R. M. Mandouh, On the transmuted
Fréchet distribution, Journal of Applied Sciences Redear
Vol. 9, No. 10, pp. 5553-5561 (2013).

[14] 1. Elbatal, G. Asha and V. Raja, Transmuted exponegdiat
Fréchet distribution: properties and applications, daliof
Statistics Applications and Probability, Vol. 3, No. 3, BjF9-
394 (2014).

[15]M. E. Mead and A. R. Abd-Eltawab, A note on
Kumaraswamy Fréchet distribution with applications,
Australian Journal of Basic and Applied Sciences, \ol. 8,
No. 15, pp. 294-300 (2014).

[16] A. Mahdavi and D. Kundu, A new method for generating
distributions with an application to exponential disttion,
Communications in Statistics-Theory and Methods, \ol. 46,
No. 13, pp. 6543-6557 (2017).

[17] J. F. Kenney and E. S. Keeping, Mathematics of Stasistic
part 1, Van Nostrand, New Jersey, 3rd edition, (1962).

[18] J. J. Moors, A quantile alternative for kurtosis, Jalrof the
Royal Statistical Society D, Vol. 37, No. 1, pp. 25-32 (1988)

[19] R. L. Smith and J. C. Naylor, A comparison of maximum
likelihood and Bayesian estimators for three-parameter
Weibull distribution, Applied Statistics, Vol. 36, No. 3pp
358-369 (1987)

[20] D. F. Andrews and A. M. Herzberg, Data: a collection
of problems from many fields for the student and research
worker, Springer Science and Business Media, (2012).

[21] A. Sklar, Fonctions de répartition & n dimension et
leurs marges, Publications de I'Institute de Statistiqee d
I'Univiversité de Paris, Vol. 8, pp. 229-231 (1959). .

Oscar Ngesa is a
member of the Mathematics
and Informatics Department
at the Taita Taveta University,
Kenya. His research
areas are: Spatial analysis,
Bayesian methods  and
Statistical modeling.

(@© 2019 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	APTF Distribution
	Mixture Representation
	Statistical Properties
	Parameter Estimation
	Monte Carlo Simulation
	Applications
	Bivariate and Multivariate Extensions
	Conclusion

