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Abstract: In this paper, probabilistic interpretation of the Kobexdtional integration of non-integer order is proposed. Vév@ that
the fractional integral, which is proposed by Kober, caniiterpreted as an expected value of a random variable up tostact
factor. In this interpretation, the random variable désesidilation (scaling), which has the gamma distributioime Erdelyi-Kober
fractional integration also has a probabilistic interptiein. Fractional differential operators of Kober and Byd&ober type have
analogous probabilistic interpretation. The proposeedrpretation leads to a possibility of generalization of fitaetional integration
and differentiation by using continuous probability distitions.

Keywords: Kober fractional integral, fractional calculus, dilatioperator, scale effect, distributed dilation, probapitiistribution,
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1 Introduction

There are different types of fractional integrals and deies of non-integer orders, the most famous of which are
the operators that are proposed by Liouville and Riemannw@id and Letnikov, Riesz, Erdelyi and Kober, Caputo
[1,2,3,4]. The history of the theory of fractional integrals and ®atives includes more than three hundred years of
development$,6,7,8]. These operators of non-integer order have a wide apitat different sciences (for example,
see the encyclopedia on fractional calculus and its agpits, which will be published in 2019 in eight volume3)[
These applications include fractional relaxation andltzdimn, fractional diffusion and waves, spatial non-llityaand
fading memory, the openness of systems and dissipatiogsrimge interactions and spatial and frequency disperdion
power type and many others.

Various interpretations of fractional differentiationchimtegration such as physical interpretatiob@ 1,12,13,14],
geometric interpretationd 8,14, 15,16,17], economic interpretatiorl, 19] and informatic interpretatior2] have been
proposed. An important thing is the probabilistic intetption of fractional derivatives2[l,22] and fractional integrals
[23).

In this article, we discuss probabilistic interpretatidritee Kober fractional integration of non-integer ordertthas
been proposed by Kobe24] in 1940 as a generalization of the well-known Riemann-kifie fractional integration.

2 Kober fractional integration and itsinterpretation

The Riemann-Liouville fractional integral of the order> 0 [4] is defined by the equation

(IRLo+®)(t) = %/Ot t—1)% 1¢(r)dr. 1)
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Here it is assumed that the functigrt) is measurable on the intervd, t) and that the condition

[lomiar <o @

holds. For positive integer = n € N, the fractional integrall) coincides (see equation 2.1.3 d},[p. 70) with the nth
integral of the form

18 0= [dt [Mdo.. [T dtagt L S 3
(80:9)0) = [ty [ato [*" g )= [ (40" (0)an ©

As a generalization of the Riemann-Liouville fractionateigral (L), new fractional integration of non-integer order
has been suggested by Kob24]in 1940. The Kober fractional integrad], p. 106] is defined by the expression

t—a-n

t 1
(IKot:n®) (t):m/o T (t-1)" "¢ (1)dr, (4)

a
wherea > 0 is the order of integration angle R. For the function® (t) € Lp (R4.), where 1< p <o, andn>(1—-p)/p,
operator §) is bounded]], p.323. Forn = 0, operator4) can be expressed through the Riemann-Liouville integnati
(2) by the expression

(IKo1:20) )=t (IgL,0+¢) (t). (5)
Using expressionZs], p. 296, in the form

t
/ ™ (t—1) 7=t B(n+1,q), ©)
0

whereB(a, B) is the beta function, we get

a 1 I_ 1
(IK;O+;I71) (®) :mBm—'—l’a) :%'

)
Equality (7) means that the kernel of the operatr¢an be considered as a density function (pdf) of betaidigton
up to a constant factorr). In this case, to have a probabilistic interpretationd)fwfe should interpret the variabteas a
random variable.
Let us give a probabilistic interpretation of the fractibmiegration @). Making the change of variable by=1/t,
the Kober operatoi is represented as

1
(€o10®) (0= 1g7 ) ¥ (1=9° 7 8 (xtyd ®)

Expression &) gives a possibility to use the probability density funatigdf) of the beta-distributior2, 27,28,29]
up to a constant factor), in the form

1
fag(X) =
) ~(a p)
forx € [0,1] andf,.g (X) = 0 if x ¢ [0,1], whereB(a, B) is the beta function. Note that the beta distribution déssithe

fraction of the sum of two terms that fall on each of them, & terms are random variables that have a gamma distribution.
Using @), the Kober fractional integral is represented by the d@qunat

xa-1(1-xPt 9)

r(n+a+1) /l
a e T ——— .
(IKown®) () =—F =D Jo fnr1a (¥) ¢ (xt)dx. (10)
It should be emphasized that expressibd) containsg (x t) instead ofg (x). Therefore we can consider the variable
x> 0 as a random variable that describes scaling (dilationi;tiwias the gamma distribution. To describe the change of
scale (dilation) we can use the operdip(see [], p. 95-96, ], p. 11) such that

(S¢) () =9 (xt), (11)
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wherex > 0. It is known that the dilation of Euclidean geometric figoiohanges the size, when the shape is not changed.
In physics and economics, the dilation is the change of sfalbjects and processes. Using the scaling operafdrthe
Kober fractional integral is represent by the equation

(0108) O =PI (M40 00(50) (0% 12)

We see from equatiorlp) that this operator can be interpreted as an expected vélagandom variable<> 0
that described the scaling and has the beta distributiom uquinerical factor 7). Therefore we have the case that the
interpretation of the Kober integrals is related with prioitigy theory.

Since the Riemann-Liouville fractional integrd)) can be expressed through the Kober fractional integral gvit 0
multiplied by a power functiot®, then we can use the probabilistic interpretation for thenfkinn-Liouville integration
of non-integer orders.

As a result, expressiold ) gives a possibility to state that the Kober opera#pic@n be considered as a continuously-
distributed dilation operator, in which the scaling vatélhas the beta distribution up to a constant factprAnalogously,
we can give the probabilistic interpretation for the Kobaxctional differentiation4], p. 108.

3 Probabilistic interpretation and generalization of fractional integrals and derivatives

The proposed interpretation of the fractional-order irditign allows us to generalize the fractional integratiohaon-
integer and integer orders. We can define general form dadréiftial and integral operators with continuously-distted
scaling (see Section 9 d3{]). For example, the generalized integral operator of carttusly-distributed scaling (dilation)
is defined [31] by the expression

(Is$) ( /fs ) (Scb) () dx= / fs(x (13)

wherefs(x) > 0 is the probability density function such that

Affgmdx=1. (14)

In equation 13) it is assumed that the integrél’ fs(x) |¢(x)| dx converges, where(x) and fs(x) are piecewise
continuous or continuous functions &n

If the density functionfs(x) describes the beta distribution, then operal®) (s the Kober fractional integral up to
numerical factor. In general, we can use other type of thistions (for example, se@6,27,28,29]). For example, it is
possible to use the Weibull distribution with pdf of the form

(15)

aix@lexp(— A x@) x>0,
W””:{ §( ) x < 0.

In function (15), the parametea > 0 describes the shape of distribution afid= A ~1/2 (A > 0) describes the scale.
Note that this distribution is applied to describe a pagtisize distribution in30]. We can use the gamma distribution, for
which the probability density function is

praya-1
_ exp(—A x) x>0,
fo (X) —{ G X< 0 (16)

where the parameteas> 0 andf = 1/A describe the shape and scale respectively.
Note that one example of operatdB}, which is a generalization of the Kober integral, is thedtydKober fractional
integral @], p. 105, such that

ot o(a+n)

(I€k01:0.09) (1) = W/O oM+ =1 (19 _79)@ 14 (7)dr, (7)

wherea > 0 is the order of integration. The operatai7) is bounded for (1) € Ly (R) where> 1, n>(po—1)/(po),
[1], p.-323. In the casewr = 1, operator 17) is represented in the form of the Kober opera#)r Operator 17) can be
represented by equatioh3) up to a constant factor in the form

n+a+1

(|K0+n¢)() ’7"’1

/ fiek (X) (Sc) (t)dx (18)
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where the probability density function is

9
B(n+1,a)

a-1

fex (X) = XOM+HD=1(1_xo)" ", (19)

For o = 1, the density functionl(9) describes the beta distributio®) (

Using the suggested integral operatb8)( we propose new fractional differential operators deies of arbitrary
orders, in which the scaling variable has continuous prifibabistributions. The differentiation of integer ordare N
with distributed scaling is defined be the expression

0%) 0= (16 (1) = [ 1516 (x)dx. (20)

wherefs(x) > 0 is the probability density function. The derivatives antégrals of non-integer orders, in which dilation
is described by continuous probability distributions, @endefined analogously (for details see Section BaJ)[ For

example, the Caputo fractional derivatieégO +¢) (t) (or another type of fractional derivatives) of the functipft) can
be used31] instead of the integer derivatie" (xt) in equation 20).

4 Conclusion

We assume that the proposed differential and integral eperéincluding the Kober integral and differential opera)

can be applied to describe scale phenomena in economicsicphgnd other sciences. For eample, the suggested
operators can be used to describe and generalize scallerpbea that are considered i82[33,34,35,36,37,38,39].

Such applications of fractional integrals and derivataed their generalizations, which include continuoushstiithuted
scaling, can give new interesting results and lead to theldpment of the fractional calculus.
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