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Abstract: In this paper, probabilistic interpretation of the Kober fractional integration of non-integer order is proposed. We prove that
the fractional integral, which is proposed by Kober, can be interpreted as an expected value of a random variable up to a constant
factor. In this interpretation, the random variable describes dilation (scaling), which has the gamma distribution. The Erdelyi-Kober
fractional integration also has a probabilistic interpretation. Fractional differential operators of Kober and Erdelyi-Kober type have
analogous probabilistic interpretation. The proposed interpretation leads to a possibility of generalization of thefractional integration
and differentiation by using continuous probability distributions.
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1 Introduction

There are different types of fractional integrals and derivatives of non-integer orders, the most famous of which are
the operators that are proposed by Liouville and Riemann, Grnwald and Letnikov, Riesz, Erdelyi and Kober, Caputo
[1,2,3,4]. The history of the theory of fractional integrals and derivatives includes more than three hundred years of
development [5,6,7,8]. These operators of non-integer order have a wide application in different sciences (for example,
see the encyclopedia on fractional calculus and its applications, which will be published in 2019 in eight volumes [9]).
These applications include fractional relaxation and oscillation, fractional diffusion and waves, spatial non-locality and
fading memory, the openness of systems and dissipation, long-range interactions and spatial and frequency dispersionof
power type and many others.

Various interpretations of fractional differentiation and integration such as physical interpretations [10,11,12,13,14],
geometric interpretations [13,14,15,16,17], economic interpretation [18,19] and informatic interpretation [20] have been
proposed. An important thing is the probabilistic interpretation of fractional derivatives [21,22] and fractional integrals
[23].

In this article, we discuss probabilistic interpretation of the Kober fractional integration of non-integer order that has
been proposed by Kober [24] in 1940 as a generalization of the well-known Riemann-Liouville fractional integration.

2 Kober fractional integration and its interpretation

The Riemann-Liouville fractional integral of the orderα > 0 [4] is defined by the equation

(Iα
RL,0+ϕ)(t) =

1
Γ (α)

∫ t

0
(t − τ)α−1 ϕ(τ)dτ. (1)
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Here it is assumed that the functionϕ(t) is measurable on the interval(0, t) and that the condition

∫ t

0
|ϕ(τ)|dτ < ∞ (2)

holds. For positive integerα = n ∈ N, the fractional integral (1) coincides (see equation 2.1.3 of [4], p. 70) with the nth
integral of the form

(Iα
RL,0+ϕ)(t) =

∫ t

0
dt1

∫ t1

0
dt2. . .

∫ tn−1

0
dtn ϕ (tn)=

1
(n−1) !

∫ t

0
(t−τ)n−1ϕ (τ)dτ (3)

As a generalization of the Riemann-Liouville fractional integral (1), new fractional integration of non-integer order
has been suggested by Kober [24] in 1940. The Kober fractional integral [4], p. 106] is defined by the expression

(

Iα
K;0+;ηϕ

)

(t)=
t−α−η

Γ (α)

∫ t

0
τη (t−τ)α−1ϕ (τ)dτ, (4)

whereα > 0 is the order of integration andη ∈R. For the functionsϕ (t) ∈ Lp (R+), where 1≤ p <∞, andη>(1− p)/p,
operator (4) is bounded [1], p.323. Forη = 0, operator (4) can be expressed through the Riemann-Liouville integration
(1) by the expression

(

Iα
K;0+;1ϕ

)

(t)=t−α (I
α
RL,0+ϕ)(t) . (5)

Using expression [25], p. 296, in the form

∫ t

0
τη (t−τ)α−1dτ= tα+η B(η+1,α), (6)

whereB(α,β ) is the beta function, we get

(

Iα
K;0+;η1

)

(t)=
1

Γ (α)
B(η+1,α)=

Γ (η+1)
Γ (η+α+1)

. (7)

Equality (7) means that the kernel of the operator (4) can be considered as a density function (pdf) of beta-distribution
up to a constant factor (7). In this case, to have a probabilistic interpretation of (4) we should interpret the variableτ as a
random variable.

Let us give a probabilistic interpretation of the fractional integration (4). Making the change of variable byx =τ/t,
the Kober operator (4) is represented as

(

Iα
K;0+;η ϕ

)

(t)=
1

Γ (α)

∫ 1

0
xη (1− x)α−1 ϕ (x t)dx. (8)

Expression (8) gives a possibility to use the probability density function (pdf) of the beta-distribution [26,27,28,29]
up to a constant factor (7), in the form

fα ;β (x) =
1

B(α,β )
xα−1 (1− x)

β−1
(9)

for x ∈ [0,1] and fα ;β (x)= 0 if x /∈ [0,1], whereB(α,β ) is the beta function. Note that the beta distribution describes the
fraction of the sum of two terms that fall on each of them, if the terms are random variables that have a gamma distribution.
Using (9), the Kober fractional integral is represented by the equation

(

Iα
K;0+;ηϕ

)

(t)=
Γ (η+α+1)

Γ (η+1)

∫ 1

0
fη+1;α (x) ϕ (x t)dx. (10)

It should be emphasized that expression (10) containsϕ (x t) instead ofϕ (x). Therefore we can consider the variable
x > 0 as a random variable that describes scaling (dilation), which has the gamma distribution. To describe the change of
scale (dilation) we can use the operatorSx (see [1], p. 95-96, [4], p. 11) such that

(Sxϕ) (t)=ϕ (x t) , (11)
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wherex > 0. It is known that the dilation of Euclidean geometric figures changes the size, when the shape is not changed.
In physics and economics, the dilation is the change of scaleof objects and processes. Using the scaling operator (11), the
Kober fractional integral is represent by the equation

(

Iα
K;0+;η ϕ

)

(t)=
Γ (η+α+1)

Γ (η+1)

∫ 1

0
fη+1;α (x)(Sxϕ) (t)dx. (12)

We see from equation (12) that this operator can be interpreted as an expected value of a random variablex > 0
that described the scaling and has the beta distribution up to numerical factor (7). Therefore we have the case that the
interpretation of the Kober integrals is related with probability theory.

Since the Riemann-Liouville fractional integral (1) can be expressed through the Kober fractional integral with η = 0
multiplied by a power functiontα , then we can use the probabilistic interpretation for the Riemann-Liouville integration
of non-integer orders.

As a result, expression (12) gives a possibility to state that the Kober operator (4) can be considered as a continuously-
distributed dilation operator, in which the scaling variable has the beta distribution up to a constant factor (7). Analogously,
we can give the probabilistic interpretation for the Kober fractional differentiation [4], p. 108.

3 Probabilistic interpretation and generalization of fractional integrals and derivatives

The proposed interpretation of the fractional-order integration allows us to generalize the fractional integrationsof non-
integer and integer orders. We can define general form of differential and integral operators with continuously-distributed
scaling (see Section 9 of [31]). For example, the generalized integral operator of continuously-distributed scaling (dilation)
is defined [31] by the expression

(ISϕ) (t)=
∫ ∞

0
fS (x)(Sxϕ)(t)dx=

∫ ∞

0
fS (x) ϕ (x t)dx, (13)

where fS (x)≥ 0 is the probability density function such that
∫ ∞

0
fS(x)dx = 1. (14)

In equation (13) it is assumed that the integral
∫ ∞

0 fS (x) |ϕ(x)| dx converges, whereϕ(x) and fS(x) are piecewise
continuous or continuous functions onR.

If the density functionfS (x) describes the beta distribution, then operator (13) is the Kober fractional integral up to
numerical factor. In general, we can use other type of distributions (for example, see [26,27,28,29]). For example, it is
possible to use the Weibull distribution with pdf of the form

fW (x)=

{

a λ xa−1exp(− λ xa)
0

x >0,
x ≤ 0. (15)

In function (15), the parametera > 0 describes the shape of distribution and,θ = λ−1/a (λ> 0) describes the scale.
Note that this distribution is applied to describe a particle-size distribution in [30]. We can use the gamma distribution, for
which the probability density function is

fG (x) =

{

λ a xa−1

Γ (a) exp(−λ x)
0

x> 0,
x ≤ 0, (16)

where the parametersa > 0 andθ = 1/λ describe the shape and scale respectively.
Note that one example of operator (13), which is a generalization of the Kober integral, is the Erdelyi-Kober fractional

integral [4], p. 105, such that

(

Iα
EK;0+;σ ,η ϕ

)

(t)=
σ t−σ(α+η)

Γ (α)

∫ t

0
τσ(η+1)−1 (tσ −τσ )α−1ϕ (τ)dτ, (17)

whereα> 0 is the order of integration. The operator (17) is bounded forϕ (τ) ∈ Lp (R+) where≥ 1, η>(pσ−1)/(pσ),
[1], p.323. In the caserσ = 1, operator (17) is represented in the form of the Kober operator (4). Operator (17) can be
represented by equation (13) up to a constant factor in the form

(

Iα
K;0+;η ϕ

)

(t)=
Γ (η+α+1)

Γ (η+1)

∫ 1

0
fEK (x)(Sxϕ)(t)dx, (18)
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where the probability density function is

fEK (x)=
σ

B(η+1,α)
xσ(η+1)−1 (1−xσ )

α−1
. (19)

For σ = 1, the density function (19) describes the beta distribution (9).
Using the suggested integral operator (13), we propose new fractional differential operators derivatives of arbitrary

orders, in which the scaling variable has continuous probability distributions. The differentiation of integer ordern ∈ N

with distributed scaling is defined be the expression

(Dn
Sϕ) (t)=

(

ISϕ(n)
)

(t)=
∫ ∞

0
fS (x)ϕ(n) (x t)dx, (20)

where fS (x)≥ 0 is the probability density function. The derivatives and integrals of non-integer orders, in which dilation
is described by continuous probability distributions, canbe defined analogously (for details see Section 9 of [31]). For

example, the Caputo fractional derivative
(

Dα
C,0+ϕ

)

(t) (or another type of fractional derivatives) of the functionϕ(t) can

be used [31] instead of the integer derivativeϕ(n) (x t) in equation (20).

4 Conclusion

We assume that the proposed differential and integral operators (including the Kober integral and differential operators)
can be applied to describe scale phenomena in economics, physics and other sciences. For eample, the suggested
operators can be used to describe and generalize scalle phenomena that are considered in [32,33,34,35,36,37,38,39].
Such applications of fractional integrals and derivativesand their generalizations, which include continuously-distributed
scaling, can give new interesting results and lead to the development of the fractional calculus.
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