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Cuantitativas, Barquisimeto, Venezuela.

Received: 3 Jul. 2018, Revised: 2 Dec. 2018, Accepted: 15 Dec. 2018
Published online: 1 Jan. 2019

Abstract: We found some new Ostrowski-type inequalities for functions whose derivative module is relatively convex, also some
others of the same type making use of relativelys−convex functions in the second sense. With these results we obtain generalizations
of results found by M. Alomari et. al. using convex ands−convex in the second sense ([1,2]).
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1 Introduction

The Ostrowski inequality is known in the classical
literature since 1938 ([10]), when A. Ostrowski gave an
upper bound for the approximation of the integral average

1
b−a

∫ b
a f (t)dt by the valuef (x) at the pointx ∈ [a,b] as

follow: Let f : I ⊂ [0,+∞) → R a differentiable function
in I◦, the interior of the intervalI , such thatf ′ ∈ L [a,b],
where a,b ∈ I and a < b. If | f ′(x)| ≤ M, then the
following inequality holds

∣

∣

∣
f (x)−

1
b−a

∫ b

a
f (u)du

∣

∣

∣
≤

M
b−a

[ (x−a)2+(b− x)2

2

]

.

Recently, many generalizations of the Ostrowski
inequality for functions of bounded variation,
Lipschitzian, monotone, absolutely continuous, convex
functions, s-convex and h-convex functions, n-times
differentiable mappings with error estimates with some
special means together with some numerical quadrature
are done. [1,2,3,4,6] .

In this work we give new Ostrowski type inequalities
for functions whose derivative’s module is relatively
convex.

2 Preliminaries

This section is intended to give the fundamentals in which
the present work is constructed. It is well known that the
following definition was established by W.J. Jensen.

Definition 1([1]). Let I be an interval inR. A function f :
I → R is said to be convex, if for every x,y ∈ I and every
t ∈ (0,1), the inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y), (1)

holds.

If the inequality in (1) holds in the opposite sense, then
we say thatf is concave.

In 1961 W. Orlicz introduced thes−convexity concept
in [9], and later, in 1978 W. Breckner introduced a second
version of it in [5], and it is presented here.

Definition 2([7]). Let 0< s≤ 1. A function f: [0,+∞)→
R is s-convex in the first sense or s1-convex if

f (αx+βy)≤ αs f (x)+β s f (y),

for every x,y∈ [0,+∞) andα,β ∈ (0,1) andαs+β s= 1.
The function f is s-convex in the second sense or s2-convex
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if
f (αx+βy)≤ αs f (x)+β s f (y),

for every x,y∈ [0,+∞) andα,β ∈ (0,1) andα +β = 1.

If the inequalities in (2) hold in the opposite sense, then
we say thatf is s-concave in the first and second sense,
respectively.

The following results are of interest for the
development of this work. The following theorem
establishes an inequality of the Ostrowski type using a
function whose derivative in modulus is convex, and can
be found in [1].

Theorem 1. (See [1]) let f : I ⊆ R → R be a
differentiable function in I◦ such that f′ ∈ L([a,b]) where
a,b ∈ I with a < b. If | f ′| is convex in[a,b], then the
inequality
∣

∣

∣
f (x)−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
b−a

6

[(

4
(b− x

b−a

)3
−3

(b− x
b−a

)2
+1

)

| f ′(a)|

+
(

9
(b− x

b−a

)2
−4

(b− x
b−a

)3
−6

(b− x
b−a

)

+2
)

| f ′(b)|
]

holds for each x∈ [a,b]. The constant16 is the best possible
in the sense it can not be replaced for any smaller.

Also, with the use of a function whose derivative in
modulus iss−convex in the second sense, M. Alomari et.
al. in [2] established the next result which involves the
Ostrowski inequality.

Theorem 2. (See [2]) Let f : I ⊂ R+ → R+ a
differentiable function in I◦ such that f′ ∈ L [a,b] where
a,b∈ I with a< b. If | f ′| is s-convex in the second sense
in [a,b] for some fixed s∈ (0,1] and | f ′(x)| ≤ M,
x ∈ [a,b], then the following inequality holds for each
x∈ [a,b].

∣

∣

∣
f (x)−

1
b−a

∫ b

a
f (u)du

∣

∣

∣
≤

M
b−a

[ (x−a)2+(b− x)2

s+1

]

.

Other results, no less important, were established by
M. Alomari in [3] , establishing the inequality of
Ostrowski by using functions whoseq−th powers of its
derivative in module is s-convex in the second sense.

Theorem 3. Let f : I ⊆ R+ → R+ a differentiable
mapping in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a< b. If | f ′|q is s-convex in the second sense in[a,b] for
some fixed s∈ (0,1], p,q> 1, 1

p +
1
q = 1 and| f ′(x)| ≤ M,

x∈ [a,b], then the following inequality holds:

∣

∣

∣
f (x)−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(1+ p)1/p

( 2
s+1

)1/q[ (x−a)2+(b− x)2

b−a

]

for each x∈ [a,b].

Theorem 4. Let f : I ⊆ R+ → R+ a differentiable
mapping in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a< b. If | f ′|q is s-convex in the second sense in[a,b] for
some fixed s∈ (0,1], q ≥ 1, and | f ′(x)| ≤ M, x ∈ [a,b],
then the following inequality

∣

∣

∣
f (x)−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤ M
( 2

s+1

)1/q[ (x−a)2+(b− x)2

2(b−a)

]

holds for each x∈ [a,b].

Among studies getting in the area of generalized
convexity, those that make use of relatively convex
functions with respect to a function stand out. M. A.
Noor, K.I. Noor and M.U. Awan introduced the following
definitions ([8]).

Definition 3. Let Kg a subset of H. Kg is said to be
relatively convex with respect to a function g: H → H if

tg(v)+ (1− t)u∈ Kg

∀u,v∈ H : u,g(v) ∈ Kg, and t∈ [0,1].

Definition 4. Let I be an interval inR. A function
f : Kg ⊆ R → R is said to be relatively convex with
respect to a function g: R→R if the inequality

f (tg(x)+ (1− t)y)≤ t f (g(x))+ (1− t) f (y)

holds for all g(x),y∈ Kg, x,y∈ R and t∈ [0,1].

If the inequality in (4) holds in the opposite sense, then
we say thatf is relatively concave.

An example of relatively convex set is showed in [8],
taken from a study on the environmental impact of noise
caused by a train. The authors define the functiong : R→
R by

g(x) =

{

x i f x∈ [0,50]
0 otherwise

in such a way that the set[0,50]∪ [125,130] is a relatively
convex set.

Also M.Noor et. al. introduced the following definition
([8]).

Definition 5. A function f : Kg → [0,+∞) is said to be
relatively s-convex in the second sense with respect to a
function g: H → H, where s∈ (0,1], if inequality

f (tg(x)+ (1− t)y)≤ ts f (g(x))+ (1− t)s f (y)

holds for each x,y∈ [0,+∞), g(x),y∈ Kg and t∈ [0,1].

If the inequality in (5) holds in the opposite sense, then
we say thatf is relativelys-concave in the second sense.
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3 Main Results

In this section, we present new Ostrowski types of
inequality derivative modulus wich is relative convex and
relatives−convex functions in the second sense.
The following Lemma is necessary.

Lemma 1. Let f : I ⊆ R→R a differentiable function in
I◦ where a,b ∈ I, a < b and g: R → R is a function. If
f ′ ∈ L [a,b], then the following equality holds

f (g(x))−
1

b−a

∫ b

a
f (z)dz

=
(g(x)−a)2

b−a

∫ 1

0
t f ′(tg(x)+ (1− t)a)dt

−
(g(x)−b)2

b−a

∫ 1

0
t f ′(tg(x)+ (1− t)b)dt

for every x∈ g−1(I).

Proof. Integrating by parts we get:
∫ 1

0
t f ′(t(g(x)+ (1− t)a)dt

=
f (g(x))
g(x)−a

−
1

g(x)−a

∫ 1

0
f (t(g(x)+ (1− t)a)dt,

so,

(g(x)−a)
∫ 1

0
t f ′(t(g(x)+ (1− t)a)dt

= f (g(x))−
∫ 1

0
f (tg(x)+ (1− t)a)dt.

With the change of variablez= tg(x)+ (1− t)a it follows
that

(g(x)−a)2
∫ 1

0
t f ′(t(g(x)+ (1− t)a)dt

= (g(x)−a) f (g(x))−
∫ g(x)

a
f (z)dz. (2)

Similarly

(g(x)−b)2
∫ 1

0
t f ′(t(g(x)+ (1− t)b)dt

= (g(x)−b) f (g(x))−
∫ g(x)

b
f (z)dz. (3)

subtracting (3) from (2) it follows the desired result.

Theorem 5. Let f : I ⊂ [0,+∞) → R be a differentiable
function on I◦ such that f′ ∈ L [a,b], where a,b∈ I with
a< b. If | f ′| is relatively convex with respect to a function
g : R→R in [a,b] and| f ′(x)| ≤ M, the inequality

∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b−a

[ (g(x)−a)2+(g(x)−b)2

2

]

holds for all x∈ g−1(I).

Proof. Using Lemma1 we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)−a)2

b−a

∫ 1

0
t
∣

∣

∣
f ′(tg(x)+ (1− t)a)

∣

∣

∣
dt

+
(g(x)−b)2

b−a

∫ 1

0
t
∣

∣

∣
f ′(tg(x)+ (1− t)b)

∣

∣

∣
dt.

Now, since| f ′| is relatively convex y| f ′(x)| ≤ M we get

∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤ M
(g(x)−a)2

b−a

∫ 1

0
tdt+M

(g(x)−b)2

b−a

∫ 1

0
tdt

≤
M

b−a

[ (g(x)−a)2− (g(x)−b)2

2

]

and the proof follows.

Remark. If in Theorem (5) we takeg(x) = x, we obtain
the classic Ostrowski inequality.

Lemma 2. Let f : I ⊆R→R be a differentiable function
in I◦ where a,b∈ I with a< b and g: R→R is a function.
If f ′ ∈ L [a,b], then the following equality

f (x)−
1

b−g(a)

∫ b

g(a)
f (u)du

= (g(a)−b)
∫ 1

0
p(t) f ′(tg(a)+ (1− t)b)dt

holds for every t∈ [0,1] where

p(t) =

{

t, t ∈ [0, b−x
b−g(a) ] ,

t −1, t ∈ ( b−x
b−g(a) ,1].

for every x∈ [a,b].

Proof. Integrating by parts we get:

∫ b−x
b−g(a)

0
t f ′(t(g(a)+ (1− t)b)dt

=
b−x

b−g(a)
f (x)

g(a)−b
−

∫ b−x
b−g(a)

0

f (t(g(a)+(1− t)b)
g(a)−b

dt (4)

and
∫ 1

b−x
b−g(a)

(t −1) f ′(t(g(a)+ (1− t)b)dt

=
x−g(a)
b−g(a)

f (x)
g(a)−b

−

∫ 1

b−x
b−g(a)

f (t(g(a)+ (1− t)b)
g(a)−b

dt.(5)
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Adding (4) and (5) we obtain

∫ b−x
b−g(a)

0
t f ′(t(g(a)+ (1− t)b)dt

+

∫ 1

b−x
b−g(a)

(t −1) f ′(t(g(a)+ (1− t)b)dt

=
f (x)

g(a)−b
−

1
(g(a)−b)2

∫ g(a)

b
f (u)du,

equivalently,

f (x)−
1

b−g(a)

∫ b

g(a)
f (u)du

= (g(a)−b)
∫ 1

0
p(t) f ′(tg(a)+ (1− t)b)dt.

The proof is complete.

Theorem 6. Let f : I ⊆ R → R be a differentiable
function on I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a< b. If | f ′| is relatively convex with respect to a function
g : R→R in [a,b], then the following inequality holds

∣

∣

∣
f (x)−

1
b−g(a)

∫ b

g(a)
f (u)du

∣

∣

∣

≤
g(a)−b

6

[(

4
( b−x

b−g(a)

)3
−3

( b−x
b−g(a)

)2
+1

)

| f ′(g(a))|

+
(

9
( b−x

b−g(a)

)2
−4

( b−x
b−g(a)

)3
−6

( b−x
b−g(a)

)

+2
)

| f ′(b)|
]

for each x∈ [a,b]. The constant16 is the best possible in
the sense that is can not be replaced by any smaller.

Proof. Using Lemma (2), the triangular inequality and the
fact that| f ′| is relatively convex with respect to a function
g : [a,b]→ R we get that
∣

∣

∣
f (x)−

1
b−g(a)

∫ b

g(a)
f (u)du

∣

∣

∣

≤ (g(a)−b)
∫ b−x

b−g(a)

0
t| f ′(tg(a)+(1− t)b)|dt

+(g(a)−b)
∫ 1

b−x
b−g(a)

(1− t)| f ′(tg(a)+(1− t)b)|dt

≤ (g(a)−b)
∫ b−x

b−g(a)

0
t(t| f ′(g(a))|+(1− t)| f ′(b)|)dt

+(g(a)−b)
∫ 1

b−x
b−g(a)

(1− t)(t| f ′(g(a))|+(1− t)| f ′(b)|)dt

= (g(a)−b)
∫ b−x

b−g(a)

0
(t2| f ′(g(a))|+ t(1− t)| f ′(b)|)dt

+(g(a)−b)
∫ 1

b−x
b−g(a)

((1− t)t| f ′(g(a))|+(1− t)2
∣

∣ f ′(b)
∣

∣)dt.

Then, integrating overt ∈ [0,1] we get
∣

∣

∣
f (x)−

1
b−g(a)

∫ b

g(a)
f (u)du

∣

∣

∣

≤
(g(a)−b)

6

[

4
( b−x

b−g(a)

)3
−3

( b−x
b−g(a)

)2
+1

)

| f ′(g(a))|

+ 9
( b−x

b−g(a)

)2
−4

( b−x
b−g(a)

)3
−6

( b−x
b−g(a)

)

+2
)

| f ′(b)|
]

.

The proof is complete.

Remark. If in Theorem (6) we takeg(x) = x, we obtain
the result of Theorem (1).

The following results correspond to those functions
whose derivatives in modulus are relativelys−convex in
the second sense.

Theorem 7. Let f : I ⊂ R+ → R+ be a differentiable
function in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a < b. If | f ′| is relatively s-convex with respect to a
function g : R → R for some fixed s∈ (0,1] and
| f ′(x)| ≤ M, x∈ [a,b], then the following inequality holds

∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

b−a

[ (g(x)−a)2+(g(x)−b)2

s+1

]

for each x∈ [a,b].

Proof. By lemma (1), the triangle inequality and the fact
that | f ′| is relativelys-convex with respect to a function
g : [a,b]→R and| f ′(x)| ≤ M, x∈ [a,b] we get:
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)−a)2

b−a

∫ 1

0
t| f ′(tg(x)+ (1− t)a)|dt

+
(g(x)−b)2

b−a

∫ 1

0
t| f ′(tg(x)+ (1− t)b)|dt

≤
(g(x)−a)2

b−a

∫ 1

0
t(ts| f ′(g(x))|+(1− t)s

∣

∣ f ′(a)
∣

∣)dt

+
(g(x)−b)2

b−a

∫ 1

0
t(ts| f ′(g(x))|+(1− t)s

∣

∣ f ′(b)
∣

∣)dt

= M
(g(x)−a)2

b−a

∫ 1

0
t(ts+(1− t)s)dt

+M
(g(x)−b)2

b−a

∫ 1

0
t(ts+(1− t)s)dt,

then, integrating overt ∈ [0,1] we get
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣
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≤ M
( 1

s+2
+

1
(s+1)(s+2)

)[ (g(x)−a)2+(g(x)−b)2

b−a

]

=
M

b−a

[ (g(x)−a)2+(g(x)−b)2

s+1

]

The proof is complete.

Remark. If in Theorem7 we let g(x) = x, we obtain the
result of Theorem2.

Theorem 8. Let f : I ⊂ R+ → R+ be a differentiable
function in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a < b. If | f ′|q is relatively s-convex in the second sense
with respect to a function g: R → R for some fixed
s∈ (0,1], p,q> 1, 1

p +
1
q = 1 and | f ′(x)| ≤ M, x∈ [a,b],

then the following inequality holds

∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(1+ p)1/p

( 2
s+1

)1/q[ (g(x)−a)2+(g(x)−b)2

(b−a)

]

for each x∈ [a,b].

Proof. Let q > 1 . From lemma1 and using the Hölder
inequality, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)−a)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)a)|dt

+
(g(x)−b)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)b)|dt

≤
(g(x)−a)2

b−a

(

∫ 1

0
t pdt

)1/p(∫ 1

0

∣

∣ f ′(tg(x)+(1− t)a)
∣

∣dt
)1/q

+
(g(x)−b)2

b−a

(

∫ 1

0
t pdt

)1/p(∫ 1

0

∣

∣ f ′(tg(x)+(1− t)b)
∣

∣

q
)1/q

,

where 1/p+1/q= 1.
Since| f ′|q is relatively s-convex in the second sense

with respect to a functiong and| f ′(x)| ≤ M, then
∫ 1

0

∣

∣ f ′(tg(x)+ (1− t)a)
∣

∣

q
dt

≤

∫ 1

0

(

ts
∣

∣ f ′(g(x))
∣

∣

q
+(1− t)s

∣

∣ f ′(a)
∣

∣

q)
dt

≤
2Mq

s+1

and
∫ 1

0

∣

∣ f ′(tg(x)+ (1− t)b)
∣

∣

q
dt

≤

∫ 1

0

(

ts
∣

∣ f ′(g(x))
∣

∣

q
+(1− t)s

∣

∣ f ′(b)
∣

∣

q)
dt

≤
2Mq

s+1
.

Therefore, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(1+ p)1/p

( 2
s+1

)1/q[ (g(x)−a)2+(g(x)−b)2

(b−a)

]

.

The proof is complete.

Remark. If in Theorem (8) we letg(x) = x, we obtain the
result of Theorem (3).

Theorem 9. Let f : I ⊂ R+ → R+ be a differentiable
function in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a < b. If | f ′|q is relatively s-convex with respect to a
function g: R → R for some fixed s∈ (0,1], q ≥ 1, and
| f ′(x)| ≤ M, x∈ [a,b], then the following inequality holds

∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤ M
( 2

s+1

)1/q[ (g(x)−a)2+(g(x)−b)2

2(b−a)

]

for each x∈ [a,b].

Proof. Let q > 1 from Lemma1, and using the power
mean inequality, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)−a)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)a)|dt

+
(g(x)−b)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)b)|dt

≤
(g(x)−a)2

b−a

(

∫ 1

0
tdt

)1−1/q(∫ 1

0
t
∣

∣ f ′(tg(x)+(1− t)a)
∣

∣

q
)1/q

+
(g(x)−b)2

b−a

(

∫ 1

0
tdt

)1−1/q(∫ 1

0
t
∣

∣ f ′(tg(x)+(1− t)b)
∣

∣

q
)1/q

Since| f ′|q is relatively s-convex in the second sense with
respect to a functiong and| f ′(x)| ≤ M, then we have
∫ 1

0
t| f ′(tg(x)+ (1− t)a)|qdt

≤

∫ 1

0
(ts+1

∣

∣ f ′(g(x))
∣

∣

q
+ t(1− t)s

∣

∣ f ′(a)
∣

∣

q
)dt

≤
Mq

s+1
and
∫ 1

0
t| f ′(tg(x)+ (1− t)b)|qdt

≤

∫ 1

0
(ts+1

∣

∣ f ′(g(x))
∣

∣

q
+ t(1− t)s

∣

∣ f ′(b)
∣

∣

q
)dt

≤
Mq

s+1
.
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Therefore, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤ M
(1

2

)1−1/q( 1
s+1

)1/q[ (g(x)−a)2+(g(x)−b)2

(b−a)

]

= M
( 2

s+1

)1/q[ (g(x)−a)2+(g(x)−b)2

(b−a)

]

.

The proof is complete.

Remark. If in Theorem (9) we takeg(x) = x, we obtain
the result of Theorem (4).

The next result is known as the inequality of Hermite-
Hadamard for functions relativelys-convex in the second
sense.

Theorem 10. Let f : Kg ⊂R→R be a relatevily s-convex
in the second sense, then we have

2s−1 f
(a+g(b)

2

)

≤
1

g(b)−a

∫ g(b)

a
f (u)du≤

f (a)+ f (g(b))
s+1

.

If f is relatively s-concave in the second sense, then the
inequalities holds in the opposite sense.

The proof of that theorem can be found in [8].

Theorem 11. Let f : I ⊂ R+ → R+ be a differentiable
function in I◦ such that f′ ∈L [a,b]where a,b∈ I with a<
b. If | f ′|q is relatively s-concave with respect to a function
g : R→ R for some fixed s∈ (0,1], q≥ 1, 1

p +
1
q = 1 and

| f ′(x)| ≤ M, x∈ [a,b], then the following inequality holds
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
2(s−1)/q

(1+ p)1/q(b−a)

[

(g(x)−a)2
∣

∣

∣
f ′
(a+g(x)

2

)
∣

∣

∣

+ (g(x)−b)2
∣

∣

∣
f ′
(b+g(x)

2

)∣

∣

∣

]

for each x∈ [a,b]

Proof. Suppose thatq> 1 from Lemma1, and using the
Hölder inequality, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
(g(x)−a)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)a)|dt

+
(g(x)−b)2

b−a

∫ 1

0
t| f ′(tg(x)+(1− t)b)|dt

≤
(g(x)−a)2

b−a

(

∫ 1

0
t pdt

)
1
p
(

∫ 1

0

∣

∣ f ′(tg(x)+(1− t)a)
∣

∣

qdt
)

1
q

+
(g(x)−b)2

b−a

(

∫ 1

0
t pdt

)
1
p
(

∫ 1

0

∣

∣ f ′(tg(x)+(1− t)b)
∣

∣

q dt
)

1
q

Since| f ′|q is relativelys-concave in the second sense with
respect to a functiong, using the theorem (10), we have

∫ 1

0

∣

∣ f ′(tg(x)+ (1− t)a)
∣

∣

q
dt ≤ 2s−1

∣

∣

∣
f ′
(g(x)+a

2

)
∣

∣

∣

q

and
∫ 1

0

∣

∣ f ′(tg(x)+ (1− t)b)
∣

∣

q
dt ≤ 2s−1

∣

∣

∣
f ′
(g(x)+b

2

)∣

∣

∣

q
.

Therefore, we have
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
2(s−1)/q

(1+ p)1/q(b−a)

[

(g(x)−a)2
∣

∣

∣
f ′
(a+g(x)

2

)∣

∣

∣

+(g(x)−b)2
∣

∣

∣
f ′
(b+g(x)

2

)∣

∣

∣

]

.

The proof is complete.

4 Some Consequences

Corollary 1. Let f : I ⊂ R+ → R+ a differentiable
function in I◦ such that f′ ∈ L [a,b] where a,b ∈ I with
a < b. If | f ′|q is relatively convex with respect to a
function g: R→ R , p,q≥ 1, 1

p +
1
q = 1 and | f ′(x)| ≤ M,

x∈ [a,b], then the following inequality holds
∣

∣

∣
f (g(x))−

1
b−a

∫ b

a
f (u)du

∣

∣

∣

≤
M

(b−a)

[ (g(x)−a)2+(g(x)−b)2

(1+ p)1/p

]

for each x∈ [a,b].

Proof. If in Theorem 8 we let s = 1, we obtain the
desired result.

Corollary 2. If in Theorem9 we choose the function
g(x) = a+b

2 , then we have

∣

∣

∣
f

(

a+b
2

)

−
1

b−a

∫ b

a
f (u)du

∣

∣

∣
≤

M(b−a)
4

( 2
s+1

)1/q

q ≥ 1, where s∈ (0,1] and | f ′|q is relatively s-convex in
the second sense with respect to a function g: R→ R.

Corollary 3. If in (11) we choose s= 1 and g(x) = a+b
2 .

then we have
∣

∣

∣
f
(a+b

2

)

−
1

b−a

∫ b

a
f (u)du

∣

∣

∣

≤
b−a

4(1+ p)1/q

[∣

∣

∣
f ′
(3a+d

2

)∣

∣

∣
+
∣

∣

∣
f ′
(3b+a

2

)∣

∣

∣

]

,

where| f ′|q is relatively s-concave in the second sense with
respect to a function g: R→R.
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5 Conclusions

In the development of this work we have established an
Ostrowski-type inequality for functions whose derivative
module is relatively convex, also we give a new version of
a result obtained by M. Alomari and M. Darus. Using the
relatives−convexity with respect to a given function we
obtain some others results of the same type. With these
results we obtain generalizations of results found by M.
Alomari et. al. using convex ands−convex in the second
sense ([1,2]). We expect that the ideas and techniques
used in this paper may inspire interested readers to
explore some new applications of these newly introduced
functions in various fields of pure and applied sciences.
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